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Electromagnetically induced transparency (EIT) has been proposed as a way to greatly enhance cross-phase
modulation, with the possibility of leading to few-photon-level optical nonlinearities [Schmidt and Imamoglu,
Opt. Lett. 21, 1936 (1996)]. This enhancement grows as the transparency window width, �EIT, is narrowed.
Decreasing �EIT, however, has been shown to increase the response time of the nonlinear medium. This suggests
that, for a given pulse duration, the nonlinearity would diminish once the window width became narrower than
this pulse bandwidth. We show that this is not the case: the peak phase shift saturates but does not decrease. We
show that in the regimes of most practical interest—narrow EIT windows perturbed by short signal pulses—the
enhancement offered by EIT is not only in the magnitude of the nonlinear phase shift but also in its increased
duration. That is, for the case of signal pulses much shorter (temporally) than the inverse EIT bandwidth, the
narrow window serves to prolong the effect of the passing signal pulse, leading to an integrated phase shift that
grows linearly with 1/�EIT; this continued growth of the integrated phase shift improves the detectability of the
phase shift, in principle, without bound. For many purposes, it is this detectability which is of more interest than
the absolute magnitude of the peak phase shift. We present analytical expressions based on a linear time-invariant
model that accounts for the temporal behavior of the cross-phase modulation for several parameter ranges of
interest. We conclude that in order to optimize the detectability of the EIT-based cross-phase shift, one should
use the narrowest possible EIT window and a signal pulse that is as broadband as the excited-state linewidth and
detuned by half a linewidth.
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I. INTRODUCTION

While photonic qubits are ideal candidates for quantum
information storage and transmission, an efficient and scalable
method for processing optical quantum information has yet
to be demonstrated. The weakly interacting nature of light,
which makes photonic qubits robust against decoherence, also
renders photons poor candidates for information processing
since (nonlinear) interactions are at the heart of logic gate
operations.

A large enough optical nonlinearity at the quantum level can
pave the way for numerous applications, including low-light-
level switching [1], quantum nondemolition measurements
[2], quantum teleportation [3], and quantum logic gates [4].
However, naturally occurring nonlinear optical coefficients
are insufficient for these applications. Several approaches have
been taken to tackling the problem of very weak nonlinearities,
including the use of photonic crystal fibers [5], Rydberg
atoms [6–9], atoms in hollow-core fibers [10], single atoms
coupled to microresonators [11], and a proposal to amplify
the magnitude of existing nonlinear optical effects [12].
Schmidt and Imamoglu proposed a scheme [13] based on
electromagnetically induced transparency (EIT) [14] which
allowed for “giant,” resonantly enhanced optical nonlinearities
while simultaneously eliminating absorption; see [15–17] for
examples of the experimental realization of this scheme. While
offering an orders-of-magnitude increase in the interaction
strength, which scales inversely with the transparency window
width, this work was based on a single-mode treatment and
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did not consider practical details of the effect in the presence
of pulsed light fields.

This paper investigates whether the enhancement offered
by the original proposal persists for experimentally realistic
conditions which call for broadband signal pulses, narrow
EIT windows, and optically thick media. Here we show that
in the regime of narrow transparency windows perturbed by
short signal pulses, the peak cross-phase shift (XPS) saturates
without shrinking, contrary to previous fears, and the duration
of the effect grows as the window becomes narrower. While
the rise time of the EIT-enhanced XPS is determined by the
signal pulse duration, τs , its fall is given by the inverse EIT
window width, resulting in an integrated nonlinear phase shift
that continues to scale inversely with the window width even
for �EIT � 1/τS . In addition, while step-response analysis
showed that increasing the optical density (OD) of the medium
increased the rise time of the nonlinearity, here again we show
that the rise time is unaffected when pulsed signal fields are
considered; higher ODs merely result in an elongation of
the XPS, which can aid in the detection of this effect. The
results reported in this paper disprove some of the previously
believed dependences for EIT-enhanced optical nonlinearity
and present the correct scalings for experimentally relevant
parameter regimes.

There have been several multimode treatments of EIT,
which examine the transients due to switching on optical fields
[18,19] as well as of sudden changes in two-photon (Raman)
resonance [20,21]. In addition, the transient properties of the
associated nonlinearities, both absorptive (photon switching)
[22,23] and dispersive (cross-Kerr effect) [24–28], have since
been investigated. In particular, it was found that the rise time
of the cross-phase modulation, that is, the time required for

2469-9926/2016/93(1)/013834(10) 013834-1 ©2016 American Physical Society

http://dx.doi.org/10.1364/OL.21.001936
http://dx.doi.org/10.1364/OL.21.001936
http://dx.doi.org/10.1364/OL.21.001936
http://dx.doi.org/10.1364/OL.21.001936
http://dx.doi.org/10.1103/PhysRevA.93.013834


FEIZPOUR, DMOCHOWSKI, AND STEINBERG PHYSICAL REVIEW A 93, 013834 (2016)

the phase of the probe field to reach its new steady-state
value in response to a step-function signal field, is inversely
proportional to the EIT window width, �EIT. While narrower
EIT windows provide a larger steady-state phase shift, more
time is needed to reach this steady state. In [26,28] the authors
suggest that there is an inherent limitation to EIT-enhanced
cross-phase modulation schemes; they directly generalized the
step-response results to pulsed signal fields and concluded that
using EIT to increase the nonlinearity also renders the medium
slow to respond. However, this approach is not valid for the
case of short signal pulses and an appropriate study of this
relevant regime is missing.

Early schemes for optical quantum information processing
required very large (of the order of π ) XPSs [29]. As this
has proven to be experimentally out of reach in single-pass
geometries so far, more recent proposals have replaced the
need for such large phase shifts with the less demanding
requirement of any XPS detectable in a single shot [4]. In this
proposal, each qubit single photon interacts individually with
the same classical electromagnetic field (“bus”). A subsequent
phase measurement on this bus projects the two qubits into
an entangled state up to a local correction. The crucial step
here is to be able to detect the nonlinear phase shift of the
single photon on the classical beam in a single shot. In order
to improve the detectability of the phase shift, one usually
integrates the effect over its duration. In other words, not only
the peak size of the nonlinear phase shift but also its duration
plays an important role. We, therefore, study both the peak and
the integrated nonlinear phase shift. It is important to note that
no experiment so far has been able to demonstrate a single-shot
measurement of a nonlinear phase shift due to a single photon.

We begin by introducing in Sec. II A the rigorous mathemat-
ical approach (based on the Maxwell-Bloch equations) used to
study this light-matter interaction. In Sec. II B we show that the
dynamics of these XPSs can be understood in terms of a linear
time-invariant (LTI) model [30]. The intensity of the signal
field and the phase of the probe field can be thought of as
the “drive” and “response” of a linear system, respectively.
Analytical expressions based on an LTI system response
accurately model the behavior of the nonlinear interaction in
most regimes of interest. The results of these two approaches
are discussed in Sec. III, where we describe behavior of
EIT-enhanced XPS with pulsed signal fields including its
dependence on various parameters of interest such as the
transparency window width and the signal pulse duration.
Finally, in Sec. III C we discuss how propagation in an optically
thick medium affects EIT-enhanced cross-phase modulation.
Throughout, we compare the predictions of an LTI model and
the numerical solutions of the complete system density matrix
and discuss the range of validity of such a model.

II. N SCHEME

Consider the atomic level scheme shown in Fig. 1, in which
continuous-wave in-phase probe and coupling fields form
a three-level Lambda system. If the two-photon resonance
condition is satisfied, i.e., δ = �p − �c = 0, and the coupling
field is strong enough, �2

c � �γ , then destructive interference
of multiple excitation pathways causes the medium to become
transparent to the probe light. That is, the interaction of the

|gp〉
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|ep〉
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FIG. 1. Level structure for the simplest EIT-enhanced cross-Kerr
effect, the so-called N scheme. Here, �p and �c are the Rabi
frequencies of the (continuous-wave) probe and coupling fields; �s

is the peak Rabi frequency of the signal field, which is a Gaussian
pulse of length τs ; � is the excited-state decay rate; and γ is the
ground-state dephasing rate.

probe and coupling fields with the medium results in new
atomic eigenstates, one of which (the so-called dark state)
is decoupled from the optical fields. Atomic population is
pumped into this dark state, where it remains, at a rate of R =
�2

c�/2(4�2 + �2), where � = (�p + �c)/2. The steady-
state spectral width (FWHM) of the EIT window is determined
by this pumping rate along with the ground-state dephasing
rate according to �EIT = 2(R + γ ) [27]. The presence of the
signal field inside the medium completes the “N scheme,”
serving to perturb the ground-state coherence created by the
Lambda system in two ways: first, the scattering of the signal
photons from the excited state |es〉 dephases the ground-state
coherence at the rate of �2

s�/4�2
s ; second, the Stark shift

caused by the signal pulse, �ACS = �2
s /4�s , detunes the

system out of two-photon resonance and causes the probe field
to experience a different refractive index, thereby acquiring an
XPS. The signal detuning can be made large enough compared
to both the excited-state linewidth and the bandwidth of the
signal pulse that the first contribution is negligible and only the
Stark shift perturbs the system significantly. If this Stark shift,
�ACS, is smaller than the EIT window width, �EIT, then the
phase shift that the probe experiences is linear in �ACS and, in
turn, linear in the intensity of the signal field, |�s |2. This is the
regime in which the nonlinear interaction between the signal
and the probe can be considered a cross-Kerr effect.

A. Maxwell-Bloch model

The Hamiltonian describing the interactions in Fig. 1 (in
a rotating frame and using the rotating-wave approximation)
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is

H = �

2

⎛
⎜⎜⎝

0 0 �p 0
0 2δ �c �s

�∗
p �∗

c 2�p 0
0 �∗

s 0 2(�s + δ)

⎞
⎟⎟⎠, (1)

where �i = −�μ · �Ei/� is the Rabi frequency and Ei is the electric field for i = p,c,s; �μ is the dipole matrix element of the
transition. We can find the dynamics of the system by solving the Maxwell-Bloch equations,

∂t�p + c∂z�p = igN (z)Sp(z,t),

∂t�c + c∂z�c = igN (z)Sc(z,t),

∂t�s + c∂z�s = igN (z)Ss(z,t),

∂tSp = (i�p − �/2)Sp(z,t) + i 1
2�p(z,t) + i 1

2�c(z,t)Sgg(z,t),

∂tSs = (i�s − �/2)Ss(z,t) − i 1
2�c(z,t)See(z,t), (2)

∂tSc = (i�c − �/2)Sc(z,t) − i 1
2�s(z,t)S

∗
ee(z,t) + i 1

2�p(z,t)S∗
gg(z,t),

∂tSgg = (iδ − γ )Sgg(z,t) + i 1
2�∗

c (z,t)Sp(z,t) − i 1
2�p(z,t)S∗

c (z,t) + i 1
2�∗

s (z,t)Sge(z,t),

∂tSee = (i(�s − �c) − �/2)See(z,t) + i 1
2�s(z,t)S

∗
c (z,t) − i 1

2�∗
p(z,t)Sge(z,t) − i 1

2�∗
c (z,t)Ss(z,t),

∂tSge = (i(�s + �p − �c) − �/2)Sge(z,t) − i 1
2�p(z,t)See(z,t) + i 1

2�s(z,t)Sgg(z,t),

which encapsulate the dynamics of both the atomic system
and the electromagnetic fields. In Eqs. (2), c is the speed
of light; N (z) is the atom density; Sp = Tr(ρ|gp〉〈ep|),
Sc = Tr|(ρ|gc〉〈ep|), and Ss = Tr(ρ|gc〉〈es |) are the probe,
coupling, and signal transition coherences, respectively; Sgg =
Tr(ρ|gp〉〈gc|), See = Tr(ρ|ep〉〈es |), and Sge = Tr(ρ|gp〉〈es |)
are the coherences between the two ground states, between
the two excited states, and between the probe ground state
and the signal excited state, respectively; ρ is the atomic
density matrix; and g = ω0μ

2/ε0� is the light-matter coupling
constant, where ω0 is the center frequency of the electro-
magnetic field. For the purposes of this paper ω0 and μ are
taken to be constants and equal for all transitions. In deriving
the above equations of motion, it is assumed that all optical
fields are weak enough that the population remains completely
in the probe ground state, |gp〉. Therefore, to first order in
electric fields, the equations of motion for populations can be
neglected. We assume a Gaussian distribution for atom density
and set both one- and two-photon detunings to 0, �p = 0,
and �c − �p = 0, respectively. In addition, the probe and
coupling fields are assumed to be continuous wave (pulses
with durations much longer than the simulation time), while
the signal pulse is taken to be Gaussian with an rms duration
of τs . The probe and coupling fields have to be long enough
to encompass all of the dynamics of the system, especially
any potentially long-lasting transient behavior. Note that the
OD of a transition is given by d0 = (2g/c�)

∫
N (z)dz =

σat
∫

N (z)dz where σat is the interaction cross section.
The equations of motion, Eq. (2), can be solved using

approximate analytical methods [27] or numerical techniques.
We take the latter route, using a first-order difference method
to discretize the spatial coordinate and then the fourth-order
Runge-Kutta method to take the time integral, which yields
the solution to the density matrix of the combined light-matter

system for different sets of parameter choices. First, however,
we present an alternate and simpler approach to modeling the
dynamics as an LTI system. The results in Sec. III compare
and contrast these two approaches.

B. Linear time-invariant model

Here we present a model for the dynamics of the cross-Kerr
interaction, which abstracts the underlying nonlinearities and
treats the probe phase as the “output” of an LTI system
whose behavior is affected by an independent, potentially
time-varying, “driving” signal-field intensity. The impulse
response characterizing this linear system may be obtained
by direct differentiation of the system’s step response. This
step response is precisely what has been reported in previous
transient studies of EIT-enhanced XPS [27]. There it was
shown that, when the Stark shift is smaller than the EIT window
width, the rise time of the XPS is τ = (1 + d/4)/(R + γ ),
where d = d0R/(R + γ ) is the depth of the transparency (the
difference in the OD seen by the on-resonance probe without
and the OD with a resonant coupling beam). We, therefore,
take the step response, S(t), to have an exponential shape,

S(t) = φss

|�|2 �(t)(1 − exp(−t/τ )), (3)

where φss is the steady-state XPS for a weak signal field
of intensity |�|2, and �(t) is the Heaviside step function.
It is important to note that the shape of the response in
an optically thick medium deviates from the exponential
form. For simplicity, we first consider optically thin media,
leaving the details of optically thick samples to Sec. III C. The
steady-state phase shift, φss, as predicted by single-mode and
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step-response treatments, is

φss = �ACS
ω0

2c

∫
dz

∂χpr(z)

∂�p

∣∣∣∣
�c=0, δ=0

= �ACS
ω0

2c

4d2

�ε0

�2
c(

2γ� + �2
c

)2

∫
N (z)dz

= �ACSd0�
�2

c(
2γ� + �2

c

)2 = �ACS
d

�EIT
, (4)

where χpr is the steady-state susceptibility of the probe
transition [14], �ACS = −|�|2/4�s is the ground-state Stark
shift for �s � �, and d/�EIT is proportional to the slope of the
refractive index with respect to the detuning seen by the probe
field. The impulse response can be obtained by differentiating
the above step response:

I(t) = ∂S(t)

∂t
= φss

|�|2τ �(t) exp(−t/τ ). (5)

Let us now investigate the behavior of this system in
response to a Gaussian signal pulse. We describe the pulse
by its time-dependent Rabi frequency,

�s(t) = �0,s

(
1

2τ 2
s �2

)1/4

exp
(−t2/4τ 2

s

)
. (6)

With applications of single-photon nonlinearities in mind,
we consider a fixed number of signal photons, nph, constraining
the pulse energy,

E =
(√

π
�2

0,s

�2

A

σat

)
�ω0 = nph�ω0, (7)

where A is the transverse area of the signal pulse. Assuming
linearity, the temporal profile of the XPS is the convolution
of the impulse response and the intensity profile of the signal
pulse,

φ(t) = |�s(t)|2 ∗ I(t)

= φ0nph

2τ
eτ 2

s /2τ 2

× exp(−t/τ )(1 + erf(t/
√

2τs − τs/
√

2τ )), (8)

where erf(x) = 2/
√

π
∫ x

0 dx ′ exp(−x ′2) is the error function,
∗ indicates convolution, and

φ0 = �

−4�s

σat

A

d

�EIT
(9)

is the integrated XPS per signal photon. The temporal profile
of the XPS predicted by the LTI model, Eq. (8), suggests
that there are two time scales involved: the response time
of the EIT medium, τ , and the signal pulse duration, τs .
Initially, when t � τ , the error function term alone dictates
the temporal shape, having a time scale given by τs . The rise
of the phase shift always mimics the envelope of the signal
pulse, irrespective of τ . For later times, however, the temporal
shape of the phase shift is given by a combination of the signal
pulse duration and the response time of the EIT medium. In
the limiting case of τs � τ (when the signal pulse is much
longer than the response time of the medium), the probe
phase follows the signal pulse envelope. This corresponds

to a quasi-steady-state scenario where the atomic coherences
are able to follow the change in two-photon detuning arising
from the signal field. At the other extreme, when τs � τ ,
the phase of the probe field rises quickly due to the short
signal pulse and then relaxes to its original steady-state value
on a time scale given by τ alone. This corresponds to a short
impulse perturbing the system momentarily, leaving the atomic
coherences to build back up once it passes. For intermediate
cases, the phase decays on a time scale which is a combination
of τ and τs .

This is the first important result of this paper. The rise
time of the nonlinear effect due to a pulsed signal is governed
merely by the signal pulse duration, while the fall time is a
combination of the pulse duration and the response time of
the EIT medium. This is in contrast to previous results [26,28]
where step-response analysis was incorrectly generalized to
draw conclusions about pulsed signal fields. An important
implicit assumption of a step-response analysis in those cases
is that the signal field remains on for a time longer than the
response time of the system, an assumption that does not hold
for pulsed signal fields.

In addition, the integrated phase shift per photon, φ0, as
predicted by the LTI model, Eq. (9), is seen to be independent
of the signal pulse duration (recall that the energy of the signal
pulse is held fixed). Importantly, the integrated phase shift
scales inversely with the EIT window width for pumping rates
much higher than the dephasing rate, R � γ ; peaks when
R = γ ; and falls off for R � γ . The only other parameters
that φ0 depends on are the OD, d0, the signal pulse detuning,
�s , and how tightly the signal beam is focused compared to the
atomic cross section, σat/A. We now turn to the dynamics of
EIT-enhanced XPS and show that this linear model accurately
predicts the behavior obtained from a numerical solution of
the complete system density matrix.

III. RESULTS

In what follows, we show how different parameters of
interest modify the behavior of EIT-enhanced XPS in the
presence of a pulsed signal field. We consider both the
numerical solution in Sec. II A and the LTI model in Sec. II B
and show that the latter captures the salient features of this
nonlinear interaction. We begin by discussing the effect of the
transparency window width, �EIT, on the XPS time response
and the role that dephasing plays in this regard. In Sec. III B,
we investigate the effects of the signal pulse duration and
detuning, and we conclude by discussing in Sec. III C how an
optically thick medium alters these dynamics. In order to carry
out the numerical simulations, most of the medium parameters
are chosen to be close to practically available values in a cold
rubidium atom sample. However, it is important to remember
that the qualitative results presented here are general properties
of the N scheme regardless of the specific medium chosen to
implement it.

A. Dependence on EIT medium properties

We first address how the width of the transparency window
affects the dynamics of the EIT-enhanced XPS. In the original
single-mode treatment, the size of the nonlinear phase shift

013834-4



SHORT-PULSE CROSS-PHASE MODULATION IN AN . . . PHYSICAL REVIEW A 93, 013834 (2016)

time (μs)
0  0.3 1  3  10 30 100

φ
(t

)/
n

ph
 (
μ

ra
d)

0

1

2

3

4
2π×12 kHz
2π×61 kHz
2π×121 kHz
2π×364 kHz
2π×1213 kHz
2π×3640 kHz
Signal Pulse

FIG. 2. Time dependence of the per-photon cross-phase shift for
a variety of EIT window widths. The linear scaling of the peak XPS
versus EIT window width breaks down once the response time of
the EIT medium becomes comparable to or larger than the signal
pulse duration. However, narrower window widths produce longer
tails. Simulation parameters: � = 2π × 6 MHz, τs = 1/2

√
2π ×

2000 kHz−1, nph = 100, d0 = 1, �p = 0, �c = 0, �s = −10�,
σat = 1.2 × 10−13 m2, �0,p = 0.003�, γ = 1 × 10−5�, beam waist
of 10 μm, and wavelength of 780.24 nm. The atomic cloud has a
Gaussian spatial distribution. The legend shows the widths of the EIT
windows used.

increased indefinitely as the EIT window was narrowed. In
the subsequent multimode, step-response analysis, the steady-
state phase shift behaved similarly, but this steady state took
longer to be established for narrower transparency windows.
Figure 2 shows the temporal profile of the XPS experienced by
a probe field in response to a Gaussian signal pulse for a variety
of EIT window widths, as obtained by numerical simulation
of Eq. (2). It is immediately evident that the rise time of the
nonlinear phase shift is independent of the EIT window width,
mimicking instead the rise of the signal pulse; also, as the
window width narrows, the effect of the signal pulse on the
probe field is prolonged. For narrower EIT windows, more
time is required for the probe phase to return to its original
steady-state value. For many practical applications of the EIT-
enhanced cross-Kerr effect, this elongated tail permits a longer
integration time and, hence, an improved signal-to-noise ratio.

Figure 3 shows the peak and integrated phase shifts
extracted from Fig. 2 [(blue) squares] as well as those
predicted from the LTI model in Sec. II B [dashed (red) line].
Immediately evident is the good agreement between these two
approaches. In both cases, we see that the peak phase shift
scales linearly with 1/�EIT only when the EIT window is wide
enough that τ � τs , i.e., when the response time is shorter
than the signal pulse duration; once the window becomes
narrower this linear scaling is disrupted, eventually plateauing
for τ � τs . In fact, the peak phase shift changes by a mere
factor of 2 for a window width variation that spans two orders
of magnitude. Although the steady-state phase continues to
grow with decreasing �EIT, the time needed to reach this
steady state also increases while the interaction time (signal
pulse duration) is held constant here. Therefore, once �EIT is
sufficiently narrow, decreasing the window width further does
not help to increase the peak phase shift, which accounts for the
plateau shown in Fig. 3. On the other hand, Fig. 3 also shows
that the integrated phase continues to scale inversely with
the EIT window width irrespective of the medium response

FIG. 3. Peak (top) and integrated (bottom) XPS per photon as
extracted from Fig. 2. The peak XPS scales inversely with the
EIT window only when the response time of the EIT medium is
shorter than the signal pulse duration, while the integrated phase
shift grows inversely with the window width owing to the longer
tails that arise from narrower EIT windows. Squares correspond
to simulation results and dashed lines show the prediction of the
LTI model presented in Sec. II B. For window widths comparable
to the natural linewidth of the transition the EIT medium response
includes oscillations that are not included in the LTI impulse response,
resulting in a small discrepancy between the two approaches. Also,
the linear scaling of the integrated phase shift can be interrupted if
the pumping and dephasing rates become comparable (inset).

time and the signal pulse duration. We are, therefore, led to
conclude that the slow dynamics, far from degrading the effect,
can still lead to an enhanced integrated XPS that could be
exploited to obtain a better signal-to-noise ratio when detecting
an EIT-based XPS, even when the peak phase shift saturates.

We see that the integrated phase shift scales as 1/�EIT and
this scaling is interrupted only by the ground-state dephasing
rate, γ , which has only a technical, but no fundamental, limit.
This dephasing limits the maximum depth of transparency,
d = d0R/(R + γ ), as well as the minimum attainable EIT
window width, 2(R + γ ). These two quantities correspond to
the rise and run, respectively, of the refractive index profile
experienced by the probe field. Figure 4 shows the peak and
integrated XPSs for various values of γ and a fixed pumping
rate, R. The peak XPS falls by a factor of 2 at γ = R, while the
integrated XPS does so at a value of γ smaller than R since it
is affected by both the refractive index slope and the shortened
tail.

Although current experimental efforts to achieve ever-
narrower EIT windows are limited by dephasing rates, there
is no fundamental limit to how low these dephasing rates can
be. It is, therefore, important to understand whether there is
a practical benefit to reducing dephasing given the potential
limitations such as bandwidth and group velocity mismatch
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FIG. 4. Peak (top) and integrated (bottom) XPS per photon for
various ground-state dephasing rates, γ . As the dephasing rate
increases, both the peak and the integrated XPS decrease due to
the degradation of the EIT window. The peak XPS falls to nearly half
its ideal value when the dephasing rate becomes equal to the pumping
rate, R. Squares correspond to simulation results, while dashed lines
show the prediction of the LTI system response. For this simulation
R = 0.01�, τs = (0.6�)−1, and the rest of parameters are the same
as in Fig. 2. Note that the EIT window width is 2(R + γ ).

brought about by narrower EIT windows. Therefore, for most
of the results presented in this paper the dephasing rate is
chosen to be negligibly small in order to study how different
parameters of choice affect the behavior of the N scheme if we
overcome the practical limitations imposed by dephasing.

B. Dependence on signal pulse

So far the only assumption we have made about the
frequency content of the signal pulse is that its bandwidth
is small compared to the signal pulse detuning. In this section
we study how changing this frequency content can result in
the modification of the behavior of the EIT-enhanced XPS. For
simplicity, we assume that the signal pulse is transform limited,
that is, that its bandwidth is proportional to 1/τs . Increasing
the bandwidth, therefore, corresponds to a temporally shorter
pulse. Since the Kerr effect depends linearly on the signal-field
intensity, one would expect to be able to maximize the XPS,
for a given pulse energy, by making the pulse as short, and
therefore as intense, as possible. However, in the case where
the spatial extent of the signal pulse is larger than the atomic
medium, a shorter pulse yields a shorter interaction time
and this must be weighed against the higher intensity due
to broadening of the signal bandwidth (i.e., decreasing τs).
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FIG. 5. Time response of XPS (per photon) for various signal
pulse bandwidths. The linear scaling of the peak phase shift with
signal pulse bandwidth breaks down when this bandwidth becomes
comparable to or larger than the EIT window width. Once the
bandwidth of the signal pulse becomes comparable to its detuning,
�s = −10�, the peak XPS stops growing and starts to fall. Simulation
parameters: �EIT = 0.2� and the rest of the parameters are the same
as in Fig. 2.

Figure 5 shows the temporal profile of the XPS for different
signal pulse bandwidths for a constant pumping rate of
R = 0.1�. We find that when τs � τ , the XPS replicates the
temporal profile of the signal pulse but the peak phase shift is
relatively small due to the low-intensity signal pulse. As one
broadens the bandwidth of the pulse, the peak intensity and
therefore the peak phase shift increase. However, this increase
in peak phase shift with signal intensity is seen to saturate and
even reverse once τs becomes sufficiently small. Figure 6 plots
the peak and integrated XPS against the signal pulse bandwidth
normalized to its detuning, �s . For pulse bandwidths narrower
than the EIT window the peak phase shift scales linearly with
the signal bandwidth (and therefore linearly with the intensity)
as expected from single-mode or step-response treatments.
However, once the signal bandwidth exceeds the EIT window
width, the scaling begins to flatten out. This saturation is a
consequence of the trade-off between shorter interaction time
and higher peak intensity of the signal pulse. Once the signal
pulse has a bandwidth wider than the EIT window it exits the
medium before the XPS reaches its peak value. Increasing the
bandwidth further does not lead to a larger peak phase shift.
The integrated XPS remains flat throughout all of this due to
the fact that we have held the energy of the pulse and the
window width constant.

Once the bandwidth of the signal pulse grows to be
comparable to its detuning, the variation of the signal
pulse amplitude versus the frequency becomes important.
The response function used in Sec. II B does not take that
frequency content into account and therefore fails to predict the
behavior of the system properly. We can, however, qualitatively
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FIG. 6. Peak (top) and integrated (bottom) XPS per photon as
a function of the signal-field bandwidth (normalized to central
detuning) as extracted from Fig. 5. Initially, increasing the pulse
bandwidth causes the peak XPS to grow proportionately due to the
higher pulse intensity. However, once the pulse bandwidth becomes
larger than the EIT window width, the peak XPS stops growing,
similar to the behavior shown in Fig. 3. The maximum integrated XPS
occurs when the pulse half-width at half-maximum of the intensity is
equal to the detuning. Insets: The Fourier transform of the signal pulse
intensity [dashed (red) line] along with the frequency dependence of
the ac-Stark shift [solid (blue) line] as a function of the detuning from
the excited state. For very broadband pulses, there is a discrepancy
between the result of the LTI model and the numerical solution as
explained in the text.

understand the behavior of XPS due to broadband pulses by
recalling that the frequency dependence of the Stark effect
resembles a refractive index profile. That is, it is an odd
function passing though 0 on resonance, with extremes �/2
away on either side of resonance and scaling inversely with
detuning away from resonance. Therefore, for a given signal
pulse detuning, as its bandwidth is broadened, a point will be
reached when frequency components begin to encroach on the
peak of the Stark profile, leading to a larger XPS. However,
as the bandwidth is broadened further, this increase is quickly
reversed as the frequency components begin to cross over to
the other side of the resonance addressed by this signal field.
These frequency components then contribute strongly to the
Stark shift but with opposite sign, yielding a smaller net phase
shift. The optimum phase shift is obtained when the signal
half-width at half-maximum (HWHM),

√
ln 2/

√
2τs , is equal

to the signal detuning, �s .
It is interesting to see how the XPS behaves as a function

of the signal detuning when �sτs is held constant at the value
of

√
ln 2/

√
2. Figure 7 shows the peak and integrated XPS

for the case where the signal HWHM is set equal to the
detuning and then the two are varied simultaneously. It can
be seen that the largest optimum phase shift is achieved close
to �s = √

ln 2/
√

2τs = �/2. For this choice of detuning and

FIG. 7. Peak (top) and integrated (bottom) XPS per photon for
various signal detunings, �S , when the half-width at half-maximum
of the signal pulse bandwidth is set equal to the detuning. Squares
show simulation results, while the dotted line is a guide for the eye.
Both the peak and the integrated XPS have maxima close to �s =
�/2. Inset: The Fourier transform of the signal pulse intensity [dashed
(red) line] along with the frequency dependence of the ac-Stark shift
[solid (blue) line] as a function of the detuning from the excited state.

signal bandwidth the center of the pulse (in frequency space)
coincides with the peak of the Stark shift frequency profile
and its width covers those parts with the largest positive shift
without spilling over onto the other side of the resonance (inset
in Fig. 7).

C. Propagation in an optically thick medium

Thus far, we have neglected the effects that an optically
thick medium would have on the dynamics of EIT-enhanced
XPS. Steady-state analysis predicts that the XPS scales linearly
with the OD and so it is of interest to see how the dynamics are
affected by exploiting higher ODs. Particularly in the presence
of EIT, which eliminates linear absorption, a higher OD
increases the nonlinear interaction, with no detrimental effects
arising from absorption. However, increasing the optical
thickness of the medium also increases the difference in the
group velocities of the probe and the signal pulses; the probe
experiences a slow-light effect, while the signal field does not.
This group velocity mismatch poses a limit on the maximum
attainable peak phase shift as one increases the OD [31]. Given
these trade-offs, here we discuss whether EIT-based XPS can
still benefit from optically thick media.

In Refs. [27,28] the authors show that for the case of a
step-function input field, the rise time depends linearly on
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FIG. 8. XPS due to a step-function signal field (top) and time
dependence of pulsed XPS (per photon) for different optical densities
(bottom). As the optical density, d0, increases the peak XPS begins
to grow but eventually saturates due to the group velocity mismatch
between the signal and the probe. However, higher values of the
optical density result in longer-lasting phase shifts; the temporal
extent of the flat region of the transient is determined by the duration
of the probe that is compressed in the medium, τL, when the signal
pulse passes through the medium at group velocity, c. Simulation
parameters: R = 0.1�, τs = (0.6�)−1, and all others as in Fig. 2.

the OD. That result, however, does not directly hold for a
pulsed signal. Here, we show that while the high OD results
in a saturation of the peak phase shift due to group velocity
mismatch [31], the peak value remains for a longer time for
the higher OD.

For a sufficiently high OD, the transit time of the probe field
through the sample becomes longer than the temporal duration
of the signal pulse. In this case, there will be portions of the
probe field inside the medium which experience the entire
signal pulse as it passes through, and therefore, these portions
acquire the maximum phase shift possible. The temporal
length of this portion of the probe is equal to its group
delay, τL = L/vg = d0(R − 2γ 2/�)/2(γ + R)2, where L is
the length of the medium and vg is the group velocity of the
probe. This is reflected in Fig. 8, where we plot the temporal
profiles of the XPSs for a variety of ODs. We see that for a
high OD, the peak height of the phase shift plateaus but the
duration of this peak XPS continues to grow as the OD is
increased. Unlike the case of the response to a step signal,
where the propagation effects show up in the rise time of the
nonlinear phase shift [28], the response to a pulsed signal has
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FIG. 9. Peak (top) and integrated (bottom) XPS per photon versus
optical density, d0, as extracted from Fig. 8. Squares correspond to
simulation results, while dashed (red) lines are predictions of an
LTI model. The response function adopted in Eq. (5) only partially
accounts for the propagation effects (through the dependence of the
EIT medium response time, τ , on the optical density); however, this
is not sufficient to model the behavior of the system at high optical
densities. This accounts for the discrepancy between the dashed (red)
curve and the squares in the peak XPM plot. It is important to
note that the response of the system is still linear at high optical
densities and a proper impulse response can account completely for
the saturation effect. The bottom plot shows that the integrated XPS
increases linearly with the optical density and an LTI model agrees
very well with the simulation results. τ0 is the response time of the
EIT medium in the limit of vanishing optical density. The dotted
horizontal line in the top figure is the prediction given by Eq. (10)
and the dashed-dotted horizontal line is the prediction from Ref. [31].
These two differ in the definition of the peak phase shift; the latter
considers the phase of the probe at the peak of the signal pulse, while
the former considers the probe phase once the entire signal pulse has
passed through the medium. For comparison, the triangles show the
value of the XPS as obtained from numerical simulation but using
the definition of peak phase shift found in Ref. [31].

a rise time determined by the signal pulse and the propagation
effects only result in the saturation of the peak XPS in the time
response. The net effect, as shown in Fig. 9, is such that while
the peak phase shift saturates, the integrated phase shift scales
linearly with OD.

To determine this saturation value of the peak XPS, it is
instructive to consider the response of the system to a step
signal [see Fig. 8 (top)], which includes a linear rise with
time scale τL, followed by an exponential approach to the
steady-state value. The slope of the rise, shown by the red line
in Fig. 8 (top), is equal to φss

τL
. Since the impulse response is
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the derivative of the step response, this slope determines the
maximum achievable XPS for a pulsed signal in the presence
of a high OD:

φmax = max

{
φss

τL

�(t) ∗ |�s(t)|2
}

= φss

τL

∫ ∞

−∞
dt |�s(t)|2 = nph

�

−4�s

σat

A
. (10)

This is a factor of 2 larger than the limit found by Harris
and Hau due to group velocity mismatch in the N scheme
[31]. In their work, with interactions between single-photon
wave packets in mind, they assume that the probe and signal
pulses have equal durations and enter the medium at the same
time. They report the maximum achievable XPS at the location
corresponding to the peak of the signal pulse. Since XPS is
a cumulative effect, this assumption means that the acquired
nonlinear phase shift is the result of the first half of the signal
pulse. However, here we assume that the probe pulse can have
a duration longer than the signal pulse and the maximum XPS
is obtained only after the signal pulse has completely affected
the probe. Figure 9 (top) shows the limit found by Harris and
Hau (dashed-dotted horizontal line) and the limit found in
Eq. (10) (dotted horizontal line). Values of the XPS obtained
from numerical simulation at the location corresponding to the
signal pulse peak are shown as triangles for comparison.

We also see that while the integrated phase shift is
well modeled by our LTI approach, the peak phase shift is
underestimated for sufficiently high ODs. This does not result
from a breakdown of the linearity but, rather, because the
response function assumed in Sec. II B did not account for
such propagation effects. In an optically thick medium the
effect from each thin slab of the medium takes some time,
determined by the group velocity of the probe and the length of
the medium, to reach the observer. Therefore, the exponential
rise assumed in Eq. (3) does not capture the additional group
delay effects present in media with high ODs.

IV. SUMMARY

We have studied the behavior of EIT-enhanced XPS for
pulsed signals in the N scheme and shown how different
parameters, such as the EIT window width, pulse bandwidth,
and optical thickness, affect the transient behavior of the
system. The results obtained here have important implications
for quantum logic gates based on such EIT schemes. We have
shown that, contrary to earlier fears about the finite response
time, EIT may indeed be used to greatly enhance nonlinear
phase shifts for applications such as quantum information
processing. The importance of our work lies in the fact
that previous studies have discussed only the steady-state
or step-response scenarios rather than the realistic case of
finite-duration pulses.

We have found that while the peak XPS is limited by the
EIT response time and propagation effects, the integrated
phase shift (a figure of merit not considered prior to this
work) follows the prediction of the steady-state treatment. This
integrated phase shift, which grows linearly with the OD and
inversely with the EIT window width, is a more relevant figure
of merit for the detectability of the XPS [4].

We have presented a treatment based on an LTI system re-
sponse (taking the intensity of the signal as the “drive” and the
phase shift on the probe as the “output”) and shown that this ad-
equately models the transient behavior of the Kerr XPS. While
throughout the paper, we assume a Gaussian pulse shape for the
signal, one should note that the exact shape of the signal pulse
does not make a qualitative difference for the results presented.

The peak value and the duration of XPS are determined by
several parameters, while the rise time of the effect is always
dictated by the signal pulse duration. The peak XPS scales as
the inverse of the EIT window width and is linear in pulse
bandwidth as long as the EIT window is broader than the
pulse bandwidth. However, for EIT windows narrower than
the pulse bandwidth, even though there is no further increase in
the peak XPS, the effect lasts for a longer time, providing more
time for detecting the phase shift and potentially improving the
signal-to-noise ratio. The peak XPS also scales linearly in OD
as long as propagation effects can be neglected. For ODs above
∼2 (assuming negligible dephasing), the group velocity mis-
match of the probe and the signal starts to play a significant role
in the dynamics of the response and this poses a limitation on
the maximum achievable peak phase shift. On the other hand,
this group velocity mismatch causes the XPS to last longer.
In short, narrow EIT windows and high ODs can enhance the
detectability of XPS by elongating the duration of the effect.

For short signal pulses, when the bandwidth of the pulse
becomes comparable to or larger than its detuning, it becomes
necessary to take the frequency dependence of the Stark effect
into account. Most importantly, the components of the signal
pulse closer to the transition produce a larger Stark shift and
consequently a stronger XPS. We have shown, using numerical
solutions, that the optimum signal bandwidth is of the order
of the signal detuning. The largest optimum XPS is achieved
when both the detuning and the HWHM of the signal pulse
are equal to the half-linewidth of the excited state.

The dependence on the EIT window and pulse duration
of the rise and fall times, the peak phase shift, and the
integrated phase shift has now been confirmed in an experiment
we concluded after submission of the manuscript for this
paper [32] and also used in an experimental observation of
single-photon optical nonlinearity [33]. The present theoretical
results make it promising to consider further extensions of
that work, towards the regime of single-shot resolvability, as
explained below. We have shown that the maximum achievable
XPS value for a high OD is �σat/4�sA and that this value
persists for a time τL = d/�EIT. One normally requires an
EIT window that is narrower than the natural linewidth,
�2

c < �2, and a probe field which is much weaker than the
coupling field, say, �2

p = ζ�2
c < ζ�2, where ζ � 1. It is

straightforward to show that a length τL of the probe field
contains ζ�τLA/σat < ζA/σat photons. Therefore the ratio of
signal to quantum noise is

�

4�s

√
σat

a
ζd. (11)

A beam size of 1 μm is achievable, which results in
σat/A ≈ 1/25. To avoid signal absorption, one can operate
farther from resonance, for example, at �s = 2.5�. ODs of
100 are typical in Bose-Einstein condensates and transient
values of up to 1000 were observed in a dark-SPOT MOT
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[34]. Since detectability is the only criterion here, one can use
squeezed light to measure the phase of the probe. Quadrature
squeezing around 10 dB has been observed [35]. Given such
a set of (already experimentally achievable) parameters, one
can obtain a signal-to-noise ratio of more than 1, in principle.

Note added in proof. Recently, developments using EIT
systems, enhanced either by the use of a high-finesse cavity
[36] or by the use of Rydberg transitions [37], have led to
observations of per-photon phase shifts on the order of π .
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