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Fresnel coefficients of a two-dimensional atomic crystal
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In general the experiments on the linear optical properties of a single-layer two-dimensional atomic crystal
are interpreted by modeling it as a homogeneous slab with an effective thickness. Here I fit the most remarkable
experiments in graphene optics by using the Fresnel coefficients, fixing both the surface susceptibility and the
surface conductivity of graphene. It is shown that the Fresnel coefficients and the slab model are not equivalent.
Experiments indicate that the Fresnel coefficients are able to simulate the overall experiments here analyzed,
while the slab model fails to predict absorption and the phase of the reflected light.
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Graphene, a two-dimensional (2D) carbon-based crystal,
was the first atomically thin layer of atoms that was produced
[1]. The family of 2D crystals however is not limited to
graphene. Boron nitride or the transition-metal dichalco-
genides have been grown as atomic monolayers [2]. The
characteristics of the 2D materials might be very different from
those of their 3D precursors. This is true also for their optical
properties. For example, it was argued that the high-frequency
conductivity (o) in graphene should be a universal constant
equal to e?/4h [3]. This is due to the exactly zero overlapping
between the valence and the conduction bands in graphene
(a zero-gap semiconductor), while it is finite in graphite.
Atomically thin transition-metal dichalcogenides are direct
band semiconductors [4] while the bulk materials have got
an indirect band gap.

Also the optical reflectivity, transmissivity, and absorption
of a 2D crystal are remarkable. The absorption of graphene is
determined by the fine-structure constant [5]. Microfabrication
of devices used in many experimental studies currently relies
on the fact that 2D crystals can be visualized using optical
microscopy if prepared on top of suitable substrates [6—14].
This is due to a multiple-reflection effect that enhances the
visibility of the atomically thin layer, where the optical
properties of the 2D crystal play a fundamental role. Mea-
surements of the optical dielectric functions of 2D crystals
by spectroscopic ellipsometry have already been reported
[15-20]. The interpretation of these results relies on a model
of the monolayer treated as a homogeneous medium with an
effective thickness [6-20].

An alternative to this model is to treat the 2D crystal as a
boundary and to provide the right boundary conditions for a
single atomic layer. This approach has been used in different
papers to derive the reflection and the transmission coefficients
of light between two media separated by a graphene flake
[21-25]. No reflection or transmission coefficients for other
2D materials different from graphene have been considered
until now. Although the approach used in [21-25] is sub-
stantially correct, these papers are primarily interested in the
microscopic theoretical description of graphene. In general
a comparison with experimental results of the reflection and
transmission coefficients so obtained was limited to absorption
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and it was not extended to other experiments such as optical
contrast or ellipsometry.

Here I deduce an expression for the Fresnel coefficients
valid for any single-layer 2D atomic crystal. I adopt a
classical macroscopic approach. I consider first the case of
a freestanding nonconducting material (such as boron nitride
[26]) and then I will turn my attention to optics of conducting
media (such as graphene). Then will be the turn of 2D crystals
on substrates. The formulas obtained are functional to a
comparison with published experimental results on graphene,
by far the most studied 2D crystal, and they will enlighten
the power of Fresnel coefficients for simulating the overall
phenomena described above.

Consider a flat 2D crystal, composed of N atoms per square
cm with an atomic polarizability « [27]. If we apply an electric
field in the plane of the crystal a macroscopic dipole moment
arises and it is possible to define a density of polarization P.
If the electric field is applied orthogonally to the 2D crystal
no macroscopic polarization is created (or in any case it is
much smaller and I do not consider it). Indeed to have a
macroscopic polarization the microscopic dipoles need to be
aligned, to generate a macroscopic separation of charges. As a
further simplification I suppose that the 2D crystal is isotropic
in its own plane. This seems realistic because graphite, for
instance, is a uniaxial crystal with the optical axis along the
graphene’s exfoliation axis. I assume also that P = eyx E
where € is the vacuum permittivity and y is the electric
susceptibility. Wherever the polarization in matter changes
with time there is an electric current J,, a genuine motion of
charges. The connection between rate of change of polarization
and current density is J p= =0P /9t. It is important to note that
in passing from a bulk to a 2D crystal the dimensions of P
pass from (dipole moment)/volume to (dipole moment)/area,
the dimensions of x pass from a pure number to a length, and
J, is a current per unit length. It is not the aim of this paper to
give a microscopic theory that furnishes x. Experiments will
fix it.

Suppose that a 2D crystal is suspended in vacuum and
that a plane wave falls onto it (Fig. 1; n; = ny, = 1); the
relation in between E gnd H inﬂthe incident, reflected, and
transmitted waves is nH = § A E where § is the unit vector
along the propagation direction and 7 is the impedance of
vacuum. The boundary conditions are & A (E, —E;) =
kA (H2 — H1) = J,, where & is the unit vector along the z
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FIG. 1. Oblique incidence of a plane wave on graphene. The
electric (magnetic) field for s (p) polarization is shown. Inset:
Three-layer substrate; graphene is deposited at the interface of media
1 and 2.

axis. For s (p) polarization then,

Exi + Exr = Ext (Eyi - Eyr = E_Vl)v
Py Py
Eyi+Ey = Eyi - Eyr = — ’
€0 X €0 X
Hyi - Hyr = Hyz‘ +iwPy, (Hxi + H, = Hy + ia)Py),
ey

where time dependence exp(iwt) (w is the angular frequency
of the light) has been assumed.

Defining [28] ry = E,/E;, t, = E;/E; and r, = H,/H],
tp = H;/H; as the reflection and the transmission coefficients,
we have

—ikx ikx cos6;
ry=———F0——, Ip=——_—— (2)
ikx + 2cosb; ikyx cos6; +2

and t;, =r,+ 1, t, =1—r, (k is the wave vector of light
in vacuum and 6; is the angle of incidence). From energy
flux considerations [29], in this special case, the reflectivity
is Ry(py = |rS2(p)|, the transmissivity is Ty, = |t (p)| and their
sum Ry(p) + Typy = 1 shows that there is no absorption.

We turn now our attention to conducting media. The Ohm’s
lawJ =0 E must be taken into account; again we assume that
j cannot exist (or it is small) in a direction orthogonal to the
crystal plane, and in-plane isotropy. The boundary conditions
for H change into k A (ﬁz — ﬁl) =J,+J, and we add to
Egs. (1) the Ohm’s law:

Ei+E,= ]_X (Eyi - Evr = J_‘> (3)
o : o

for s (p) polarization. We obtain
(ikx + on)cosb;
(ikx +0on)cos6; +2
“)

and t;, =r;+1, t,=1~—7r,. As for a bulk material con-
ductivity is connected with the transformation of part of the
electromagnetic energy into heat. At normal incidence,

iky +on
ikx +on+2cosb;’

[7:

4on
4+4don+ o?n* + k2x?

Tx(p) + R.v(p) =1- ~1-— an.
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In the case of graphene, at wavelengths A where 0 = e?/4h, we
retrieve the remarkable result that the fine-structure constant
defines its optical transparency [5].

The reflection and the transmission coefficient for the case
of a 2D crystal at the interface of two different bulk media
(1and 21 in Fig. 1) is now easily obtained. Only the relation in
between E and H in the incident, reflected, and transmitted
waves changes:

U~ . = n o >
_Hi(r) :si(r)/\Ei(r)s —H, =S,/\Er, (5)
np ny

where n;, n, are the refractive indexes. We obtain

nycos; —npcosf, —iky —on

Iy =

nicosb; +nycost, +ikyx +on’

npcosf; —nycosb; + (ikx + on)cos6; cos b, ©)
r, =
P nycosb; +nycosb, + (ikx + on)cosH; cos b,

andt; =ry+ 1,1, = (1 —r,)nzcos0; /(n; cosb;).

The reflection coefficient of a 2D crystal on a stratified
medium is of primary importance also. I consider the case
represented in Fig. 1 (inset), corresponding to published
experimental work that will be considered in this article. The
boundary conditions for the interface in between bulk media
2 and 3 are & A (E3 — E;) =0, # A (Hs — Hy) = 0. Equa-
tion (5) is easily extended to medium 3 [29]. For s polarization,

P
Ei+Eqy=E+E—, Ei+E,= - s
€0X
Exi + Exr = i-_x’
(7)
Hy,—-Hy,, =Hy—H,_ +ioP.+ J,,
Ee P +E. e =E,, Hye—H f=H,,
and for p polarization,
Py
Ey—E,=E,—-E, E,—-E,=—
€0 X
J
Eyi - Eyr = ;y’
(®)

Hyi + Hyr = Hyy + Hy_ +i0Py + U,
Ey+e_iﬁ - Ey*eiﬂ = Eyta Hx+e_iﬁ + foeiﬁ = Hy,

where 8 = knyh cos 6,, 6, is the propagation angle in medium
2, and £ is its thickness [29]. This furnishes

—2i iky+o —2i
rias + roage P — 11, SEZL(1 4 ryse7P)
re = . ,
_9 ikx+o _9;
1+ riosro3se 2P + 112 ST (L + ro3se2iP)
—2i (ik x+on)cos 6. —2i
Fiap + raspe 2P 4 typ, XS COE S22 (1 — ryspe )
- 2
p

- 9 (ikx+0n)cos b _2iBN
1+ ripprazpe=2#f + tlZp%(l — razpe i)

€))

If x and o are zero we obtain the usual reflection coefficients
for a three-layered medium [29]. The sign difference with
respect to [29] in the face of 2i8 comes from the different
choice of the temporal dependence (¢'®").

We can now compare some of the most remarkable experi-
ments in graphene optics with the theoretical predictions given
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TABLE I. y2-test value for the Fresnel-based model fit and the
slab-based model fit. n is the number of experimental data points
considered for the fitting procedure.

nos Xor Py Xos Pg
Contrast 300 nm 12 0.01 435 <0.1% 493 <0.1%
Contrast 200nm 12 0.01 0.15 99.8% 1.68 9.7%
Contrast 90 nm 12 0.01 1.18  30.2% 642 <0.1%
Absorption 34 0.0015 1.09 33.4% 6.75 <0.1%
A 60° 25 0.8° 1.60 5% 4574 <0.1%
A 55° 20 0.8° 59.87 <0.1% 333.37 <0.1%
A 50° 23 0.8° 0.82 69% 1842 <0.1%
A 45° 28 0.8° 0.55 94% 774 <0.1%
¥ 60° 29 0.4° 0.98 49% 1.92 0.4%
v 55° 29 0.4° 221 <0.1% 248 <0.1%
v 50° 29 0.4° 0.96 53% 0.77 79%
¥ 45° 29 0.4° 0.78 77% 0.47 98%

by the Fresnel formulas (4), (6), (9) and with the predictions
furnished by the slab-based model. All the experimental data
reproduced in this paper have been extracted from the original
papers via software digitization, ensuring a very precise
reproducibility. Throughout this paper data are represented
by dots, slab model predictions by a dashed line, and Fresnel
model predictions by a solid line. The error bars reported in the
graphs have a length of 2 standard deviations s (see Table I)
for the respective sets of experimental data.

As explained before the visibility of graphene is enhanced
if prepared on top of SiO,/Si wafers. The contrast is defined
as the relative intensity of reflected light in the presence and
absence of graphene [6]. Figure 2 compares the experimental
data and the slab model predictions published in [6] with the
Fresnel theory. The first three graphs give the optical contrast
for single-layer graphene on top of SiO,/Si wafers with three
different SiO, thicknesses at 6; = 0. For the optical constants
of SiO, I used the Sellmeier equations; for Si I made a fit
from data in [30]. Polarizations s and p give the same results.
The Fresnel fit reported in the first three graphs of Fig. 2 is
for o = e?/4h =6.08 x 107 Q and x = 5 x 107 m. This
is compared with the slab fit used in [6]. Anyway the contrast
measurements are not able to discriminate very well the value
of x. All the Fresnel fits witho = ¢?/4hand x < 5 x 107"m
give in practice the same result. We will see that ellipsometric
measurements solve this problem.

To quantify how much better the Fresnel-based model is
compared to the slab-based one, a x? test is reported in Table I
where X&F(S) is the reduced x?2 value for the Fresnel (slab) fit
and P (s is the probability of getting a value as large as X&F( $)
assuming that the Fresnel (slab) based model is correct [31].
For the contrast measurements the standard deviation s has
been chosen as the diameter of the experimental dots in Fig. 2
of Ref. [6]. From Fig. 2 and Table I the Fresnel-based model
is clearly superior to the slab-based one. It seems anyway that
the predictions of the spectral positions of the maxima for
h =300 nm and 2 = 90 nm in Fig. 2 are better guessed by the
slab-based model. This is also the reason why X&F is not good
for h = 300 nm. From simulations it turns out that the positions
of the maxima are more sensitive to the substrate parameters
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FIG. 2. The first three graphs show the optical contrast of
graphene on Si0,/Si. The experimental data and the simulations based
on the slab model are extracted from [6]. The last graph shows the
absorption of a freestanding graphene layer. Experimental data are
extracted from [5].

than to the graphene layer; this is a possible explanation of the
discrepancy from the Fresnel-based fit.

The last graph of Fig. 2 considers a freestanding graphene
layer and compares Ry, + Ty(p) for the present theory and for
the slab model used in [6]. The two theoretical predictions
are very different. For a constant value of o = e?/4h the
Fresnel theory predicts a constant absorption as a function of
the wavelength whereas the slab model predicts a wavelength
dependance. The two theoretical predictions are compared
with the experimental data published in [5]. In this case it
was possible to retrieve s (Table I) from the spreading of the
experimental data. Again the superiority of the Fresnel model
is quite evident.

To fix x,Iturned my attention to spectroscopic ellipsometry
of graphene flakes located on a flat amorphous quartz.
Figures 3, 4, and 5 compare the theoretical predictions for
the Fresnel-based model and for the slab-based model with
the measurements published in [15]. Figures 3 and 4 show the
simulated spectral dependence of the ellipsometric parameter
A [32] at four angles of incidence. Figure 3 shows the ensemble
of the experimental data and the fits of the two models for
6; = 60°. For clarity reasons Fig. 4 focuses on each 6;. From
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FIG. 3. Spectral dependance of the ellipsometric parameter A for
graphene on an amorphous quartz substrate. Experimental data for
the four 6; are extracted from [15]. The Fresnel and the slab model
simulations for 6; = 60° are reported (see text).

Figs. 3 and 4, for A > 350 nm, a good Fresnel fit is obtained
for o = e?/4hand x = 1.0 x 107 m. This is compared with
the slab-based model used in [15] in the same frequency range.
For 6; = 55° A does not fit very well, maybe because it is too
close to Brewster and cross polarization effects [33] may be
present (1073 < R, < 1.5 x 1072 at §; = 55° in this spectral
range). From Fig. 4 and Table I the Fresnel-based model fits
much better than the slab-based model the experimental data
for the ellipsometric parameter A, and hence it better predicts
the phase of the reflected light. As for the measurements
of contrast the standard deviations s for the ellipsometric
measurements have been extracted from the experimental
linewidths in Fig. 5(b) of Ref. [15].
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FIG. 4. Spectral dependance of the ellipsometric parameter A for
graphene on an amorphous quartz substrate for each of the four 6;
considered in [15]. Experimental data are represented by dots, slab
model predictions by a dashed line, and Fresnel model predictions by
a solid line.
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FIG. 5. Spectral dependance of ellipsometric parameter W for
graphene on an amorphous quartz substrate. Experimental data for
the four 6; are extracted from [15]. The Fresnel and the slab model

simulation for each 6, and for A > 350 nm are reported. Fits are
obviously relative to their nearest experimental data points.

The ellipsometric parameter A is very sensitive to the
graphene film because A = 180° or 0° for the quartz substrate
and all of the nontrivial phase contribution to the reflection
coefficients comes from graphene. In particular from formulas
(6) the phase of the reflected light is different from 0° or 180°
only if x # 0 m. The experimental data for A allow one to fix
a value of y within &1 x 1071 m, and they are also sensitive
to its sign.

Figure 5 shows the ellipsometric parameter W [32]. From
Fig. 5 and Table I the Fresnel fit and the slab fit for W give
almost equivalent predictions, with a slight superiority of the
slab-based one. In this case the role of the dielectric substrate
is overwhelming (more than 98% of the W signal is due to it).
This is a possible explanation of the small discrepancy of the
experimental data from the Fresnel-based fit. The fit reported
in Fig. 5 is for the same values used to fit A. A better fit is
obtained if we let o be 30% or 40% less than this value. This
does not really affect A but it can be an indication of defects
in the sample. In Fig. 5 dots have the linear dimensions of one
standard deviation s (experimental linewidth in Fig. 5(a) of
Ref. [15]); this is why error bars are not reported.

For A < 350 nm data indicate that o and x vary sensibly
with A. In this spectral range it is possible for each wavelength
to fix a different value of o and x. We consider for instance
A =270 nm. At this wavelength by setting o = 3.1e?/4h
and x = —1.2 x 107° m we obtain for §; = 60°, 55°, 50°,
45° respectively W = 3.2°,4.8°, 12.1°, 18.9° and A = 18.2°,
168°, 175°, 177.5°, and an absorption of 6.5%, in very nice
agreement with data in Ref. [15]. From simulations, |x| is
still too small to influence absorption and so it is fixed by o,
and x fixes the rest; A is sensitive to the sign of x, W to its
magnitude only. A negative value of x at 270 nm is probably
related to the fact that the real part of the dielectric constant
of graphite become negative around 4 eV and up to around
7 eV [34]. Fresnel coefficients simulate as well spectroscopic
ellipsometry of graphene deposited on SiO,/Si reported in the
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same paper [15]. I confirm that W is sensitive to presence of the
graphene layer. Unfortunately (even up to |x| = 5 x 1077 m)
A is dominated by the signal from the substrate.

In conclusion the comparison with the experimental results
shows that the Fresnel coefficients are essential to interpret
the most remarkable experiments in graphene optics. Any
hypothesis on an effective thickness of a single-layer 2D
atomic crystal as required by modeling it as an homogeneous
slab is not necessary. This last model is not able to reproduce
properly either the absorption of graphene or the phase of its
reflection coefficient. On this basis any physical parameter
deduced from it is hardly meaningful. As for bulk materials,
ellipsometry is able to furnish both x and o, showing that

PHYSICAL REVIEW A 93, 013832 (2016)

these are the physically meaningful quantities experimentally
accessible from the linear optical response of a 2D atomic
crystal. In particular for graphene, from the ensemble of the
experimental data considered, in the spectral range 450 nm
<A <750nm, 0 =608 x 107 £2x 107> Q' and x =
8 x 10719+ 3 x 107!° m. Of course the Fresnel coefficients
are not valid for 2D crystal bilayers or multilayers. In these
cases light propagates from one layer of atoms to the other and
a thickness should be considered. This shows once more how
special single-layer atomically thin 2D crystals are.

I acknowledge Luca Dell’Anna and Nicola Lo Gullo for
useful discussions.
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