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Green’s-function formalism for waveguide QED applications
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We present a quantum-field-theoretical framework based on path integrals and Feynman diagrams for the
investigation of the quantum-optical properties of one-dimensional waveguiding structures with embedded
quantum impurities. In particular, we obtain the Green’s functions for a waveguide with an embedded two-level
system in the single- and two-excitation sector for arbitrary dispersion relations both in the time and the frequency
domains. In the single-excitation sector, we show how to sum the diagrammatic perturbation series to all orders
and thus obtain explicit expressions for physical quantities such as the spectral density and the scattering matrix.
In the two-excitation sector, we show that strictly linear dispersion relations exhibit the special property that
the corresponding diagrammatic perturbation series terminates after two terms, again allowing for closed-form
expressions for physical quantities. In the case of general dispersion relations, notably those exhibiting a band
edge or waveguide cutoff frequencies, the perturbation series cannot be summed explicitly. Instead, we derive a
self-consistent T -matrix equation that reduces the computational effort to that of a single-excitation computation.
This analysis allows us to identify a Fano resonance between the occupied quantum impurity and a free photon
in the waveguide as a unique signature of the few-photon nonlinearity inherent in such systems. In addition,
our diagrammatic approach allows for the classification of different physical processes such as the creation of
photon-photon correlations and interaction-induced radiation trapping, the latter being absent for strictly linear
dispersion relations. Our framework can serve as the basis for further studies that involve more complex scenarios
such as several and many-level quantum impurities, networks of coupled waveguides, disordered systems, and
nonequilibrium effects.
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I. INTRODUCTION

Presently, research on nanoscale quantum-optical (NQO)
systems is witnessing an increasing amount of attention
worldwide and several distinct experimental approaches have
been developed to a point where the realization of complex
functional elements becomes feasible. Aside from ordinary
integrated optical waveguides and photonic crystals with
embedded quantum impurities [1–3], these systems also
include superconducting waveguide-QED settings [4,5] and
fiber systems with nearby trapped atoms [6]. In view of
the fact that efficient integrated single-photon sources [7–10]
and advanced integrated single-photon detectors [11–14] are
available, the design and control of few-photon nonlinearities
moves more and more into the focus of research efforts [15,16].
Such integrated sources, integrated detectors, and controlled
few-photon nonlinearities represent the basic building blocks
for future integrated quantum information processing tech-
nologies [17].

From a theoretical angle, the transport of few photons
in waveguiding systems and their interaction with quantum
impurities exhibits certain similarities with nanoelectronic
transport problems so that several methodologies of electron
transport theory have been adapted to the analysis of NQO
systems. These include (i) a Bethe-ansatz approach [18], the
Lehmann-Symanzik-Zimmermann reduction technique [19],
and the input-output formalism [20] for determining the
multiparticle scattering matrix and (ii) a Green’s-function

approach has been developed that exploits the chirality of
effective low-energy field theories which are derived from
the basic Hamiltonian [see Eqs. (1) and (2)] [21]. These
approaches have also been extended to the case of many
photons [22,23] and more complicated quantum impurities
[24]. Furthermore, direct numerical approaches have been
developed [25–27], some of them going beyond the rotating
wave approximation that is implied with the aforementioned
basic Hamiltonian [28].

In this work, we develop a versatile quantum-field-
theoretical framework for the analysis of NQO systems that
consist of combinations of photonic waveguiding elements
with embedded quantum impurities. Our framework is based
on a path-integral formulation and the construction of asso-
ciated Feynman diagrams. This facilitates the formulation of
an efficient Green’s-function technique. We demonstrate the
efficiency of our framework by rederiving the main results
of the above-mentioned approaches and extending them to
arbitrary dispersion relations, notably for the case of two
photons. In addition, our approach provides detailed insights
into the physical processes that underlie photon correlations
effects and the existence of bound photon-atom states in such
systems.

The paper is organized as follows. In Sec. II, we describe
the basic physical model and provide the corresponding path-
integral formulation in Sec. III. This leads to a representation
in Feynman diagrams which we elaborate on in Sec. IV. As
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FIG. 1. Graphic representation of the model considered in this
work: a tight-binding bosonic chain with interchain hopping t

(representing a photonic waveguide) is site coupled to a fermionic
two-level system with level spacing � and the few-photon transport
through this system is studied.

Green’s functions are the central element of any diagrammatic
approach, we discuss their properties in the single- and two-
excitation sectors in Secs. V and VI, respectively. The results
are summarized in Sec. VII, and several technical aspects are
relegated to appendixes.

II. MODEL

We consider a one-dimensional bosonic quantum wire
formed by a chain of sites to which a (fermionic) two-level
system (TLS) is side coupled, as sketched in Fig. 1. The
corresponding Hamiltonian is given by

Ĥ = −t
∑

x

(â†
x âx+1 + H.c.) + �

2
σ̂z + U (â†

0σ̂− + H.c.), (1)

where â
†
x is a bosonic creation operator at site x, t is the

in-chain hopping constant between nearest-neighbor sites of
the wire. The TLS is described by the level spacing � and the
corresponding Pauli matrix σ̂z. The coupling (with strength
U ) between the quantum wire and the TLS is facilitated
by the product of the TLS lowering operator σ̂− and the
photon creation operator â

†
x . Further, H.c. denotes Hermitian

conjugation and all lengths have been scaled by the lattice
spacing a. This prototypical Hamiltonian thus describes the
propagation of photons in a waveguide that interact with an
embedded quantum impurity, the TLS, within the rotating
wave approximation. At this point, we would like to note
that the above bosonic sites could be regarded as identical
physical resonators that are coupled through overlapping field
distributions. Such systems have been fabricated in coupled-
resonator [29], photonic crystal [30], and fiber-optical [31]
settings, and their cosine-type dispersion relation has indeed
been observed. Alternatively (and more generally), these
bosonic sites could be regarded as the numerical discretization
of an arbitrary waveguide with a given dispersion relation.
This dispersion relation can be modeled by going beyond
the nearest-neighbor hopping in the bosonic chain. However,
typical waveguide dispersion relations usually feature (i) slow-
light regimes in the vicinity of band edges or waveguide cutoff
frequencies and/or (ii) frequency ranges with an almost linear
dispersion relation. The tight-binding model, too, exhibits
these features for frequencies near the edges and in the middle
of the band, respectively, so that this model may serve as a
good approximation for specific frequency ranges of general
dispersion relations.

Upon spatially Fourier transforming Eq. (1), we obtain

Ĥ =
∑

k

ε(k)â†
kâk + �

2
σ̂z + U√

L

∑
k

(â†
kσ̂− + H.c.), (2)

where L is the system size and ε(k) = −2t cos(k) is the
dispersion relation of the tight-binding chain. Note that the
above Hamiltonian conserves the excitation number

N̂ =
∑

k

â
†
kâk + 1

2
(σ̂z + 1), (3)

which means that the Hilbert space factorizes into subspaces
of constant excitation number (as a matter of fact, we will only
consider the cases 〈N̂〉 = 1 and 2 here). As a last step, we
replace the Pauli spin operators by auxiliary fermions,

σ̂z = ê†ê − ĝ†ĝ, (4)

σ̂− = ĝ†ê, (5)

which requires that the constraint

ê†ê + ĝ†ĝ = 1 (6)

has to be fulfilled. Here, ê† and ĝ† are, respectively, the creation
operators of the excited and ground states of the TLS. Hence,
the Hamiltonian which we use for the remainder of this work
is

Ĥ =
∑

k

ε(k)â†
kâk + �

2
(ê†ê − ĝ†ĝ)

+ U√
L

∑
k

(â†
kĝ

†ê + H.c.). (7)

The Hamiltonian (1) exhibits strong similarities to well-
known models in quantum optics and condensed-matter theory.
Specifically, the Hamiltonian could either be seen as a spin-
boson model, a multimode generalization of the Jaynes-
Cummings model [32], a Dicke model [33], or a spinless
version of the Anderson impurity model [34] consisting of a
bosonic waveguide and a fermionic impurity (or, equivalently,
a spinless version of a bosonic Anderson impurity model where
the impurity exhibits a U → ∞ onsite interaction, see Refs.
[26,35]). As discussed above, this invites the adaptation of
tools that have been developed for the analyses of these models,
albeit bearing in mind the different physics and the resulting
different questions that shall be addressed. In fact, path-integral
and related Green’s function techniques are among the most
flexible approaches, allowing for closed-form solutions in
simple cases and providing efficient perturbative approaches
for challenging cases such as disordered systems [36] and
systems out of equilibrium [37].

III. PATH-INTEGRAL APPROACH

We begin our exposition by defining the Green’s function
as the matrix element of an initial and a final state at different
times

G(tf − ti) = −i〈f |e− ∫ tf
ti

Ĥ (t)dt |i〉, (8)

where Ĥ is a generic Hamiltonian. In addition, |i〉 and
|f 〉 represent, respectively, the initial and the final state.
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For a path-integral representation, we utilize the resolution of
unity via coherent states

1 = 1

(2πi)c

∫ ∏
α

dψαdψ∗
αe− ∑

α ψ∗
αψα |ψα〉〈ψα|, (9)

where c = 1 for complex fields, c = 0 for Grassman fields,
and α labels the set of associated one-particle states (|ψα〉〈ψα|
being the corresponding projection operator). Inserting this
resolution of unity twice into Eq. (8) yields

G(tf − ti) = −i

∫ ∏
m,n

dψi,mdψ∗
i,mdψf,ndψ∗

f,ne
− ∑

m ψ∗
i,mψi,m−∑

n ψ∗
f,nψf,n〈f |ψf 〉〈ψi |i〉G(f,i; tf − ti). (10)

Here, G(f,i,tf − ti) is given by

G(f,i; tf − ti) = 〈ψf |e− ∫ tf
ti

Ĥ (t)dt |ψi〉, (11)

so that the labels i and f represent the initial and final fields ψi and ψf , respectively. In the above equations, the indices m

and n run over the number of different modes that occur in the generic Hamiltonian H by virtue of corresponding creation and
annihilation operators.

In the case of the Hamiltonian given by Eq. (7), we have to introduce three types fields: complex fields φk for the bosonic
modes in the waveguide and two Grassmann fields η and γ , which correspond to the fermionic operators ê and ĝ, respectively.
With these definitions, Eq. (10) reads as

G(tf − ti) = −i

∫ ∏
k,k′

dφi,kdφ∗
i,kdφf,k′dφ∗

f,k′e
− ∑

k φ∗
i,kφi,k−

∑
k φ∗

f,kφf,k 〈phf |φf 〉〈φi |phi〉G(f,i; tf − ti), (12)

where we have absorbed the integration over the Grassman fields into

G(f,i; tf − ti) =
∫

dγidγ ∗
i dγf dγ ∗

f dηidη∗
i dηf dη∗

f e−γ ∗
i γi−γ ∗

f γf −η∗
i ηi−η∗

f ηf

× 〈TLSf |γf ηf 〉〈γiηi |TLSi〉〈φf γf ηf |e− ∫ tf
ti

Ĥ (t)dt |φiγiηi〉. (13)

In the above equations, we have employed a decomposition of the system’s initial state into a product of a part for the photons
with a part for the two-level system

|i〉 = |phi〉 ⊗ |TLSi〉. (14)

In addition, we have employed an analogous decomposition for the final state.
For the calculation of G(f,i,tf − ti) we mainly follow the lines of Ref. [38], so that we will restrict ourselves to the relevant

intermediate steps. Upon inserting the resolution of unity N times in Eq. (13), we arrive at

G(f,i; tf − ti) =
∫

dγidγ ∗
i dγf dγ ∗

f dηidη∗
i dηf dη∗

f e−γ ∗
i γi−γ ∗

f γf −η∗
i ηi−η∗

f ηf 〈TLSf |γf ηf 〉〈γiηi |TLSi〉

× lim
N→∞

∫ N∏
m=1

N−1∏
n=1

∏
k

dφn,kdφ∗
n,kdηndη∗

ndγndγ ∗
n

2πi
e− ∑

n,k(φn,kφ
∗
n,k+γnγ

∗
n +ηnη

∗
n)e−iλH (φm,φ∗

m−1,γm,γ ∗
m−1,ηm,η∗

m−1), (15)

where λ = tf −ti
N

and

H (φn,φ
∗
n−1,γn,γ

∗
n−1,ηn,η

∗
n−1) =

∑
k

ε(k)φn,kφ
∗
n−1,k + �

2
(ηnη

∗
n−1 − γnγ

∗
n−1) + U√

N

∑
k

(
φ∗

n,kγ
∗
n ηn−1 + η∗

nγn−1φn−1,k

)
. (16)

The labels n = 0 and N correspond, respectively, to the initial and final fields. Next, we integrate out the intermediate fermionic
degrees of freedom and obtain

G(f,i; tf − ti) =
∫

dγidγ ∗
i dγf dγ ∗

f dηidη∗
i dηf dη∗

f e−γ ∗
i γi−γ ∗

f γf −η∗
i ηi−η∗

f ηf 〈TLSf |γf ηf 〉〈γiηi |TLSi〉

× lim
N→∞

∫ N−1∏
n=1

∏
k

dφn,kdφ∗
n,k

2πi
e− ∑

n,k φn,kφ
∗
n,k[1−iλε(k)]e
q†

N R(φ,φ∗)
q0 . (17)

Here, we have introduced the following abbreviations:

qi = (ηi,γi), R(φ,φ∗) = R(φN,φ∗
N−1) . . .R(φ1,φ

∗
0 ),

(18)

R(φi,φ
∗
i−1) =

(
1 − iλ�/2 0

0 1 + iλ�/2

)
− iλ

U√
L

∑
k

(
0 φi−1,k

φ∗
i,k 0

)
.
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The TLS can either be in the excited or in the ground state.
Thus, we can write the TLS state as a vector

|TLS〉 =
(

|e〉
|g〉

)
, (19)

which induces a matrix structure to G(f,i; tf − ti):

G(f,i; tf − ti) =
(
Ge(f,i; tf − ti) Gab(f,i; tf − ti)

Gem(f,i; tf − ti) Gw(f,i; tf − ti)

)
.

(20)

The nomenclature of this matrix notation is as follows. We
denote the case when the TLS is excited in the initial as well
as in the final state by the diagonal element Ge. Consequently,
Ge covers the dynamics of the quantum impurity, i.e., the TLS
that interacts with photons from the waveguide so that we call

it the TLS Green’s function. Similarly, we denote the case
when the TLS is in the ground state for both the initial and the
final state by the diagonal element Gw. Clearly, this quantity
describes the dynamics of the photons in the waveguide in the
presence of the TLS and we, therefore, call it the waveguide
Green’s function. The off-diagonal element Gab features that
the TLS is initially in the ground state, but ends up being
in the excited state. This means that the TLS has absorbed a
photon, hence, we call Gab the absorption Green’s function.
Clearly, Gem covers the complementary process and we call it
the emission Green’s function.

We now utilize the fermionic resolution of unity and the
identities [38] 〈e|ηγ 〉 = η, 〈g|ηγ 〉 = γ , and ηγ ∗ = e−ηγ ∗ − 1
to perform the last integration over the fermionic fields. We
will restrict ourselves to the TLS Green’s function, the other
Green’s functions can be determined in exactly the same way.
Following the procedure in Ref. [38], we find

Ge(f,i,tf − ti) = lim
N→∞

∫ N−1∏
n=1

∏
k

dφk,ndφ∗
k,n

2πi
e− ∑

n,k φn,kφ
∗
n,k [1−iλε(k)]R(φ,φ∗). (21)

In the next step, we want to integrate out the bosonic fields. Therefore, we use the matrix R(φ,φ∗) [see Eq. (18)] and expand it
up to O(λ). Taking the limit N → ∞ at the end, we find

Ge(f,i; tf − ti) =
∞∑

r=0

(
iU√

L

)r ∫ ti−tf

0
dt2r

∫ t2r

0
dt2r−1 . . .

∫ t2

0
dt1

∏
k

2r∏
m=1

dφm,kdφ∗
m,k

2πi

×G0
e (φ∗

N,φ2r ,tf − ti − t2r ) e− ∑
k φ∗

2r,kφ2r,k

∑
k

φ2r,kG0
w(φ∗

2r ,φ2r−1,t2r − t2r−1) e− ∑
k φ∗

2r−1,kφ2r−1,k

∑
k

φ∗
2r−1,k

×G0
e (φ∗

2r−1,φ2r−2,t2r−1 − t2r−2) e− ∑
k φ∗

2r−2,kφ2r−2,k

∑
k

φ2r−2,k . . .G0
e (φ∗

1 ,φ0,t1). (22)

Here, we have introduced the free propagators of the excited
TLS

G0
e (φ∗

i ,φj ,t) = e−i �
2 t e

∑
k φ∗

i,ke
−iε(k)t φj,k (23)

and the waveguide

G0
w(φ∗

i ,φj ,t) = e+i �
2 t e

∑
k φ∗

i,ke
−iε(k)t φj,k . (24)

Further, we would like to note that at this point the correspon-
dence to an ordinary perturbation series becomes clear. We
have vertices with strength U√

L
at which a photon is annihilated

or created and the free propagation of photons or excitations
between two successive scattering events.

In order to calculate the full Green’s function, we have to
evaluate Eq. (12). For an n-photon state, the projection on the
coherent states is given by

〈k1k2 . . . kn|φ〉 = φk1φk2 . . . φkn
. (25)

Inserting these bosonic fields and integrating out the bosonic
variables finally yields the full Green’s functions. As our basic
(and equivalent) Hamiltonians (1) and (2) conserve the total
number of excitations [cf. Eq. (3)], we proceed by evaluating

the TLS Green’s function explicitly for the single- and two-
excitation sectors. The excitation number is represented by
a prefix to the Green’s functions. To summarize, a generic
Green’s function is of the form NG

α
β , where N indicates the

excitation number, β denotes the initial and final states of
the TLS according to Eq. (20), and α describes the level of
interaction taken into account, i.e., α = 0, for a free Green’s
function and a blank space for the full Green’s function.

A. Single-excitation sector

For a single excitation, we start the evaluation of the TLS
Green’s function 1Ge(tf − ti) by noting that we have an initial
and final state where the TLS is excited and there are no
photons in the waveguide. The TLS Green’s function then
reads as

1Ge(tf − ti) = −i

∫ ∏
k,k′

dφf,kdφ∗
f,kdφi,k′dφ∗

i,k′

× e− ∑
k φf,kφ

∗
f,k−

∑
k φi,kφ

∗
i,kGe(f,i,tf − ti). (26)
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The dependence on the fields φf ,φi is easily integrated out and
we obtain

1Ge(tf − ti)

= −i

∞∑
j=0

(
iU√

L

)2j ∫ ti−tf

0
dt2j

∫ t2j

0
dt2j−1....

∫ t2

0
dt1

×1G
0
e(tf − ti − t2j )

[∑
k

1G
0
w(k,t2j − t2j−1)

]

×1G
0
e(t2j−1 − t2j−2) . . . 1G

0
e(t1 − t0)

=
∑

j

1G
(j )
e (tf − ti). (27)

We note that every term of the sum has the form of
a Dyson series and represents a convolution 1Ge

(j ) ∼
1G

0
e ∗ 1G

0
w ∗ 1G

0
e . . . ∗ 1G

0
e︸ ︷︷ ︸

2j+1 factors

with

1G
0
e(t) = e−i �

2 t , 1G
0
w(k,t) = ei �

2 t e−iε(k)t . (28)

By means of the convolution theorem, we can recast this in
Fourier space as an algebraic equation

1Ge(ω) =
∞∑

j=0

1

ω − �/2 + iδ

{
1

ω − �/2 + iδ

×
∑

k

U 2/L

ω + �/2 − ε(k) + iδ

}j

. (29)

Here, we have introduced the factors +iδ because we are
working with retarded Green’s functions, i.e., the limit
δ → 0+ should be understood.

The above equation can readily be solved, and we arrive at
the main equation of this section, the TLS Green’s function
1Ge(ω) in the single-excitation sector:

1Ge(ω) = 1

ω − �/2 + iδ − 1�(ω)
, (30)

where the self-energy 1�(ω) is given by

1�(ω) = U 2

L

∑
k

1

ω + �/2 − ε(k) + iδ
. (31)

The waveguide Green’s function in the single-excitation sector
can be calculated in a similar manner as the above TLS Green’s
function. The main difference lies in the fact that the initial
and final states feature a free photon. As a result, one has to
add free-photon fields in Eq. (26), which yields

1Gw(ki,kf ; tf − ti)

= −i

∫ ∏
k,k′

dφf,kdφ∗
f,kdφi,k′dφ∗

i,k′φ
∗
i,ki

φf,kf

× e− ∑
k φf,kφ

∗
f,k−

∑
k φi,kφ

∗
i,kGw(f,i; tf − ti). (32)

Performing the integrations and again transiting to momentum
space results in

1Gw(ki,kf ; ω) = 1G
0
w(ki ; ω)δki ,kf

+ U 2

L
1G

0
w(ki ; ω) 1Ge(ω) 1G

0
w(kf ; ω), (33)

where

1G
0
w(k; ω) = 1

ω + �/2 − ε(k) + iδ
. (34)

The expression (33) for the waveguide Green’s function
1Gw(ki,kf ; ω) consists of two terms, which can be iden-
tified with free propagation of the photon and scattering
off the (renormalized) TLS, respectively. The corresponding
absorption and emission Green’s functions are derived in
Appendix A, together with their diagrammatic representation.

B. Two-excitation sector

In this section, we consider two excitations in our system.
Again, we start with determining the Green’s function for an
excited impurity in the initial and in the final state, i.e., the TLS
Green’s function 2Ge. The starting point is the general expres-
sion given by Eq. (12). As compared with the single-excitation
case, the only difference is that, according to Eq. (25), we now
have an additional bosonic excitation in the in and out state.
Consequently, for this specific case G(tf − ti) reads as

2Ge(ki,kf ; tf − ti)

= −i

∫ ∏
k,k′

dφf,kdφ∗
f,kdφi,k′dφ∗

i,k′φ
∗
i,ki

φf,kf

× e− ∑
k φf,kφ

∗
f,k−

∑
k φi,kφ

∗
i,kGe(f,i,tf − ti), (35)

where Ge(f,i,tf − ti) is given by (22). Integration over the
bosonic degrees of freedom is performed along the same lines
as in the previous subsection. Again transiting to momentum
space, the Green’s function is given by

2Ge(kf ,ki ; ω) = 2Ge
r (ki ; ω)δki ,kf

+ U 2

L
2G

r
e (ki ; ω) 2G

0
w(kf ,ki ; ω) 2G

r
e(kf ; ω)

+ U 4

L2

∑
k

2G
r
e(ki ; ω) 2G

0
w(ki,k; ω)

× 2G
r
e(k; ω) 2G

0
w(k,kf ; ω) 2G

r
e(kf ; ω)

+ · · · , (36)
where

2G
0
w(k,k′; ω) = 1

ω + �/2 − ε(k) − ε(k′) + iδ
(37)

and

2G
r
e(k; ω) = 1

ω − �/2 − ε(k) + iδ − 2�(k; ω)
. (38)

Here, the superscript r indicates that the TLS Green’s function
is already renormalized by the self-energy

2�(k; ω) = U 2

L

∑
k′

2G
0
w(k,k′; ω). (39)

While we cannot express 2Ge(kf ,ki ; ω) in closed form,
we can recast Eq. (36) in a T -matrix representation which
can easily be accessed numerically. Explicitly, the T -matrix
representation reads as

2Ge(kf ,ki ; ω) = 2G
r
e(ki ; ω)δki ,kf

+ 2G
r
e(ki ; ω)T (kf ,ki ; ω) 2G

r
e(kf ; ω) (40)
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with the T matrix

T (kf ,ki ; ω) = U 2

L
2G

0
w(kf ,ki ; ω)

+U 2

L

∑
k

2G
0
w(k,ki ; ω) 2G

r
e(k; ω) T (kf ,k; ω).

(41)

The above T -matrix representation of 2Ge(kf ,ki ; ω) [Eqs. (40)
and (41)] constitutes one of the main results of our work.
Equation (40) describes the nontrivial behavior of the TLS in
the presence of an additional photon. Clearly, the result is more
complicated than in the single-excitation case, where we were
able to solve a standard Dyson equation. In the present case
of two excitations, however, we have found a self-consistent
description of the Green’s function, which can be solved
numerically for arbitrary dispersion relations. Furthermore, in
the special case of a linear dispersion relation, the TLS Green’s
function can even be calculated analytically (see Sec. VI B).

The corresponding waveguide Green’s function, which
describes the behavior of two photons in the presence of an
impurity in the ground state, is given by

2Gw(ki,pi,kf ,pf ; tf − ti)

= −i

∫ ∏
k,k′

dφf,kdφ∗
f,kdφi,k′dφ∗

i,k′φ
∗
i,ki

φ∗
i,pi

φf,kf
φf,pf

× e− ∑
k φf,kφ

∗
f,k−

∑
k φi,kφ

∗
i,kGw(f,i,tf − ti). (42)

After performing the integrations, the waveguide Green’s
function finally reads as

2Gw(ω,kf ,pf ,ki,pi)

= 2G
0
w(ki,pi ; ω)

(
δki ,kf

δpi ,pf
+ δki ,pf

δpi ,kf

)
+ U 2

L
2G

0
w(ω,ki,pi)2G

sym
e (ki,pi,kf ,pf ; ω)

× 2G
0
w(ω,kf ,pf ), (43)

where 2G
sym
e is a symmetrized version of the full TLS Green’s

function and is given by

2G
sym
e (ki,pi,kf ,pf ; ω)

= 2Ge(kf ,ki ; ω) + 2Ge(kf ,pi ; ω)

+ 2Ge(pf ,ki ; ω) + 2Ge(pf ,pi ; ω). (44)

For the case of two excitations, the full waveguide Green’s
function 2Gw(ω,kf ,pf ,ki,pi) exhibits the same structure as in
the single-excitation sector. It consists of a free propagation
term and a second term that describes the scattering off a
renormalized TLS. For the absorption and emission Green’s
functions, we provide the expressions for the two-excitation
sector in Appendix B along with their diagrammatic represen-
tation.

IV. FEYNMAN DIAGRAM REPRESENTATION

In this section, we illustrate the formulas obtained by
the path-integral approach by way of Feynman diagrams.
Specifically, we will refrain from providing a rigorous deriva-
tion of the full diagrammatic technique but will instead

TABLE I. Table of the representation of the individual species
and the interaction vertex in terms of Feynman diagrams.

Photons |e |g Vertex

represent the equations of the previous section by Feynman
diagrams. This “visualization” provides a clear identification
and interpretation of physical processes and, as already alluded
to above, facilitates a very flexible and efficient framework for
perturbative analyses.

In general, the Hamiltonian given by Eq. (7) features three
distinct species of quantized excitations, i.e., bosons (photons)
with a mode index k and two types of fermions, representing
the excited and the ground state of the TLS. In the following
diagrammatic representation, these excitations will be depicted
by a wavy, a dashed, and a solid line, respectively. This
mapping is also shown in Table I for clarification. Apart from
these diagonal contributions, Eq. (7) also features a scattering
vertex, which connects the individual lines and is also shown
in Table I.

As much of the physical insight to be gained originates
from a comparison of the results for the case of a single
excitation with the case of two excitations, we will proceed
in a corresponding sequence of subsections.

A. Single-excitation sector

In the case of a single excitation our first goal is to depict
the TLS Green’s function 1Ge in terms of Feynman diagrams.
Upon inspecting Eq. (27) we find two distinct contributions.
The first contribution stems from

1G
0
e(t − t) = e−i Ω

2 (t −t) = (45)

and describes the propagation of an excited TLS from time t

to t ′. The second contribution is given by [cf. Eq. (28)]

1G
0
w(k, t − t) = ei Ω

2 (t −t)e− (k)(t −t) = ,

(46)

and describes the simultaneous transport of a TLS in the
ground state together with a photon in the waveguide from
time t to t ′. Furthermore, we can infer from Eq. (27) that each
vertex is weighted by a factor iU/

√
L. Combining everything

we can rewrite the TLS Green’s function diagrammatically as

1Ge(tf − ti) = −i

+

+

+ . . . (47)
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where each vertex provides an integration over internal times.
Additionally, each photonic line sandwiched between two in-
teraction vertices implies a summation over the corresponding
momentum. At this point, we are able to exploit one of the
main advantages of the diagrammatic approach and provide
an interpretation of the individual terms in the perturbation
series in terms of physical processes: The excited TLS goes to
the ground state by emitting a photon. This photon is absorbed
at a later time, setting the TLS to the excited state again. This
process is repeated n times in the nth term of the perturbation
series.

In the frequency domain, the convolution integrals associ-
ated with the time-domain diagrams turn into simple products,
so that we may retain the free propagation and the bubble
diagram as well as the entire perturbation series. Therefore,
in the frequency domain, no integration with regards to the
scattering vertices is implied and per bubble only a weighting
factor of U/

√
L is implied; furthermore, the global prefactor

−i can be omitted. However, each sandwiched photonic
line still comes with a summation over the corresponding
momentum. Explicitly, the free TLS Green’s function reads
as

=
1

ω − Ω/2 + iδ
= 1G

0
e(ω). (48)

Similarly, in the frequency domain, we evaluate the bubble
diagram after cutting it free from the interaction vertices to

=
1

ω + Ω/2 − (k) + iδ

= 1G
0
w(k; ω). (49)

In the time domain, this Green’s function describes the
simultaneous propagation of a TLS in the ground state and
a photon in the waveguide. Since both excitations are created
and annihilated at the same times, the Fourier transform yields
only one frequency argument and leads to the analytic form
shown above.

As usual, we can cast the perturbation series (47) into the
form of a self-consistent Dyson equation

1Ge(ω) = Σ

= + Σ ,
(50)

which can be readily solved and we obtain Eq. (30) with the
self-energy

1Σ(ω) =
U2

L
k

1G
0
w(k; ω) = . (51)

By the same token, the full waveguide Green’s function is
given by Eq. (33) and we can represent it in a diagrammatic
form

1Gw(kf , ki; ω) = + Σ

.
(52)

This expression comprises two terms. The first term on the
right-hand side corresponds to the free propagation of a
photon and the TLS in the ground state while the second
term on the right-hand side describes the scattering off the
(renormalized) TLS. Upon reinserting Eq. (47) into (52), we
obtain the perturbation series of the full waveguide Green’s
function. At this point, we would like to note that the full
waveguide Green’s function still carries only one frequency,
which is a manifestation of the fact that both the photon and
the ground-state propagation start and end at the same time.

B. Two-excitation sector

We now turn to the case where we have an additional photon
in the system, i.e., we want to develop the diagrammatic
description of Sec. III B. From Eq. (36) we know that the
perturbation series for the TLS Green’s function consists of
two Green’s functions, which we will depict diagrammatically
as

2G
0
w(k, k ; tf − ti) = (53)

and

2G
r
e(k; tf − ti) = Σ

. (54)

Just as in the single-excitation case, these Green’s functions
describe the propagation of the excitations over a given time
interval from ti to tf [this behavior can be immediately
understood by the single frequency dependence in Eqs. (37)
and (38)]. The Green’s function 2G

0
w(k,k′; tf − ti) describes

the simultaneous propagation of two photons with momenta k

and k′, together with a ground-state field of the TLS. Similarly,

the Green’s function 2G
r
e(k; tf − ti) represents the propagation

of an excited TLS and one additional photon. In addition, in
Eq. (54) we have already encapsulated bubblelike renormal-
izations into the excited TLS propagation (as discussed in the
single-excitation case).

With the help of these basic Green’s functions, we can
now rewrite the TLS Green’s function in the two-excitation
case as given by Eq. (36) within the Feynman diagrammatic
formulation as

2Ge(k, k , tf−ti)

= −i
Σ

+
Σ

Σ

+
Σ

Σ

Σ

+ . . . . (55)

Here, the dotted lines serve as indicators that separate
distinct Green’s functions from each other and, in the time-
domain formulation, imply an integration over the associated
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intermediate times. Furthermore, the momentum of the free
photon is conserved (as long as it does not interact with a
vertex), each interaction vertex provides a factor iU/

√
L, and

photons sandwiched between two interaction vertices imply a
summation over the corresponding momentum (this applies for
the upper, sandwiched photon in the third term, for example).
For the interested reader, we have presented the way to the
equal-time Green’s functions in Appendix C.

This diagrammatic formulation of the TLS Green’s func-
tion’s perturbation series in the two-excitation case provides a
clear physical interpretation. The first term of the perturbation
series corresponds to the situation when the TLS is excited
and the additional photon is and stays free throughout the
entire propagation. In the second term, the excited TLS emits
a photon at some intermediate time, so for a given period of
time two photons exist in the waveguide and propagate freely
along with a free propagation of the TLS in the ground state.
After a certain time, the initially free photon is absorbed by the
TLS, whereas the other photon continues to propagate freely.
Clearly, this induces correlations between the photons. In the
higher-order terms of the perturbation series, this process is
repeated many times, which effectively leads to photons that
are emitted and reabsorbed, while the respective other photon
is scattered by the TLS. Finally, we would like to note that
all processes where the TLS directly reabsorbs the originally
emitted photon without intermediate scattering are contained
in the self-energy bubbles. In the case of a frequency-domain
description, the intermediate convolutions integrals translate
into multiplications and the common time dependencies of
the individual free-particle propagators that comprise the TLS
Green’s function lead to a single frequency argument, just as
has been the case for the single-excitation case.

The full waveguide Green’s function is given by Eq. (43)
and can be obtained by adding free waveguide Green’s
functions to the full TLS Green’s function 2Ge(k,k′,ω) in
a symmetrized way [see Eq. (43)] and by augmenting the
perturbation series by a further term that takes into account the
free propagation as described by Eq. (53).

A general and very important property of the system is
that the TLS cannot interact with free photons if it is in the
excited state. It is exactly this property which renders the
system nonlinear, so that it is interesting to see how this
feature translates into the diagrammatic formalism. For a
linear system (e.g., a one-dimensional waveguide with a
site-coupled bosonic quantum dot instead of the TLS) with
two excitations, we could just take the square of the single-
excitation propagator, which, in our model, would lead to
double excitations of the bosonic quantum dot. As already
noted, the two-excitation Green’s functions which we use
have only one time dependence, so that the particles (photons
(bosons) and the two fermions corresponding to the TLS in
the ground and excited states, respectively) are created and
annihilated at the same times. This means that the second
term on the right-hand side of Eq. (55) can be interpreted as
follows. A photon and an excited TLS are created at time ti and
propagate up to an intermediate time τ . At this time, the TLS
emits an additional photon and goes to the ground state, until at
time τ̃ > τ one photon is absorbed and the other one remains
free. As all Green’s functions in this series are retarded, at
no point in time can double excitation of the TLS take place.

As a result, the few-photon nonlinearity emerges and induces
complex correlations between the photons [39].

V. PROPERTIES OF THE GREEN’S FUNCTIONS IN THE
SINGLE-EXCITATION SECTOR

After having established the diagrammatic formulation of
the theory in the single- and double-excitation cases, we
now turn to the examination of the single-excitation Green’s
functions and will establish the connection of our framework
to the other approaches discussed in Sec. I.

In Sec. II, we have introduced the waveguide as a one-
dimensional chain of length L with nearest-neighbor hopping,
thus exhibiting a cosine-shaped dispersion relation ε(k) =
−2t cos(k). Although we employ the cosine-shaped dispersion
relation in this section, we may also use other dispersion
relations (see the discussion in Sec. II). Specifically, we will
also consider a linear dispersion relation with group velocity v,
i.e., εμ(k) = μvk, which is a good approximation for photons
in the center of the cosine band. As already indicated in the
dispersion relation, we then have to introduce a new quantum
number, the chirality μ = R/L = +/− in order to account
for the fact that we have both right- and left-moving photons.
Furthermore, we pass from a set of discrete sites to a continuum
description, which means that we replace all sums over real or
reciprocal space by corresponding integrals and replace L by
2π .

In the continuum limit, Eq. (31) is given by

1�(ω) = U 2
∫

dk

2π

1

ω + �/2 − ε(k) + i0

= U 2P
∫

dk

2π

1

ω + �/2 − ε(k)

− iπU 2
∫

dk

2π

∑
n

δ(k − kn)
1

∂ε/∂k

∣∣∣∣
k=kn

, (56)

where P denotes the Cauchy principal value and the kn are
given by the roots of ω + �/2 = ε(k). If all these roots are real
(i.e., the energy is in the band), the principal value in Eq. (56)
becomes zero. Moreover, the second term can be identified
with the density of states of the free waveguide ν(ω). This
gives

1�(ω) = −iπU 2ν(ω). (57)

As a result, we find that the self-energy for the cosine
dispersion as

1�cos(ω,�) = U 2

ω + �/2 + iδ − 2t

√
ω + �/2 + iδ − 2t

ω + �/2 + iδ + 2t
,

(58)
and for the linear dispersion as

1�lin(ω) = −i
U 2

v
. (59)

In the case of linear dispersion, the frequency-independent
density of states leads to a frequency-independent self-energy.
The self-energy of the cosine band exhibits a more complicated
structure: it is purely imaginary when ω lies inside of the band
and purely real when ω is outside the band. Note that the given
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FIG. 2. Spectral density of the TLS with � = 0, U = 1, v = 1,
and t = 1 for the linear (black, dashed line) and cosine (red line)
dispersion relation. ω is measured in units of v (t) for the linear
(cosine) dispersion relation and the spectral density in units of v−1

(t−1). The spectral density of the cosine band clearly displays the band
edges and features spectrally ultrasharp bound states in the band gaps
on either side of the band (when plotting the spectral density for the
cosine band, we have introduced an artificial broadening δ = 10−4

in order to enhance the visibility of the bound states). By contrast,
the spectral density for the linear dispersion relation corresponds to
a simple Lorentzian.

representation of the self-energy is chosen in such a way that
the square root is evaluated at the correct side of the branch
cut.

With these two self-energies, we are able to compute the
spectral density of the TLS in the single-excitation case as

1A(ω) = − 1

π
Im[ 1Ge(ω)]. (60)

In Fig. 2, we depict the spectral density for both dispersion
relations. The spectral density for the linear dispersion relation
is a simple Lorentzian with width U 2/v. In the case of the
cosine dispersion, we clearly observe the frequency span of
the band. In addition, we observe two sharp spectral lines in
the band gaps on either side of the band that correspond to
two atom-photon bound states [19,26,35]. We would like to
point out that we have chosen a finite (positive) value for δ.
This can be interpreted as a (weak) dissipative environment
independent of the energy, which is coupled to the TLS.
Since the linear dispersion relation covers the whole energy
range and the dissipation is very weak, no qualitatively new
results are obtained. The cosine dispersion relation, however,
covers only a limited energy range. In this case, a finite δ thus
introduces dissipation for energies outside of the band, where
the most apparent effect is a broadening of the atom-photon
bound states.

Furthermore, knowledge of the Green’s functions enables
us to compute the scattering matrix (S matrix)

Sk,p = δk,p + i2πδ(ε(k) − ε(p))Tk,p, (61)

where we have obtained the transition matrix (T matrix)
via the Lehmann-Symanzik-Zimmermann (LSZ) reduction

formula [40–42]

iTk,p = −iG−1
0 (k)G(k,p)G−1

0 (p)
∣∣
os

. (62)

In this expression, G0(k) and G(k,p) denote, respectively, the
free and the full, time-ordered Green’s functions. Further, the
subscript os indicates that the expression is taken on shell,
i.e., the scattering is elastic (or alternatively ω = ∑

i ε(ki) =∑
f ε(kf ), where the sums are over the initial and final

momenta, respectively). Using Eqs. (34) and (33) for the free
and for the full Green’s functions, respectively, and omitting
the free propagating part yields

iTk,p = −i
U 2

2π
1Ge(ω)

∣∣∣∣
os

. (63)

We now rewrite the energy-conserving δ function that imple-
ments elastic scattering in terms of δ functions with momentum
arguments and the density of states of the free waveguide

δ(ε(k) − ε(p)) = πν(δk,p + δk,−p). (64)

Upon combining Eqs. (61) and (63) with Eq. (64) yields

Sk,p = (1 + rk)δk,p + rkδk,−p, (65)

where the reflection amplitude rk is given by

rk = −iπνU 2

ε(k) − �/2 + iπνU 2
. (66)

In order to compare our results with the results from earlier
works [18,19,43], we perform a shift of the energy ω → ω −
�/2. Explicitly, for the linear dispersion relation we obtain

r lin
k = −iU 2/v

vk − � + iU 2/v
, (67)

while we obtain for the cosine dispersion relation

rcos
k = −iU 2

2t | sin(k)|
1

−2t cos(k) − � + iU 2/2t | sin(k)| . (68)

Indeed, these expressions are in agreement with the results
obtained in earlier works by way of Bethe-ansatz and LSZ
techniques [18,19,43].

VI. PROPERTIES OF THE GREEN’S FUNCTIONS
IN THE TWO-EXCITATION SECTOR

In correspondence with the single-excitation case, we now
proceed to analyze the Green’s functions in the two-excitation
case for the cosine and linear dispersion relations. In addition,
we discuss the effect of band edges and bound photon-atom
states on the perturbation series.

A. Cosine dispersion relation: Discrete waveguide

The full Green’s function of the TLS is given by Eq. (36) in
the form of a perturbation series. This perturbation series can
be cast in the form of a T -matrix equation, given by Eq. (40).
For a discrete waveguide, we can solve this equation simply
by (numerical) matrix inversion and we defer the discussion
of the continuum limit of the cosine band to Secs. VI B (band
center, approximately linear dispersion) and VI C (band edge,
approximately quadratic dispersion).
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FIG. 3. Two-excitation spectral density 2A(π/2,ω) [obtained via
the Green’s-function approach (solid blue line) and DMRG (dashed
red line)] of the TLS with � = 0.3 and U = 1 for a tight-binding
waveguide with L = 600 discrete sites and cosine dispersion relation
ε(k) = −2t cos(k) (t = 1), together with the corresponding single-
excitation spectral density 1A(ω) (black dotted). ω is measured in
units of t and the spectral density in units of t−1. In 2A(π/2,ω),
we clearly observe a Fano resonance just below ω = 0 (see text
for details). This Fano resonance is absent in the single-excitation
spectral density of the TLS. When plotting the spectral densities,
we have introduced an artificial broadening δ = 0.04 in order to
enhance the visibility of the Fano resonance and to improve numerical
convergence.

We define the two-excitation spectral density of the TLS as

2A(k,ω) = − 1

π
Im[ 2Ge(k,k; ω)]. (69)

In Fig. 3, we depict the two-excitation spectral density of
the TLS 2A(π/2,ω), and compare with the corresponding
single-excitations spectral density 1A(ω) (see Fig. 3 for details
of the systems). While both spectral densities exhibit an overall
similar behavior, we observe an additional feature in the
two-excitation spectral density which we attribute to a Fano
resonance between the occupied (renormalized) TLS and the
additional photon in the waveguide. A Fano resonance appears
when a broad continuum of states interacts with a single sharp
mode. In our case, the (smeared out) TLS plays the role of
the continuum whereas the additional photon acts as a sharp
resonance. We would like to note that we have introduced
an artificial broadening of δ = 0.04 in order to enhance the
visibility of the Fano resonance and to improve numerical
convergence of the matrix inversion. As a result, the bound
states are not as sharp as in Fig. 2 and the band edges are almost
completely smeared out. Therefore, in order to make certain
that the broadening does not introduce artificial features, we
have confirmed the results of the matrix inversion displayed
in Fig. 3 via computations of the spectral density by using an
expansion in Chebyshev polynomials within the framework of
the density-matrix-renormalization-group (DMRG) technique
as described in [44].

In addition, we would like to stress that a similar Fano reso-
nance occurs in (analytically solvable) case of linear dispersion
(see Sec. VI B) so that we conclude that the occurrence of such

a Fano resonance between the occupied (renormalized) TLS
and the additional photon in the waveguide is a generic feature
of the few-photon nonlinearity in the n-photon transport
through a waveguide with embedded TLS for n > 1.

Although we have solved Eq. (40) for a cosine dispersion
relation only, we would like to stress that our formalism
is certainly not limited to this case (see the discussion in
Sec. II). In fact, the T -matrix equation (40) is applicable to
every possible dispersion relation that can be realized in a
one-dimensional waveguide.

B. Linear dispersion relation

We now turn our attention to the case of an (infinitely
extended) linear dispersion relation εμ(k) = μvk and thus
ignore the effects of band edges, notably bound photon-atom
states and slow-light regimes. Just as in the single-excitation
case, we transit to the continuum limit. Then, the self-energy
of the renormalized TLS Green’s functions is

2�lin(k; ω) = −i
U 2

v
, (70)

i.e., the same expression as in the single-excitation sector.
This suggests that the linear dispersion exhibits certain special
features so that, in contrast to the numerical treatment of the T

matrix, we aim at directly summing up the perturbation series,
Eq. (36). Formally, we can rewrite this series as

2Ge(kf ,ki ; ω) =
∑

i

2G
(i)
e (kf ,ki ; ω). (71)

Clearly, the first two terms of the series can be written
immediately, as no integration over internal momenta is
required.

The third term, however, is given by

2G
(3)
e (kf ,ki ; ω) = U 4

2π

∫
dk

2π
2G

r
e(ki ; ω) 2G

0
w(ki,k; ω)

× 2G
r
e(k; ω) 2G

0
w(k,kf ; ω) 2G

r
e(kf ; ω),

(72)

where the integral only extends over the three internal Green’s
functions. As all these Green’s functions have single poles that
are shifted into the upper half plane, it follows that the integral
and hence the entire third term in the series vanishes. As a
matter of fact, this argument can be applied to terms of order
higher or equal to three and this means that, in the case of a
linear dispersion, the full TLS Green’s function is completely
determined by the first two terms

2Ge(kf ,ki ; ω) = 2G
r
e(ki ; ω) δki ,kf

+ U 2

2π
2G

r
e(ki ; ω) 2G

0
w(kf ,ki ; ω) 2G

r
e(kf ; ω).

(73)

We are now in a position to provide a physical explanation
for this termination of the perturbation series for linear
dispersion relations after the first two terms by inspecting the
first vanishing Feynman diagram [i.e., the third diagram on the

013828-10



GREEN’s-FUNCTION FORMALISM FOR WAVEGUIDE QED . . . PHYSICAL REVIEW A 93, 013828 (2016)

right-hand side of Eq. (55)] in the time domain

2G
(3)
e (kf , ki; ω) =

Σ

Σ

Σ

(74)

The particle of interest is the (intermediary) upper photon,
which is emitted and reabsorbed by the TLS. During the time
that the upper photon “lives,” the initial photon propagates and
eventually gets absorbed. After a while, the photon is reemitted
and propagates further for a certain time. The entire process
occupies a certain time τ > 0. During this time, the upper
(intermediate) photon moves a certain distance due to the fixed
group velocity v > 0 of the linear dispersion and the absence
of back-scattering mechanisms. This means that the photon has
moved away from the TLS and actually cannot be reabsorbed,
hence the diagram vanishes. We would like to note that this
is a special property of the linear dispersion relation and does
not hold for general dispersion relations, notably not near band
edges and/or waveguide cutoff frequencies, i.e., in the vicinity
of slow-light regimes.

We have calculated the two-excitation spectral density
according to Eq. (69) and depict the results together with
the single-excitation spectral density in Fig. 4. Similar to
the numerical calculations for the cosine dispersion relation
we, again, find again a Fano resonance located at ωF =
2vk − �/2, which, however, is much more pronounced than in
the cosine-shaped dispersion case. Comparing both dispersion
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FIG. 4. Two-excitation spectral density 2A(−1,ω) (solid blue
line) of the TLS with � = 1 and U = 1 for a waveguide with
linear dispersion relation ε(k) = μvk and v = 1 considered in the
continuum limit, together with the corresponding single-excitation
spectral density 1A(ω) (red dashed line). ω is measured in units
of v and the spectral density in units of v−1. We have shifted
the single-excitation spectral density 1A(ω) by ω → ω − vk, so
that the maxima of both plots overlap. The green dotted line is at
vk + �/2 and indicates the maximum of 1A(ω). In 2A(−1,ω), we
clearly observe a Fano resonance at ω = 2vk − �/2 (black dotted
line) which is more pronounced than for the case of tight-binding
waveguide in Fig. 3. As in the case of the tight-binding waveguide, this
Fano resonance is absent in the single-excitation spectral density of
the TLS. When plotting the spectral densities, we have introduced the
same artificial broadening δ = 0.04 as in the case of the tight-binding
waveguide in order to enhance the visibility of the Fano resonance
and make the graph comparable to that in Fig. 3.

relations, the Fano resonance appears in two different ways:
In the case of the cosine dispersion relation, the Fano
resonance emerges as a result of the self-consistent treatment
of the T matrix, whereas for the linear dispersion relation
it can be traced back to the second term in the perturbation
series 2G

(2)
e (kf ,ki ; ω). To be more exact, the Fano resonance

stems from the internal free waveguide Green’s function
2G

0
w(ki,kf ; ω), which is of the form (ω − ωF + iδ)−1. As

a result, the Fano resonance is the consequence of a first-
order pole, regularized by a finite imaginary factor iδ. For
sufficiently small δ, the spectral density can thus even assume
negative values. However, one has to take into account that we
are not considering the spectral density of the full system,
but only of a part of it (i.e., the part stemming from the
TLS). Therefore, a negative spectral density is acceptable
and can be considered as some sort of “gain” (where the
energy is taken from the waveguide), indicating effects such
as photon bunching [18,39,45]. Moreover, we would like
to point out that the Fano resonance is less pronounced in
Fig. 3, although all energies (transition energy of the TLS,
photon energy) are in the linear regime of the cosine band.
We attribute this regularization to the self-consistent treatment
of the Green’s function, which is not possible for the linear
dispersion relation.

In fact, the deeper reason behind the termination of the
perturbation series for the linear dispersion is the separation
of the photons on the Hamiltonian level into two kinds
of photons (left- and right-moving ones). This changes the
symmetry of the original Hamiltonian, i.e., the chirality is
introduced as a new quantum number, and eventually leads to
the special analytic structure of the Green’s functions and, as
a consequence, to the termination of the perturbation series.

Finally, we can now construct the two-excitation S matrix
by generalizing the LSZ formalism presented in Sec. V.
Explicitly, the two-excitation S matrix is given as

Skipi ,kf pf
= (

δki ,kf
δpi ,pf

+ δpi ,kf
δki ,pf

) + i2πδ(E) Tkipi ,kf pf
,

(75)

where

δ(E) = δ(ε(ki) + ε(pi) − ε(kf ) − ε(pf )) (76)

ensures elastic scattering and the associated T matrix is defined
as

iTkipi ,kf pf
= −iG−1

0 (ki,pi) G(ki,pi ; kf ,pf ) G−1
0 (kf ,pf )

∣∣
os

.

(77)

In this expression, G0(k,p) and G(k,p; k′,p′) denote, respec-
tively, the free and the full waveguide Green’s function. With
the help of Eq. (43), we explicitly find

iTkipi ,kf pf
= −i

U 2

2π
2G

sym
e (ki,pi,kf ,pf ; ω)

∣∣
os

, (78)

where 2G
sym
e (ki,pi,kf ,pf ; ω) is defined by Eq. (44).

In order to compare these results with results of earlier
works, we again perform a frequency shift ω → ω − �/2. We
carry out the actual calculations of the S matrix in Appendix D
so that we report here only the final results. For different
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chirality configurations, the S matrix reads as follows:

(i) kR
i pR

i → kR
f pR

f :

S
RR,RR
kipi ,kf pf

= tki
tpi

(
δki ,kf

δpi ,pf
+ δki ,pf

δpi ,kf

) + S
2,P.V.
kipi ,kf pf

.

(79)

(ii) kR
i pR

i → kR
f pL

f :

S
RR,RL
kipi ,kf pf

= tki
rpi

δki ,kf
δpi ,−pf

+ rki
tpi

δki ,−pf
δpi ,kf

+ S
2,P.V.
kipi ,kf pf

.

(80)

(iii) kR
i pR

i → kL
f pL

f :

S
RR,LL
kipi ,kf pf

= rki
rpi

(
δki ,−kf

δpi ,−pf
+ δki ,−pf

δpi ,−kf

) + S
2,P.V.
kipi ,kf pf

.

(81)

In these expressions, the superscript of the momenta indicates
the chirality, rk is the single-excitation reflection amplitude
[cf. Eq. (67)], tk = 1 + rk is the single-excitation transmission
amplitude, and S

2,P.V.
kipi ,kf pf

is given by

S
2,P.V.
kipi ,kf pf

= iU 4

πv
δki+pi ,kf +pf

× (ki + pi − 2� + iU 2/v)

(vpi − � + iU 2/v)(vki − � + iU 2/v)

× 1

(vpf − � + iU 2/v)(vkf − � + iU 2/v)
.

(82)

Our results are thus in accordance with the results obtained by
other techniques in earlier works [18,19,45].

Within our scheme, we can also give a physical explanation
of the term S

2,P.V.
kipi ,kf pf

. In the first place, this term appears by

replacing the free waveguide Green’s function in 2Ge
(2) by the

Dirac identity

1

ω − vk − vp + i0
= P 1

ω − vk − vp
− iπδ(ω − vk − vp).

(83)

The two terms in the Dirac identity can be interpreted as
follows. The imaginary part that is proportional to a δ function
corresponds to long-time, real processes because the δ function
sets the particles on shell. The real part that contains the
principal value, however, does not place a constraint on
the momenta. The momenta can be chosen freely and are
only restricted by energy conservation. Therefore, this term
corresponds to short times, which are on the scale of the
Heisenberg uncertainty principle, i.e., they correspond to
virtual processes.

C. Band-edge effects

Finally, we address the case of band edges by following the
same line of reasoning as in Sec. VI B. Perhaps the simplest
nonlinear dispersion relation exhibiting a band edge is the
quadratic dispersion relation ε(k) = tk2 with t > 0. In this
case, the self-energy is given by

2�qu(k; ω) = −i
πU 2√

t(ω − tk2 + i0)
, (84)

where we scaled out the factor �/2 again. The first two
terms of the perturbation series given by Eq. (71) can again
be computed straightforwardly, but the third term (and all
higher-order terms) exhibit different characteristics. First of
all, the quadratic dispersion relation induces poles on both
sides of the complex half-plane, which means that the integral
over internal momenta is not vanishing, hence, 2G

(3)
e (kf ,ki ; ω)

is finite. This was expected since the quadratic dispersion
relation exhibits a state where the group velocity vg = 0, which
means that an emitted photon can be reabsorbed by the TLS
after a certain amount of time (cf. discussion in Sec. VI B).
Second, the self-energy 2�qu(k; ω) leads to two branch cuts,
one in each half-space of the complex plane. These branch cuts
represent major obstacles in the integration over the internal
momenta and we have been unable to find a closed-form
solution for 2G

(3)
e (kf ,ki ; ω).

From a more physical point of view, however, we expect
that the higher-order processes encapsulate the effect of
interaction-induced radiation trapping (IIRT) [26,35]. This
phenomenon describes the excitation of the atom-photon
bound state by a two-photon pulse as the result of a nonlinear
process. This expectation can be motivated by the diagram-
matic form of 2G

(3)
e (kf ,ki ; ω):

Σ

Σ

Σ

.

In the top line, the TLS emits a photon, which is reabsorbed
at a later time. This is exactly the behavior one would expect
from the atom-photon bound state since the radiation cannot
leave the TLS.

The prototypical process of IIRT includes two initial
photons, which are transformed into an atom-photon bound
state and a photon with a different momentum. Energetically,
this process is described by

ω = ε(ki) + ε(pi) = ωBS + ε(kf ), (85)

where ki and pi are the momenta of the initial photons, kf is
the momentum of the final photon, ω is the total energy, and
ωBS is the energy of the bound atom-photon state, which can
be found by solving the equation

ωBS − � + i
U 2π√
tωBS

= 0. (86)

In fact, setting 2G
(3)
e (kf ,ki ; ω) on shell (thus making it

proportional to a scattering matrix element) and computing
the integration over the internal momenta numerically yields
a sharp peak at precisely the momenta kf which fulfill ω =
ωBS + ε(kf ) (cf. Fig. 5). This indicates that 2G

(3)
e (kf ,ki ; ω)

(together with the higher-order processes) describes indeed
the physics behind the IIRT. Moreover, treating the sharp peak
as a pole (which is motivated by the fact that the width of the
resonance scales with the small imaginary part iδ) enables us
to compute the residue of the resonance via

Res
[

2G
(3)
e ,k0

] = 1

2πi

∮
C

dz 2G
(3)
e (z,ki ; ω)

∣∣∣∣
os

, (87)

where k0 is the solution of Eq. (85), the subscript os indicates
that the expression is taken on shell, and the contour C is
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FIG. 5. Logarithmic plot of |2G(3)
e (kf ,ki ; ω)| (in units of t−1) with

ki = pi = 1, t = 1, U = 1, ω = ε(k1) + ε(k2), and � is measured in
units of t . We have added a small imaginary part δ = 10−3 to ω for an
artificial broadening of the resonance. The black dotted line represents
the solution of ω = ωBS + ε(kf ). The resonance approaches kf →√

2 for large values of � since the bound-state energy ωBS → 0 in
this case.

a circle centered at k0 with radius λ. We have plotted the
residue in Fig. 6, together with the conditions that the two
initial photons are on resonance with the TLS individually
[� = ε(ki)] and collectively [� = ω = 2ε(ki)]. We can see
here that the strength of the pole is sensitive to the TLS being
on resonance with the collective photonic excitation, rather

0.5 1.0 1.5 2.0 2.5 3.0

- 2

0

2
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6

8

ki

1.0

0.8

0.6

0.4

0.2

0

FIG. 6. Plot of |Res[2G
(3)
e ,k0]| (in units of t−1) for two identical

initial photons ω = 2ε(ki), U = 1, t = 1, δ = 10−4, λ = 10−6, and
� is measured in units of t . The black and white lines represent the
parabolas � = 2ε(ki) and � = ε(ki), respectively.

than with the individual ones. This is another indicator that
IIRT emerges as the result of the nonlinear behavior of the
TLS in the presence of two or more photons. Furthermore, this
result shows that an analytic solution for 2G

(3)
e (kf ,ki ; ω) is still

highly desirable as this would provide further insights into the
physics of IIRT.

Finally, we would like to conclude this section by recalling
the physical interpretation of each term in the perturbation
series of 2Ge(kf ,ki ; ω): The first term describes the single-
photon scattering and does not induce correlations between the
two photons. The second term gives rise to photon bunching
and is always finite, independent of the dispersion relation.
The third term and all higher-order terms are nontrivial since
they include integrations over internal momenta. In the case
of a linear dispersion relation, their contribution vanishes.
Conversely, these higher-order terms become particularly
relevant for frequencies near band edges and/or waveguide
cutoffs and lead to the effect of IIRT.

VII. CONCLUSION

In summary, we have developed an efficient and flexible
quantum-field-theoretical approach to few-photon transport
problems in one-dimensional photonic waveguides with em-
bedded quantum impurities. Our approach is based on a
coherent-state path-integral formulation which allows us to
formulate a Feynman diagram representation that elucidates
the nature of the underlying physical processes. For instance,
our framework allows for both frequency- and time-domain
considerations and we have utilized both of them throughout
this paper in order to arrive at several physical explanations.

In the case of a single excitation, our approach delivers
closed-form analytical expressions for the Green’s functions
for arbitrary dispersion relations and we have computed spec-
tral densities and scattering matrices. Similarly, for the case
of two excitations, our approach demonstrates that and why
all diagrams of order higher than two vanish for systems with
linear dispersion, again facilitating a closed-form expression
for the Green’s function and all physical quantities. For
arbitrary dispersion relations, the case of two excitations does
not admit general closed-form solutions and we have derived
a self-consistent T -matrix equation that reduces the required
computational effort to that of a single-excitation calculation.

The results of our approach are consistent with results
from several earlier works in which different techniques have
been employed [18,19,45]. In addition, for the two-excitation
case, we have derived a Fano-resonance effect in the spectral
density that originates from an interference between the
occupied (renormalized) TLS and the additional photon in the
waveguide. This Fano resonance represents a unique signature
of the few-photon nonlinearity inherent in our systems. Fur-
thermore, we have shown that while linear dispersion relations
are in some sense limited to photon-correlation effects only,
dispersion relations with slow-light regimes (i.e., with band
edges and/or waveguide cutoff frequencies) feature additional
effects related to interaction-induced radiation trapping effects
that originate from nonlinear scattering processes that involve
bound atom-photon states. This leads to very rich physics even
for such, on first sight, rather simple systems.
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Finally, our framework can serve as the basis for further
studies that involve more complex scenarios such as several
and many-level quantum impurities, networks of coupled
waveguides, disordered systems, and nonequilibrium effects.

Note added in proof. We have recently become aware
of a work by Kocabas [46] where a similar diagrammatic
framework has been independently developed.
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APPENDIX A: GREEN’S FUNCTIONS IN THE
SINGLE-EXCITATION SECTOR

In this appendix, we complete the derivation of the single-
excitation Green’s function. The full TLS and waveguide
Green’s functions have been derived in Secs. III A and IV A,
but the case where a photon is absorbed or emitted by the
TLS is still missing. The general expression for the absorption
Green’s function reads as

1Gab(ki ; tf − ti)

= −i

∫ ∏
k,k′

dφf,kdφ∗
f,kdφi,k′dφ∗

i,k′φ
∗
i,ki

× e− ∑
k φf,kφ

∗
f,k−

∑
k φi,kφ

∗
i,kGab(f,i,tf − ti), (A1)

where Gab(f,i,tf − ti) is given by Eqs. (20) and (21). Perform-
ing the same integrations as in Sec. III yields

1Gab(ki ; ω) = U√
L

1G
0
w(ki ; ω) 1Ge(ω), (A2)

where 1G
0
w(ki ; ω) and 1Ge(ω) are defined in Eqs. (34) and (30),

respectively. The diagrammatic representation of this process
is straightforward. A free photon is annihilated and excites the
TLS

1Gab(ki; ω) = Σ . (A3)

The calculation of the emission Green’s function follows the
exact same path, the starting expression being

1Gem(kf ; tf − ti)

= −i

∫ ∏
k,k′

dφf,kdφ∗
f,kdφi,k′dφ∗

i,k′φf,kf

× e− ∑
k φf,kφ

∗
f,k−

∑
k φi,kφ

∗
i,kGem(f,i,tf − ti). (A4)

In turn, this yields

1Gem(kf ; ω) = U√
L

1Ge(ω)1G
0
w(kf ; ω), (A5)

together with a straightforward diagrammatic representation.
An excited TLS emits a photon and finds itself in the ground

state

1Gem(kf ; ω) = Σ . (A6)

APPENDIX B: GREEN’S FUNCTIONS IN THE
TWO-EXCITATION SECTOR

Just as in the single-excitation case, we can also derive
absorption and emission Green’s functions for the case of two
excitations. However, we will omit the representation of the
Green’s functions by Feynman diagrams since they include
certain symmetrizations such as those in Sec. IV B.

Explicitly, the absorption Green’s function is given by

2Gab(ki,pi,kf ; tf − ti)

= −i

∫ ∏
k,k′

dφf,kdφ∗
f,kdφi,k′dφ∗

i,k′φ
∗
i,ki

φ∗
i,pi

φf,kf

× e− ∑
k φf,kφ

∗
f,k−

∑
k φi,kφ

∗
i,kGab(f,i,tf − ti), (B1)

where Gab(f,i,tf − ti) is given by Eqs. (20) and (21).
Integrating out the bosonic fields results in

2Gab(ki,pi,kf ; ω)

= U√
L

2G
0
w(ki,pi ; ω)[ 2Ge(kf ,ki ; ω) + 2Ge(kf ,pi ; ω)].

(B2)

The physical process is analogous to the single-excitation case.
Two photons are initialized in the waveguide and one of them
is absorbed by the TLS.

By the same token, the general formula for the emission
Green’s function reads as

2Gem(ki,kf ,pf ; tf − ti)

= −i

∫ ∏
k,k′

dφf,kdφ∗
f,kdφi,k′dφ∗

i,k′φ
∗
i,ki

φf,kf
φf,pf

× e− ∑
k φf,kφ

∗
f,k−

∑
k φi,kφ

∗
i,kGem(f,i,tf − ti). (B3)

Upon integrating out the bosonic fields, we finally find

2Gem(ki,kf ,pf ; ω)

= U√
L

[ 2Ge(pf ,ki ; ω) + 2Ge(kf ,ki ; ω)]2G
0
w(kf ,pf ; ω),

(B4)

along with a straightforward interpretation. A free photon
and an excited TLS are initialized and propagate until the
TLS emits a photon, which leaves two free photons in the
waveguide.

APPENDIX C: EQUAL-TIME GREEN’S FUNCTIONS

We will discuss in this appendix the appearance of equal-
time Green’s functions in the perturbation series for the TLS
Green’s function in the two-excitation sector. Our discussion
will focus on an example diagram of the perturbation series,
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which is given by

g(tf − ti) = , (C1)

with the goal to derive the equal-time Green’s functions from
a more “standard” diagrammatic approach [47]. Note that this
appendix is not mathematically rigorous but intends to give the
reader insight about the emergence of the equal-time Green’s
functions.

From a direct diagrammatic derivation, the diagram is given
by

g(k,k′; tf −ti) = i
U 2

L

∫
dt dt ′ge(t − ti)gph(k,t ′ − ti)gg(t ′ − t)

× gph(k′,tf − t)ge(tf − t ′), (C2)

where the free Green’s functions are

ge(t) = e−i�t/2, gg(t) = ei�t/2, gph(k,t) = e−iε(k)t ,

(C3)

the according Feynman diagrams are given in Table I, and
the time integrations stem from the interaction vertices. The
crucial point about these Green’s functions is that they can be
rewritten in the form

gph(k,tf − ti) = e−iε(k)(tf −ti )

= e−iε(k)(tf −t)e−iε(k)(t−ti )

= gph(k,tf − t)gph(k,t − ti). (C4)

In this way, Eq. (C2) can be rewritten as

g(k,k′; tf − ti) = i
U 2

L

∫
dt dt ′[ge(t − ti)gph(k,t − ti)]

× [gg(t ′ − t)gph(k,t ′ − t)gph(k′,t ′ − t)]

× [ge(tf − t ′)gph(k′,tf − t ′)], (C5)

where each set of brackets contains an equal-time Green’s
function. Diagrammatically, this expression can be depicted
as

g(tf − ti) = , (C6)

which is exactly the form as in Sec. IV B.

APPENDIX D: TWO-EXCITATION SCATTERING MATRIX

In this appendix, we provide the details of the calculation
of the two-excitation scattering matrix for the case of a linear
dispersion relation. The two-excitation S matrix is given by
Eqs. (75) and (78). With the help of Eqs. (44) and (73), we can
write this S matrix as

Skipi ,kf pf
= S0

kipi ,kf pf
+ S1

kipi ,kf pf
+ S2

kipi ,kf pf
, (D1)

S0
kipi ,kf pf

= δki ,kf
δpi ,pf

+ δpi ,kf
δki ,pf

, (D2)

S1
kipi ,kf pf

= − iδ(ε(ki) + ε(pi) − ε(kf ) − ε(pf ))

× U 2
[

2G
r
e(ki ; ω)δki ,kf

+ {perm}]∣∣
os

, (D3)

S2
kipi ,kf pf

= − iδ(ε(ki) + ε(pi) − ε(kf ) − ε(pf ))

× U 4

2π

[
2G

r
e(ki) 2Gw,0(ki,kf ) 2G

r
e(kf ) + {perm}]∣∣

os
,

(D4)

where {perm} represents terms where the momenta have been
permuted according to Eq. (44). Furthermore, we suppress
the chirality indices, thus (initially) treating all (incoming
and outgoing) photons as right movers. The case of different
chiralities will be discussed at the end of this appendix.

In order to calculate S1
kipi ,kf pf

, we rewrite the δ function
according to

δ(ε(ki) + ε(pi) − ε(kf ) − ε(pf )) = δki+pi ,kf +pf

v
. (D5)

Bearing in mind that we have shifted ω → ω − �/2, using
Eq. (38), and setting ω = vki + vpi , we find after cumbersome
but straightforward calculation

S1
kipi ,kf pf

= δpi ,pf
δki ,kf

−iU 2/v

vpi − � + iU 2/v
+ {perm}

= rki

(
δpi ,pf

δki ,kf
+ δpi ,kf

δki ,pf

)
+ rpi

(
δpi ,pf

δki ,kf
+ δpi ,kf

δki ,pf

)
. (D6)

Here, rk is the single-excitation reflection amplitude as
specified in Eq. (67).

In very much the same manner, we find

S2
kipi ,kf pf

= δki+pi ,kf +pf

−iU 4

2πv

1

vki − � + iU 2/v

× 1

vkf − vpi + i0

1

vpf − � + iU 2/v
+ {perm}.

(D7)

Upon replacing the inner free Green’s function by an
application of the Dirac identity

1

x + i0
= P

(
1

x

)
− iπδ(x), (D8)

the scattering matrix decomposes into two terms

S2
kipi ,kf pf

= S
2,P.V.
kipi ,kf pf

+ S
2,δ
kipi ,kf pf

, (D9)

where the term that results from the δ function in the Dirac
identity S

2,δ
kipi ,kf pf

reduces to

S
2,δ
kipi ,kf pf

= 1

2
δpi ,pf

δki ,kf

−iU 2/v

vki − � + iU 2/v

× −iU 2/v

vpf − � + iU 2/v
+ {perm}

= rk1rp1

(
δp1,p2δk1,k2 + δk1,p2δp1,k2

)
. (D10)
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The term of the scattering matrix that originates from the principal value in the Dirac identity is given by

S
2,P.V.
kipi ,kf pf

= i

2π
δki+pi ,kf +pf

rki
rpf

P 1

ki − kf

+ {perm}

= i

2π
δki+pi ,kf +pf

[
P 1

ki − kf

(
rki

rpf
− rpi

rkf

) + P 1

ki − pf

(
rki

rkf
− rpi

rpf

)]
. (D11)

Here, we have used energy conservation to facilitate certain simplifications. Using energy conservation another time, we find

rki
rpf

− rpi
rkf

= U 4

v

(ki − kf )(E − 2� + iU 2/v)

(vpi − � + iU 2/v)(vki − � + iU 2/v)

1

(vpf − � + iU 2/v)(vkf − � + iU 2/v)
(D12)

and the same expression with interchanged momenta kf ↔ pf for rki
rkf

− rpi
rpf

. Exploiting the fact that

(ki − kf )P 1

ki − kf

= 1 (D13)

and combining the above expressions, we find

S
2,P.V.
kipi ,kf pf

= iU 4

πv
δki+pi ,kf +pf

(ki + pi − 2� + iU 2/v)

(vpi − � + iU 2/v)(vki − � + iU 2/v)

1

(vpf − � + iU 2/v)(vkf − � + iU 2/v)
. (D14)

Upon inserting Eqs. (D2), (D6), and (D10) in (D1), we finally
find

S
RR,RR
kipi ,kf pf

= tki
tpi

(
δki ,kf

δpi ,pf
+ δki ,pf

δpi ,kf

) + S
2,P.V.
kipi ,kf pf

,

(D15)

where tk = 1 + rk . As a matter of fact, the above expression is
exactly the scattering matrix given in Ref. [18].

We now turn to the effects of chirality. First, the momenta
are renormalized k → μk, which controls the sign of the mo-
menta. Second, chirality is conserved upon free propagation,
which adds two chirality conserving δ functions to S0

kipi ,kf pf

and one to S1
kipi ,kf pf

. Combining all the relevant expressions,

the S matrix in the other chirality sectors calculates to the
following:

(i) kR
i pR

i → kR
f pL

f :

S
RR,RL
kipi ,kf pf

= tki
rpi

δki ,kf
δpi ,−pf

+ rki
tpi

δki ,−pf
δpi ,kf

+ S
2,P.V.
kipi ,kf pf

.

(D16)

(ii) kR
i pR

i → kL
f pL

f :

S
RR,LL
kipi ,kf pf

= rki
rpi

(
δki ,−kf

δpi ,−pf
+ δki ,−pf

δpi ,−kf

) + S
2,P.V.
kipi ,kf pf

,

(D17)

where the superscripts of k
μ

j indicate the values of chirality.
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687 (2009).

[2] O. Benson, Nature (London) 480, 193 (2011).
[3] A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M.

Wegener, and O. Benson, Sci. Rep. 3, 1577 (2013).
[4] J. Q. You and F. Nori, Nature (London) 474, 589 (2011).
[5] M. H. Devoret and J. R. Schoelkopf, Science 339, 1169 (2013).
[6] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A.

Rauschenbeutel, Nat. Commun. 5, 5713 (2014).
[7] A. J. Shields, Nat. Photonics 1, 215 (2007).
[8] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou,

N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, Nat.
Photonics 4, 174 (2010).
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