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We describe the results of the two methods we developed to calculate the stationary nonlinear solutions
in one-dimensional plasmonic slot waveguides made of a finite-thickness nonlinear dielectric core surrounded
by metal regions. These two methods are described in detail in the preceding article [Walasik and Renversez,
preceding paper, Phys. Rev. A 93, 013825 (2016)]. For symmetric waveguides, we provide the nonlinear dispersion
curves obtained using the two methods and compare them. We describe the well-known low-order modes and
higher modes that were not described before. All the modes are classiffied into two families: modes with or without
nodes. We also compare nonlinear modes with nodes with the linear modes in similar linear slot waveguides with
a homogeneous core. We recover the symmetry breaking Hopf bifurcation of the first symmetric nonlinear mode
toward an asymmetric mode and we show that some of the higher modes also exhibit a bifurcation. We study the
behavior of the bifurcation of the fundamental mode as a function of the permittivities of the metal cladding and
of the nonlinear core. We demonstrate that the bifurcation can be obtained at low power levels in structures with
optimized parameters. Moreover, we provide the dispersion curves for asymmetric nonlinear slot waveguides.
Finally, we give results concerning the stability of the fundamental symmetric mode and the asymmetric mode
that bifurcates from it using both theoretical argument and numerical propagation simulations from two different
full-vector methods. We also investigate the stability properties of the first antisymmetric mode using our two
numerical propagation methods.

DOI: 10.1103/PhysRevA.93.013826

I. INTRODUCTION

Nonlinear slot waveguides (NSWs) are structures made of
a finite-size nonlinear dielectric layer sandwiched between
two semi-infinite metal layers. They have been studied in
Refs. [1,2] where it was shown that they allow for sub-
wavelength confinement of light and phase matching for the
second-harmonic generation. More recently, in Refs. [3,4],
analytical formulas for the dispersion relations of these NSWs
were presented for symmetric and antisymmetric nonlinear
modes only. These dispersion relations were given using
integral equations that have to be solved numerically. The study
in Ref. [5] showed, using the numerical shooting method to
solve Maxwell’s equation in NSWs, that a symmetry breaking
bifurcation that generates an asymmetric mode from the
fundamental symmetric mode occurs in NSWs. Such bifur-
cation phenomena are well known in fully dielectric nonlinear
structures [6–13]. Recently, higher-order modes were also
reported in NSWs [14]. Moreover, it was shown that plasmonic
coupling and symmetry breaking phenomena can be observed
in waveguides built of a linear dielectric core sandwiched by
nonlinear metals [15,16]. Nonlinear switching was predicted
in NSW-based structures using numerical simulations [17].

In the preceding article [18], we describe two models
we developed to study the stationary nonlinear solutions in
NSWs where the nonlinear core of the focusing Kerr type
was considered. The first model assumes that the nonlinear
term depends only on the transverse component of the electric
field and that the nonlinear refractive index change is small
compared to the linear part of the refractive index. It allows
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us to describe analytically the field profiles in the whole
waveguide. It also provides a closed analytical formula for the
nonlinear dispersion relation. This first model is called Jacobi
elliptic function based model (JEM). The second model takes
into account the full dependency of the Kerr nonlinear term
on all electric-field components and no assumption is required
on the amplitude of the nonlinear term. The disadvantage of
this approach is the fact that the field profiles in the core
must be computed numerically even if the obtained analytical
constraints allow one to reduce the parameter space where the
solutions are sought. This second model is called the interface
model (IM).

This article is organized in the following way. In Sec. II,
we describe the results obtained with our two models for
symmetric NSWs. They include a mode classification taking
into account the higher-order modes we found previously
[14] and a detailed study of the field profile transformation
as a function of power. We also provide a permittivity
contrast study that allows us to decrease by several orders
of magnitude the bifurcation threshold at which the first
asymmetric mode appears. In Sec. III, we provide the results
concerning asymmetric NSWs in which the mode degeneracy
is lifted. Finally, in Sec. IV, using both theoretical arguments
and numerical propagation simulations from two different
full-vector methods, we provide results on the stability of the
main stationary solutions obtained in symmetric NSWs.

II. RESULTS FOR SYMMETRIC WAVEGUIDES

A. Dispersion relations, field profiles, and mode classification

In this section, the dispersion relations obtained for the sym-
metric NSW are presented. The field profiles corresponding
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FIG. 1. Dispersion diagrams β(Pc) for the symmetric NSW
obtained using (a) the JEM and (b) the IM.

to each of the dispersion curves are depicted and allow us to
classify the modes according to their symmetry and the number
of nodes in the magnetic-field profile.

Figure 1 presents dispersion relations for the symmetric
NSW obtained using the JEM and the IM. The parameters
of the NSW studied are ε1 = ε3 = −90 (gold), εl,2 = 3.462,
α2 = 6.3 × 10−19 m2/V2 (hydrogenated amorphous silicon),
and d = 400 nm at a wavelength λ = 1.55 μm. The geometry
of the structure with its parameters is shown in Fig. 2. The
dispersion relations present the dependence of the effective
index of the mode β as a function of the power density in the
waveguide core Pc which is calculated in the following way:

Pc =
∫ d

0
Szdx, (1)

where Sz denotes the z component of the Poynting vector
S = 1/2 Re(E × H∗).

We observe a very good qualitative agreement between
the dispersion diagrams obtained using our two models. The
number and the character of the dispersion curves is very

FIG. 2. Geometry of the plasmonic NSW with the parameters of
the structure.
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FIG. 3. Profiles of magnetic field Hy(x) for the symmetric S0
mode, antisymmetric AN0 mode, and the first-order asymmetric AS1
mode. The subplots present the transformation of the field profiles at
the points corresponding to the vertical lines labeled a–e indicated in
Fig. 6.

similar in both cases. The qualitative agreement between the
results of the two models confirms their validity. Quantitatively
speaking, the models agree in the range of low power densities
(below 109 W/m). Above this value we observe quantitative
differences in the results. The origin of the differences is ex-
plained by the assumptions made in the JEM (low nonlinearity,
only Ex component of the electric field contributing to the Kerr
nonlinear effect) as described in Ref. [18]. In the following,
we will focus on the results obtained using the more accurate
IM.

The NSW supports numerous modes with various proper-
ties. First, we will discuss the mode classification according to
the symmetry of the mode. For the low-power region, the NSW
studied here supports two modes: a fundamental symmetric
mode (curve labeled S0 in Fig. 1 and the corresponding field
profiles in Fig. 3) and a low-power antisymmetric mode (curve
labeled AN0 in Fig. 1 and the corresponding field profiles in
Fig. 3). At Pc ≈ 109 W/m a symmetry breaking bifurcation
occurs that gives birth to an asymmetric mode [5] (curve
labeled AS1 in Fig. 1 and the corresponding field profiles
in Fig. 3). This mode and this type of behavior are known in
nonlinear waveguides [5–13,15,19]. The power density Pc of
the modes S0, AN0, and AS1 first increases with the increase
of the effective index β and decreases for β � 4.75.
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FIG. 4. Profiles of magnetic field Hy(x) for the symmetric SI
mode and the second-order asymmetric AS2 mode. The subplots
present the transformation of the field profiles at the points corre-
sponding to the vertical lines labeled v–z indicated in Fig. 6. In each
subplot the value of E0 [see Eq. (24) in Ref. [18] for its definition] is
identical for both modes.

Our models allow us to find new, higher-order modes
in NSWs. The higher-order modes can be divided into two
families: nodeless modes and modes with nodes. Among the
nodeless modes we find higher-order symmetric modes (SI
and SII) from which asymmetric modes bifurcate (AS2 and
AS3, respectively). Their dispersion curves are labeled with the
name of the mode in Fig. 1 and their field profiles are presented
in Figs. 4 and 5(e), 5(f). Higher-order nodeless modes resemble
a single soliton (SI and AS2) or two solitons (SII and AS3)
propagating in the NSW core.

All the dispersion curves of the asymmetric modes are
doubly degenerate. This means that to one value of the effective
index (and the corresponding power density) correspond
two solutions localized on one of the two core interfaces
[compare AS curves in Figs. 3(a) and 3(e) for the AS1 mode,
Figs. 4(a) and 4(e) for the AS2 mode, and the two profiles in
Fig. 5(f)].

The higher-order modes with nodes resemble the modes
of a linear slot waveguide with a higher refractive index than
the one used here (see Sec. II C). Only symmetric (S1, S2, ...)
and antisymmetric (AN1, AN2, ...) modes with nodes exist.
Their dispersion curves are presented in Fig. 1 and their field
profiles are shown in Figs. 5(a)–5(d). The dispersion curves of
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FIG. 5. Typical magnetic-field profiles Hy(x), obtained using the
IM, corresponding to different dispersion curves indicated in Fig. 6.
Abbreviations next to the subfigure labels indicate the dispersion
curve to which a given profile corresponds. The symmetry of the
mode is denoted as follows: symmetric (S), antisymmetric (AN), and
asymmetric (AS). For asymmetric doubly degenerate mode AS3 the
second profile is shown in dark gray.

the modes with nodes start for β = 1 and their effective index
grows with the increase of the power density Pc.

In Fig. 6, we present the dispersion relations obtained using
the IM in a different coordinate frame. This time, we use the
total electric-field intensity at x = 0 (the interface between
the NSW core and the metal cladding) E0 [see Eq. (24) in
Ref. [18]]. This quantity is one of the input parameters of the
IM. The dispersion diagrams β(E0) have a drastically different
character from the β(Pc) diagrams presented in Fig. 1. The
difference is caused by the fact that E0 is a local quantity,
whereas Pc is a global quantity that results from the integration
over the core width. In the coordinates of E0, the dispersion
curves of the asymmetric modes are not degenerate. In Fig. 6,
we notice that for asymmetric modes, a given value of β

corresponds to two values of E0 that represent solutions
localized on the left and right interface of the waveguide
core.

In Fig. 3, the comparison of the field profiles of the three
main modes is presented during their transformation along the
dispersion curves associated with the increase of E0. The field
profiles of the S0 and AN0 modes do not change qualitatively.
On the contrary, the field profile of the AS1 mode undergoes
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FIG. 6. Dispersion diagram β(E0) for the symmetric NSW obtained using the IM. The vertical black lines indicate the values of the total
electric-field amplitude E0 corresponding to the field profiles depicted in Figs. 3 and 4. Open black circles correspond to the field profiles
shown in Fig. 5.

a qualitative transformation. For low E0 values, this mode
is highly asymmetric and strongly localized on the right core
interface x = d. With the increase of E0 the asymmetric profile
becomes more symmetric, and at the point of bifurcation it
perfectly overlaps with the symmetric mode [see Fig. 3(c)].
For E0 values above the bifurcation point, the mode becomes
asymmetric and it tends to localize on the left interface.

In Fig. 4, a similar transformation is shown for the SI and
AS2 modes. For the SI mode, with the increase of E0, the peak
amplitude of the soliton Hpeak = Hy(x = d/2) first decreases
(it is the lowest at the bifurcation) and then increases, while
side lobe peak amplitude Hlobe (located at x = 0 and x = d)
of the symmetric mode increases monotonously with E0. The
ratio Hpeak/Hlobe first decreases (up to the bifurcation) and
then increases. In the case of the asymmetric mode AS2,
with the increase of E0 the soliton peak shifts from left
to right. At the same time the amplitude of the left (right)
side lobe increases (decreases). More results on the mode
transformation, including the results obtained using the JEM,
are presented in Ref. [20].

B. Single interface limit

In the Appendix in Ref. [18], describing the theoretical
derivation of the models for NSWs, we mentioned that in the
limiting case, where the integration constants c0 in Eqs. (7)
and (9) or C0 in Eqs. (23) and (30) (these equation numbers
correspond to Ref. [18]) are equal to zero, we recover the
case of a single interface between a metal and a nonlinear
dielectric. Looking at the field profiles of highly asymmetric
modes AS1 [see Figs. 3(a) and 3(e)], we see that these modes
are mostly localized at one interface only. Therefore, they can
be well approximated by a solution of the single-interface
problem.

In Fig. 7, we present the dispersion curves for the NSW
obtained using the JEM [β(H0)] [see Eq. (8a) in Ref. [18]]
and the IM [β(E0)] (compare with Fig. 6). Additional to the
antisymmetric (AS), symmetric (S), and asymmetric (AS)

dispersion curves, black dispersion curves obtained using
single-interface models are presented. In the case of the
JEM, the single-interface approximation was obtained using
the “field based model” for configurations with semi-infinite
nonlinear medium described in Ref. [21]. This model was
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FIG. 7. Dispersion diagrams (a) β(H0) obtained using JEM and
(b) β(E0) obtained using the IM for the symmetric NSW. Dispersion
curves presenting single-interface approximation obtained using
models derived in Ref. [21] are shown in black. Additionally, the
curves corresponding to the analytical expression for the single-
interface dispersion relation [Eqs. (A2) and (A6) in Ref. [18]] are
also shown; they are labeled “analytical.”
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used for a single interface between a metal and a nonlinear
dielectric with the same parameters as our NSW. In the
case of the IM, the corresponding single-interface approxi-
mation was obtained using the “exact model” for configu-
rations with a semi-infinite nonlinear medium described in
Ref. [21].

In Fig. 7, we see that both for the JEM and for the IM,
the single-interface dispersion curve always lays between the
antisymmetric AN0 curve and the symmetric S0 curve. For
high values of E0, the asymmetric AS1 curve becomes very
close to the black curve, but remains slightly above it. The
fact that the black curves overlap with the AS curves at higher
values of E0 confirms that the highly asymmetric AS1 modes
(for high effective index β) are well approximated using the
single-interface approach.

Now, instead of using the corresponding models for
configurations with a semi-infinite nonlinear medium, we
will use the formulas found in the Appendix in Ref. [18]
that give us the analytical expressions for the dispersion
relations for the single-interface problem. In the case of
the JEM, the analytical formula for the dispersion relation
of a single metal–nonlinear-dielectric–interface problem is
given by Eq. (A2) in Ref. [18]. In this equation, as in the
entire formulation of the JEM, the primary parameter is the
magnetic-field amplitude at the interface H0. Therefore, we
are able to show the dependency described by Eq. (A2) only
in the coordinates where the effective index is presented as
a function of the magnetic-field amplitude at the interface
H0 [see “analytical” curve in Fig. 7(a)]. We observe that the
dispersion relations calculated using the field based model
(black curve) and the “analytical” curve described by Eq. (A2)
overlap perfectly. The single-interface dispersion curve, which
corresponds to the limiting case c0 = 0 divides the dispersion
plot β(H0) into the regions corresponding to the nodeless
family and the family with nodes as predicted in Sec. III B
in Ref. [18]. Above the c0 = 0 curve (for negative values
of the integration constant c0), only nodeless solutions exist.
Below the c0 = 0 curve (for c0 > 0), only solutions with
nodes exist.

In the case of the IM, the analytical formula for the
dispersion relation for the single-interface problem is given
by Eq. (A6) in Ref. [18]. The curve described by this
equation is plotted with the label “analytical” in Fig. 7(b)
and it overlaps well with the black curve obtained using the
exact model. For the IM, the numerical results also show
that the dispersion curves are divided in two families: with
nodes and nodeless. The regions of the dispersion diagram
corresponding to these two families are separated by the curve
described by the equation C0 = 0 (“single-interface” curve for
the single-interface problem approximation) and “analytical”
curve for the single-interface dispersion relation given by
Eq. (A6) in Ref. [18]. In the frame of the IM, we could not
prove this property analytically because the field plots in the
IM are calculated numerically.

In Fig. 7, in the region of high effective indices, the
dispersion curves of the AS1 mode overlap with the curves
obtained using single-interface approximations. This confirms
our hypothesis that highly asymmetric modes AS1 can be
approximated by solutions obtained using the corresponding
single-interface models.

FIG. 8. Comparison of the nonlinear (AN antisymmetric, S
symmetric, AS asymmetric curves) and the linear dispersion plots
(black curves) of the symmetric slot waveguides. In the case of the
linear waveguide 〈�n〉 is equivalent to �nlin. Circles correspond to
the modes presented in Fig. 9.

C. Comparison with linear states

In Sec. II A, while discussing the field profiles of the modes
belonging to the family with nodes, we noticed that they
resemble higher-order modes of linear slot waveguides with
parameters similar to the NSW studied here. In this section,
we will explain the origin of the similarities between these
nonlinear and linear modes.

In Fig. 8, we present the nonlinear dispersion diagram
obtained using the IM for our NSW. In this plot, the effective
index of the mode, β, is presented as a function of the averaged
nonlinear index modification in the waveguide core 〈�n〉:

〈�n〉 = 1

d

∫ d

0
�ndx = 1

d

∫ d

0
n

(2)
2 I dx, (2)

where the nonlinear parameter n
(2)
2 = α2/ε0cεl,2.

In addition to this plot, we also present a dispersion
relation (black curves in Fig. 8) of a linear slot waveguide
with a homogeneous and linear core and the following
parameters: ε1 = ε3 = −90, n = n0 + �nlin = 3.46 + �nlin,
and d = 400 nm. The parameters ε1, ε3, and n0 = √

εl,2 are
identical to those of the nonlinear waveguide studied here.

We notice that this linear dispersion diagram is similar to
the dispersion plot of the NSW. For the core with index n = n0

only two modes are present and they are the linear counterparts
of the modes S0 and AN0. With the increase of the core index n,
the effective index of these modes increases and they become
closer to each other. At �nlin ≈ 0.1, a higher-order linear mode
appears that is a counterpart of the S1 mode. For �nlin ≈ 2 and
�nlin ≈ 3.5, another two higher-order modes appear. They are
the linear counterparts of the AN1 and S2 modes, respectively.
The effective index of these modes increases rapidly with the
increase of �nlin. The only modes not present in the linear
dispersion curves are the asymmetric modes AS1, AS2, ...,
and the symmetric nodeless modes SI, SII, etc. The asymmetric
modes cannot be observed in the linear case because nothing
breaks the symmetry in the symmetric linear slot waveguide.
The nodeless symmetric modes are not supported by the
homogeneous linear slot waveguide because they have purely
nonlinear solitonic character [see Figs. 4 and 5(e)].
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FIG. 9. Comparison of (a), (c) Hy(x) and (b), (d) Ez(x) for the
nonlinear modes S1 [thick curves in (a) and (c)] and AN1 [thick
curves in (b) and (d)] and the normalized profiles of their linear
counterparts (black curves) at the common points of the black (for
linear slot waveguide) dispersion curves and S1 or AN1 (for NSW)
dispersion curves, indicated by open circles in Fig. 8.

The dispersion curves of the nonlinear modes AN0 and S0
overlap with the corresponding linear dispersion curves only
for small 〈�n〉 values. The nonlinear modes increase their
effective indices β faster than the linear modes. In the case of
higher-order modes S1, AN1, and S2, the dispersion curves
of the linear modes lay below the corresponding nonlinear
modes. There is only one common point per mode for these
curves (indicated by an open circle in Fig. 8) and it turns
out that, at this point, the index distribution induced by the
nonlinear mode in the nonlinear core is flat (data not shown).

Figure 9 presents the comparison of the field profiles Hy(x)
and Ez(x) for nonlinear S1 and AN1 modes and their linear
counterparts, at the points where the index distribution induced
by the nonlinear mode in the nonlinear core is flat. We observe
that the nonlinear profiles overlap perfectly with the profiles
of the linear modes normalized to the same amplitude as the
nonlinear modes.

The results presented here prove that the modes with nodes
found in the NSW are close to the modes of the linear slot
waveguide with similar optogeometric parameters. We explain
the similarities between these nonlinear and linear modes using
the self-coherent definition of nonlinear modes. This definition
was introduced by Townes and co-workers in Ref. [22] and was
used later in other works (e.g., Ref. [23]). It defines a nonlinear
mode as a linear mode of a linear (graded refractive index)
waveguide that is induced by the light distribution of this mode.
According to this definition, there is no difference between the
nonlinear modes of the NSW for which the nonlinear index
modification has a flat distribution and the linear modes of the
waveguide with higher, uniformly distributed refractive index
of the linear core.
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FIG. 10. Average nonlinear index change at the appearance of the
asymmetric AS1 modes 〈�n〉th as a function of the absolute value
of (a) the metal cladding permittivity of the symmetric waveguide
|ε1| = |ε3| and (b) the linear part of the nonlinear core permittivity
εl,2. All the other parameters of the NSW are identical to these used
in Sec. II A.

D. Permittivity contrast

In Ref. [14], we have studied the influence of the width of
the NSW core on the nonlinear dispersion for this structure.
Here we will discuss the influence of the permittivity contrast
between the dielectric core and the metal cladding on the
nonlinear dispersion diagrams of symmetric NSW.

First, we will discuss the influence of the metal cladding
permittivity on the nonlinear dispersion diagrams of NSW. We
have studied the dispersion plots for the NSWs with identical
parameters as these used in Sec. II A but with different values
of the metal cladding permittivity. We observe that the cladding
with higher permittivity (lower in absolute value) allows us to
reduce the 〈�n〉 threshold values where the bifurcation of
the AS1 mode occurs. For metals with permittivity equal to
−40, the bifurcation occurs at 〈�n〉 ≈ 0.02, which is four
times lower than in the case of ε1 = ε3 = −90. For the metal
cladding permittivity ε1 = ε3 = −15, the bifurcation threshold
is at the level of 〈�n〉 ≈ 10−5. This is four orders of magnitude
lower than for the ε1 = ε3 from the range [−400, − 90]. The
dependency of the AS1 mode bifurcation threshold 〈�n〉th

on the metal cladding permittivity is illustrated in Fig. 10(a).
Looking at this plot, we conclude that with the increase of
the metal cladding permittivity (decrease of its absolute value)
the bifurcation threshold of the AS1 mode decreases. This
decrease is slow in the range of high index contrast between
the metal and the nonlinear dielectric permittivity and much
more rapid for smaller absolute values of the metal permittivity.

Next, we will study the influence of the change of the core
permittivity on the dispersion diagram of the symmetric NSW.
We analyzed the plots of the dispersion curves for the NSWs
with different linear parts of the core permittivity εl,2. All the
other parameters are identical to these used in Sec. II A. The
behavior of the bifurcation threshold expressed as the averaged
nonlinear index modification 〈�n〉 is presented in Fig. 10(b).
The increase of the linear part of the core permittivity εl,2

is accompanied by a monotonous decrease of the bifurcation
threshold. From Fig. 10(b) we notice that the increase of εl,2

from 1 to 25 results in the decrease of the bifurcation threshold
by approximately three orders of magnitude.

It is interesting to recall that, in the case of changing the
permittivity contrast by varying the metal cladding permittivity
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[see Fig. 10(a)], we observed a decrease of the bifurcation
threshold for the AS1 mode with the decrease of the permittiv-
ity contrast between the cladding and the core permittivity. On
the contrary, decreasing the permittivity contrast by changing
the core permittivity leads to the increase of the bifurcation
threshold [see Fig. 10(b)].

This phenomenon can be explained using the field profiles
of the symmetric mode for different values of core and metal
permittivities. We observe that increasing the permittivity of
the core or increasing the permittivity of the metal (decreasing
its absolute value) leads to symmetric modes that are more
localized on the waveguide interfaces and look more like two
separate plasmons on both metal-dielectric interfaces. Because
the overlap and therefore the interaction between the two
plasmons is weaker, it is easier to break the symmetry of the
mode. This explains the decrease of the bifurcation threshold.

We conclude that changing the permittivity contrast by
varying the linear part of the nonlinear core permittivity has
the opposite effect than changing the permittivity contrast by
varying the metal cladding permittivity.

III. RESULTS FOR ASYMMETRIC STRUCTURES

In Sec. II, we have comprehensively discussed dispersion
diagrams and mode profiles in symmetric NSW structures.
In this section, we will discuss the influence of the NSW
asymmetry on the dispersion curves. The asymmetry is
introduced by sandwiching the nonlinear core by metals with
different values of the permittivity on both sides. Asymmetric
NSW structures have not been studied before in literature.
Here we present the analysis of these structures.

A. Dispersion relations

Figure 11 presents the nonlinear dispersion diagram ob-
tained using the IM for the structure with the following
parameters: core permittivity εl,2 = 3.462; the second-order

FIG. 11. Dispersion diagram obtained using the IM for the
asymmetric structure with ε1 = −110 and ε3 = −90 (for the scheme
of the structure see Fig. 2). S-like curves correspond to the modes
for which sgn[Ex,0] = sgn[Ex,d ] and AN-like curves correspond
to the modes for which sgn[Ex,0] = − sgn[Ex,d ] [see Eq. (24) in
Ref. [18] for the notations]. Compare this dispersion diagram for the
asymmetric structure with the dispersion diagram for the symmetric
structure presented in Fig. 1(b).

nonlinear refractive index n
(2)
2 = 2 × 10−17 m2/W; core with

d = 400 nm; metal permittivities ε1 = −110, ε3 = −90 at a
free-space wavelength λ = 1.55 μm. These parameters are
identical to those for the structure studied in Sec. II A except for
the metal permittivities. Here the permittivity of the left metal
layer is decreased to −110 making the structure asymmetric.

In the asymmetric structure only asymmetric modes are
present. However, in the dispersion diagram shown in Fig. 11,
we divide the modes in two groups: modes that resemble the
antisymmetric modes of the symmetric structure for which
sgn[Ex,0] = − sgn[Ex,d ] (curves labeled AN-like) and modes
that resemble the symmetric or asymmetric modes of the
symmetric structure for which sgn[Ex,0] = sgn[Ex,d ] (curves
labeled S-like) [see Eq. (24) in Ref. [18] for the notations of
the electric-field components].

We compare the nonlinear dispersion curves for the asym-
metric structure presented in Fig. 11 with the dispersion curves
obtained for the symmetric structure shown in Fig. 1. We notice
that the dispersion curves for the symmetric and antisymmetric
modes from the family with nodes did not change much. The
number of modes and the character of their dispersion curves is
conserved. The main difference between the dispersion curves
of the asymmetric and symmetric structures can be observed
for the symmetric and asymmetric modes of the nodeless fam-
ily. The asymmetry of the structure lifts the double degeneracy
of the asymmetric branch AS1 (see the AS1 curve in Fig. 1).
This branch splits into two branches (see Fig. 11). One of them
(the branch with lower effective indices β) is a continuation of
the symmetriclike fundamental mode (S-like curve) that starts
for small power density Pc levels. The second branch lays
along the first one but has slightly higher power levels (branch
with higher β values). The degeneracy of the higher-order
asymmetric modes is also lifted by the asymmetry of the
structure. These branches also split into two separate branches,
similar to the case of the AS1 mode. It is difficult to observe this
effect in Fig. 11, where the power density in the core is used as
abscissa (even enlarging the region of interest), because the two
dispersion curves into which the dispersion curve of the higher-
order asymmetric mode splits lay very close to each other. The
degeneracy lift of the AS2 mode can be however observed
from the dispersion curve β(E0) presented in Fig. 12, where

FIG. 12. Dispersion curves β(E0) for the asymmetric structure
with ε1 = −110 and ε3 = −90. Compare this dispersion diagram
for the asymmetric structure with the dispersion diagram for the
symmetric structure presented in Fig. 6.
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FIG. 13. Dispersion curves of the asymmetric NSW with ε1 =
−110,ε3 = −90 (thick curves) and the symmetric structure ε1 = ε3 =
−90 (thin curves).

the effective index is shown as a function of the field intensity
at the left core interface. In these coordinates, the separation of
the SI and AS2 curves reflects the degeneracy lift of the AS2
mode.

B. Permittivity contrast study

To finish our discussion of the asymmetric NSW properties,
we directly compare the dispersion diagrams β(Pc) of the
symmetric structure with these of the asymmetric structures.
In Fig. 13, the dispersion plot of the symmetric structure
(ε1 = ε3 = −90; see Fig. 1) is compared with the dispersion
plot for the asymmetric structure (ε1 = −110,ε3 = −90; see
Fig. 11). Only a vicinity of the bifurcation point of the AS1
mode is presented. We observe that, for low Pc values, the
dispersion curves of the two low-power modes are slightly
modified due to the waveguide asymmetry. For higher values
of Pc, the dispersion curve of the fundamental mode (upper
leftmost thin curve) exactly overlaps with the dispersion curve
of the asymmetric mode of the symmetric structure. This is a
consequence of the fact that the field profiles corresponding
to this upper leftmost thin curve are strongly localized on the
interface with the metal with higher value of the permittivity.
These profiles resemble the profiles of the highly asymmetric
modes of the symmetric structure [see Fig. 3(a)]. Therefore,
we are not surprised that these two dispersion curves overlap.
The second curve that results from the degeneracy lift of the
asymmetric mode lays above (in terms of Pc) the dispersion
curve of the asymmetric mode AS1 (upper leftmost thick
curve).

In Fig. 14, we present a comparison of the dispersion curves
of the symmetric structure (ε1 = ε3 = −90; see Fig. 1) and
the asymmetric structures, where one of the metal permittivity
values is higher than in the case of the symmetric structure.
The dispersion curves of the symmetric structure (thick curves)
are compared with these of the asymmetric structures with
ε1 = −70, ε3 = −90 (thin curves), and ε1 = −50, ε3 = −90
(thinnest curves).

In the case illustrated in Fig. 14, contrary to the one
presented in Fig. 13, it is the higher (in terms of Pc) of the
two curves that result from the lift of the degeneracy that
overlap with the dispersion curve of the asymmetric modes

FIG. 14. Dispersion curves of the asymmetric NSWs with ε1 =
−70 and ε3 = −90 (thin curves), ε1 = −50 and ε3 = −90 (thiner
curves), and the symmetric structure ε1 = ε3 = −90 (thick curves).

of the symmetric structure. This higher curve corresponds
to the modes that are localized on the interface between
the core and the metal with permittivity equal to −90. For
the structures studied in Fig. 14, ε = −90 is the lowest
cladding permittivity. For that reason, the dispersion curves
corresponding to the mode localized on the interface with
metal with lower permittivity overlap with the dispersion
curves of the symmetric structure.

Another effect that can be observed in Fig. 14 is that with
the increase of the structure asymmetry |ε1 − ε3| the separation
of the two curves that appears as a result of the degeneracy lift
increases, as expected. In the limiting case ε1 → ε3, these two
curves merge into one doubly degenerate curve.

IV. STABILITY OF THE MAIN SOLUTIONS FOR
SYMMETRIC WAVEGUIDES

In the previous sections, we have studied the stationary
properties of plasmon-soliton waves using two different modal
approaches. From both theoretical and practical points of view,
the issue of the stability of these waves arises. In several works,
the general problem of the stability of nonlinear waves was
studied [24–26]. Despite an enormous interest in the properties
of nonlinear waves over the past decades, there is no universal
condition on their stability [19,23]. In most of the cases, the
stability must be studied numerically for each of the cases sep-
arately. Stability of nonlinear guided waves in fully dielectric
structures was studied numerically in Refs. [8,10,27–33].

In structures made of metals and nonlinear dielectrics,
due to the presence of media with negative permittivity,
the problem of stability of plasmon solitons is difficult to
study even numerically. Only in Refs. [34,35] the stability
of plasmon solitons was analyzed for the single nonlinear
dielectric-metal interface case, using numerical algorithms
[like finite-difference time domain (FDTD) [36,37]]. The
propagation of light in plasmonic couplers was studied using
Fourier methods based on mode decomposition in linear
[38] and nonlinear [39] regimes. In this section, we study
the stability of the plasmon-soliton waves in symmetric
NSWs using two methodologies: (i) the topological criterion
for fundamental modes of nonlinear waveguides derived in
Ref. [23] and (ii) two numerical full-vector methods (using
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COMSOL [40] and nonlinear FDTD implemented in MEEP

[41,42]).

A. Theoretical arguments

We use here the topological criterion presented in Ref. [23]
that is based on the linear stability analysis [43] and the
Vakhitov-Kolokolov criterion [44]. The stability criterion
presented in Ref. [23] uses only the topology of the nonlinear
dispersion curves, and the stability of the modes can be read by
analyzing β(Itot) diagrams in which Itot ≡ ∫ +∞

−∞ I (x)dx, where
I (x) is the intensity density. The validity of this approach was
confirmed in multiple settings dealing with purely dielectric
structures [10,30–33].

First, we will recall the principle used to estimate the
stability of nonlinear modes using the criterion from Ref. [23].
Then, we will use it to analyze the stability of some of the
plasmon solitons found in NSWs.

The stability criterion derived in Ref. [23] uses several
assumptions. It provides stability for the fundamental non-
linear modes in structures composed of arbitrary nonlinear
material distributed nonuniformly in the transverse direction.
The derivation of the stability criterion from Ref. [23] is
obtained in the weak guiding approximation for which the
electric field satisfies the scalar wave equation. In our study
of the TM polarized waves, we consider the case in which it
is the magnetic-field component that satisfies the scalar wave
equation [Eq. (5) in Ref. [18]]. We are fully aware of the
fact that the metal-nonlinear dielectric structures studied here,
in which plasmon-soliton waves propagate, do not fulfill the
weak guiding approximation due to high permittivity contrast
between the metal and the nonlinear dielectric. This means
that interesting nonlinear effects will occur for quite high
nonlinear permittivity modifications. In spite of this fact, we
use here the criterion from Ref. [23], because the dispersion
diagrams obtained for our structures have similar character
to the dispersion plots of the fully dielectric structures where
the criterion is applicable and because, as it will be shown
below, two different numerical propagation simulations of the
full vector nonlinear problem confirm at least partially the
theoretical predictions.

In Fig. 15, the rules derived in Ref. [23] that will be required
here to determine the stability of the modes are schematically
shown. Consider the dispersion relation presented in Fig. 16.

FIG. 15. Rules to determine the stability of the modes for two
specific cases extracted from Fig. 2 in Ref. [23]: (a) the fold
bifurcation (open circle) and (b) the Hopf bifurcation (open square).
Thick lines indicate a doubly degenerate branch, whereas thin lines
indicate nondegenerate dispersion curves.

FIG. 16. Zoom on the region of the dispersion diagram with
the birth of the first-order asymmetric mode. Bifurcation points are
marked with an open circle for fold bifurcation and an open square
for Hopf bifurcation. The numbers facilitating the stability analysis
are assigned to the sections of the dispersion curves according to the
rules presented in Fig. 15. Labels “ps” and “u” denote possibly stable
and unstable modes, respectively.

It shows a zoom of a dispersion diagram, using Itot as
variable, for a region that contains the dispersion curves of
the main modes for the same structure as the one presented in
Fig. 1. The stability of modes changes only at the bifurcation
points [23]. To determine the stability, first we have to identify
all the bifurcation points on the dispersion diagram β(Itot).
In Fig. 16, the bifurcation points are located at the points
where intensity Itot has its local minima or maxima (point
indicated by an open circle—so-called fold bifurcation [45])
or where another branch appears [point indicated by an open
square—so-called Hopf bifurcation associated with the birth
of a doubly degenerate branch (a single point on this branch is
associated with two asymmetric field profiles)]. Modes appear
from or disappear at the points of bifurcation. The next step
is to label the sections between the bifurcation points with
numbers. The numbers are assigned in the following way. At
first, we arbitrarily choose one section and label it with any
number (in Fig. 16 we labeled the low intensity section of the
symmetric dispersion curve with a number 0). The numbers of
all the other sections of dispersion curves are assigned using
the geometric rules given in Fig. 15.

Finally, after having numbered all the sections of the
dispersion curves, we can read the stability of the modes
directly from the β(Itot) dispersion curves. The topological
stability criterion presented in Ref. [23] tells us that only
the modes corresponding to the parts of the curves with
the largest number are possibly stable. In Fig. 16, only the
modes labeled by 0 are possibly stable (ps). All the other
modes are unstable (u). The stability of all the possibly stable
modes can be specified at once, as soon as the stability of
one of them is determined. The stability can be determined
either using numerical methods or theoretical arguments. The
low-intensity section of the symmetric branch in the linear
limit corresponds to a linear plasmon in metal-insulator-metal
(MIM) configurations, which is stable. Therefore, the solutions
corresponding to this section of the nonlinear dispersion
curves should be stable. This result will be confirmed in
Sec. IV B.
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FIG. 17. Evolution of the Hy field profile of an asymmetric plasmon-soliton for the stable case (a) with 〈�n〉 = 0.0138 and for the unstable
case (b) with 〈�n〉 = 0.005. These simulations are realized using the FDTD method implemented in the MEEP software. The parameters are
given in Fig. 19.

The high intensity section of the symmetric branch (above
the Hopf bifurcation) corresponds to unstable solutions. On
the contrary, the section of the asymmetric branch just above
the Hopf bifurcation should correspond to stable solutions,
because the stability properties of the sections with the same
number are the same [23]. On the asymmetric branch (at β ≈
10) another bifurcation occurs (the fold type bifurcation is
indicated by an open circle). The high effective index section
of the asymmetric branch (above the fold bifurcation point) is
unstable.

B. Numerical simulations of nonlinear propagation

In the previous section, we provided some results concern-
ing the stability of the plasmon solitons of the lowest orders
using the topological criterion derived in Ref. [23]. In the
NSWs studied here the weak guiding approximation, used
in the derivation of this topological criterion, is not fulfilled.
This fact makes the conclusions drawn using the criterion not
definitive. For this reason we also investigate the stability by
full-vector numerical simulations.

First, we have used the capabilities of the FDTD method
[36,37] implemented in the MEEP software [41,42,46]. The

metal permittivity is described by a Drude model to obtain
the fixed negative value used at the studied wavelength. The
useful computational domain is surrounded at its four edges
by absorber regions that prevent backreflected fields more
efficiently than the perfectly matched layers that have also been
tested during our FDTD simulations. An example of the FDTD
propagation of the asymmetric plasmon soliton is presented in
Fig. 17(a) through the evolution of the electric-field component
Hy , where the sinusoidal phase modifications are visible.
This result provides a confirmation of the stability of the
first asymmetric mode in the nonlinear slot waveguides when
the intensity is above a critical threshold. It can be noticed
in Fig. 17(a) that the plasmon-soliton profile is not fully
stationary. This is due to the fact that the current source
used in our FDTD simulations does not generate perfectly
the field profile of the asymmetric plasmon soliton. The used
asymmetric excitations contain components that weakly excite
the antisymmetric plasmon soliton (which is studied later in
this section). When the source profile matches perfectly the
asymmetric mode profile the observed nonstationary behavior
disappears as shown later when the simulation results from the
second numerical method are described. The main symmetric
plasmon soliton is easier to excite in a simple way due to its

FIG. 18. Evolution of the Hy field profile of a symmetric plasmon-soliton for the stable case with 〈�n〉 = 0.0018. These simulations are
realized using the FDTD method implemented in the MEEP software. The parameters are given in Fig. 19.
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FIG. 19. Dispersion and stability results, obtained from FDTD
simulations, for the first symmetric and asymmetric modes of the
symmetric NSW. Thick curves denote a stable propagation, while
thin ones denote an unstable propagation. The parameters are the
following: core permittivity εl,2 = 3.462; the second-order nonlinear
refractive index n

(2)
2 = 2 × 10−17 m2/W; core thickness d = 500 nm;

metal permittivities ε1 = ε3 = −6 at a free-space wavelength λ =
1.0 μm.

symmetry property as it can be seen in Fig. 18, where a stable
and stationary propagation is shown.

In order to obtain a more general view on the stability
of the main modes of the NSW in the frame of the FDTD
method, we systematically studied the propagation properties
of the three main modes as a function of the spatially
averaged refractive index variation 〈�n〉 [see Eq. (2)]: the first
symmetric, asymmetric, and antisymmetric modes. Typically,
three cases occur in the simulation results as follows.

Case 1. The mode is visible during the entire simulation
duration. This case is, for example, the one encountered for
the asymmetric mode above a given threshold 〈�n〉 as it can be
seen for example in Fig. 17(a) or in Fig. 18 for the symmetric
mode.

Case 2. The studied mode is generated at the beginning
of the temporal evolution but, after some time, it does not
propagate anymore in a self-similar way. This case is the one
encountered for the main asymmetric mode below a given
threshold 〈�n〉 as shown for example in Fig. 17(b), where
only the most stable part of the propagation is shown.

Case 3. The investigated mode is not generated by the
chosen current source (symmetric, antisymmetric, or asym-
metric) used to excite it, even at the beginning of the temporal
evolution and in the surrounding of the source. This behavior is
observed for the asymmetric mode below the critical power or
critical 〈�n〉 associated to the Hopf bifurcation. It is one of the
main advantages of the FDTD method to be able to simulate
temporal evolution even in the case of unstable modes unlike
the other method used later in this section.

As it is shown in Fig. 19 obtained from the FDTD
simulations, we are able to build a dispersion diagram for the
first symmetric and asymmetric modes taking into account
their stability properties. The given β values for unstable
modes, corresponding to the case 2 in the above paragraph,
are the ones extracted from the simulation results in the stable
initial part of the evolution. It is evident that, for the case 3
above, no dispersion data are obtained.

The stability properties of the asymmetric mode from
the FDTD simulations differ from the ones deduced from
the topological criterion given in the previous section for
the stationary case. The asymmetric mode is not stable just
above the bifurcation (see case 2 above) for some range of
〈�n〉 (see the thin “Asymmetric mode” curve in Fig. 19),
and then it becomes stable when 〈�n〉 increases (see the
thick “Asymmetric mode” curve in Fig. 19). The instability
of the asymmetric mode just after the Hopf bifurcation has
already been described in the field of the spatial soliton studies
[47,48]. In our case, the instability can be observed in a
relatively extended range of intensity or equivalently of 〈�n〉.
This extension of the instability could be due to the way the
asymmetric mode is excited in our FDTD simulations and/or
to the fact that the metal permittivity is dispersive due to the
used Drude model.

It is worth noting that the FDTD dispersion curve for the
asymmetric mode differs at high 〈�n〉 from the one computed
using the interface model for stationary waves: here the β

values are smaller and the FDTD curve stays concave while the
stationary one is convex. Similar saturation effects in nonlinear
full-vector temporal simulations have already been described,
e.g., in Ref. [49]. From the FDTD implementation we use,
we cannot conclude about the stability property at higher
intensities than the ones shown in Fig. 19 due to the limitations
of the nonlinear treatment used (see Ref. [42]). Consequently,
we cannot check the stability properties around or above the
fold bifurcation point described in Sec. IV A.

As it was expected from the previous section, the first
symmetric mode is stable at low 〈�n〉 or equivalently at low

FIG. 20. Evolution of the Hy field profile of a stable antisymmetric plasmon-soliton with 〈�n〉 = 0.0225. These simulations are realized
using the FDTD method implemented in the MEEP software. The parameters are the same as in Fig. 19.
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FIG. 21. Dispersion and stability results for the first antisymmet-
ric modes of the symmetric NSW obtained from FDTD simulations.
The thick curve denotes a stable propagation. The parameters are the
same as in Fig. 19.

intensities (see the thick “Symmetric mode” curve in Fig. 19).
Its stability is lost slightly before the birth and the partial
propagation of the asymmetric mode (see the thin “Symmetric
mode” curve in Fig. 19). For all 〈�n〉 values tested above this
transition region, the first symmetric mode is unstable. It is
worth mentioning that the stability of this symmetric mode is
recovered numerically as soon as the symmetry is forced in the
FDTD simulations prohibiting the appearance of asymmetric
behavior.

The topological criterion given in Ref. [23] cannot be ap-
plied to the first antisymmetric plasmon-soliton mode because
it is valid only for fundamental modes. Therefore, the stability
of this mode can only be inferred from numerical simulations.
The first antisymmetric mode starts, in the low-intensity
regime, from the stable linear antisymmetric plasmon, and
there is no bifurcation on its dispersion curve. Therefore,

FIG. 22. Evolution of the electric-field norm during the propa-
gation of the symmetric mode located below the Hopf bifurcation
threshold. The average nonlinear index change in the core induced
by this mode is equal to 〈�n〉 = 10−4 and the propagation distance
is approximately 13 free-space wavelengths. The parameters are the
following: core permittivity εl,2 = 3.462; the second-order nonlinear
refractive index n

(2)
2 = 2 × 10−17 m2/W; core thickness d = 400

nm; metal permittivities ε1 = ε3 = −20 at a free-space wavelength
λ = 1.55 μm. These simulations are realized using the COMSOL

software.

FIG. 23. Evolution of the electric-field norm during the propaga-
tion of asymmetric modes located between the Hopf bifurcation and
the fold bifurcation. The average nonlinear index change in the core
〈�n〉 induced by these modes is equal to (a) 2 × 10−3, (b) 3 × 10−3,
and (c) 4 × 10−3. The shown propagation distance is approximately
12 free-space wavelengths. The parameters are the same as in Fig. 22.
These simulations are realized using the COMSOL software.

we expect this mode to be stable. An example of this stable
propagation is shown in Fig. 20. We observe no change of
the field profiles during the propagation (the antisymmetric
excitation used does not contain any symmetric component).
In Fig. 21, the dispersion curve of the antisymmetric plasmon
soliton is given together with its stability property. The
antisymmetric mode is stable up to the maximum intensity
that can be treated with the FDTD implementation we use.

The stability properties of the three main plasmon-soliton
modes in nonlinear slot waveguides are also verified using
the nonlinear propagation scheme implemented in the latest
version of the RF module of COMSOL Multiphysics [40].
This approach was successfully used to study the stability
of solitons in lattices built of metals and nonlinear dielectrics
[50–52]. This method is limited to the cases where the studied
mode is stable since the iterative numerical method used to
compute the fields does not converge in other cases.
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FIG. 24. Evolution of the Ex field profile during the propagation of the solution presented in Fig. 23(b) for a slot with d = 400 nm. These
simulations are realized using the COMSOL software. The shown propagation distance is approximately six free-space wavelengths.

According to the conclusions drawn from Fig. 16 in
Sec. IV A and from the FDTD simulations, the low-power
section of the symmetric branch corresponds to stable so-
lutions. This result is also confirmed by the simulation
presented in Fig. 22 obtained for a NSW with d = 400 nm.
No stable symmetric solution was found above the 〈�n〉
transition region using the method implemented in COMSOL

confirming the FDTD results already obtained. The stability of
the asymmetric branch above the bifurcation region observed
in Fig. 19 is confirmed by these numerical simulations as
shown in Fig. 23. Figure 24 presents the evolution of the Ex

electric-field component for the asymmetric solutions in such
a case.

Figure 25 shows the transverse profiles of the symmetric
and asymmetric plasmons solitons in the NSW. For each
symmetry type, we compare the profiles obtained using the
interface model (these profiles are used as input in the COMSOL

based propagation simulations) with the cuts of the profiles
presented in Figs. 22 and 23(b). These comparisons validate
the accuracy of the evolution simulations and consequently
the results obtained concerning the stability properties of the
symmetric and asymmetric modes in the NSW. One can notice
that the stationary behavior is more clearly seen in the COMSOL

based simulations than in the FDTD ones. This is due to the
fact that in the former case we directly use as input the profiles
provided by the interface model, while in the latter case we use
excitation current sources to generate the fields that mimic the
stationary field profiles. Since we are investigating nonlinear
phenomena, it is not possible to use in the FDTD simulations

a part of a linear waveguide to filter the needed profile, in
a simple way, as it is usually done in FDTD based linear
studies [36].

V. CONCLUSIONS

We have provided detailed results for the plasmon-soliton
waves in planar slot waveguides with a finite-thickness
nonlinear dielectric core. In symmetric structures, using the
semianalytical models we developed for stationary states, we
have investigated the properties of the first main modes and
reported new higher-order modes including asymmetric ones
that exist at high intensities only. We have also described
complete dispersion diagrams for these different modes as
a function of various quantities including the total power, the
field value at one interface between the metal and the nonlinear
core, and also the spatial average of the nonlinear refractive
index change. We have proved that the total intensity or
equivalently the spatially averaged nonlinear refractive index
change corresponding to the Hopf bifurcation threshold from
the first symmetric mode to the first asymmetric mode can
be reduced by several orders of magnitude with an increase
of the permittivity of the core or of the metal cladding. We
have also proved the versatility of our semianalytical models
studying asymmetric structures. For such structures, we have
described the impact of the metal permittivity contrast that lifts
the degeneracy of the doubly degenerated asymmetric mode
providing a more complex dispersion diagram than the one of
a symmetric structure.
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FIG. 25. Comparison of the |E| profiles obtained using the IM (and used as the input profiles in the COMSOL based simulations) and cuts of
the field evolution in the middle of the propagation range (z = 9 μm—six free-space wavelengths) and at the end of the propagation (z = 18
μm—12 free-space wavelengths) for (a) the symmetric nonlinear plasmon soliton (see Fig. 22) and (b) the asymmetric nonlinear plasmon
soliton [see Fig. 23(b)].
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Concerning the stability of the main symmetric and asym-
metric modes, we have used an already derived topological
criterion established only in the weak guidance approximation
being fully aware that our structures lay beyond its validity
range. Nonetheless, as shown by full-vector simulations, the
topological criterion predicts correctly the principal stability
properties of the main modes of the studied planar nonlinear
slot waveguides. Using this criterion, we have shown that the
asymmetric mode emerging through a Hopf bifurcation at a
critical intensity is stable between this bifurcation and a fold
bifurcation located at higher intensity level. The stability of
this asymmetric mode is lost at this fold bifurcation. On the
contrary, the symmetric mode is unstable for all intensity levels
above the Hopf bifurcation, while it is stable below.

Using two different full-vector numerical propagation
methods, we have studied the stability of the three main modes:
the symmetric, asymmetric, and antisymmetric modes. We
have shown that the asymmetric mode is stable above a critical
intensity slightly larger than the threshold associated with the
Hopf bifurcation computed for the stationary states from our
semianalytical models, at least up to the maximum level of
tested intensities. The symmetric mode is shown to be stable at
low intensities, and to become unstable slightly below the Hopf

bifurcation threshold. For all tested intensities, these results
confirm qualitatively the results derived from the topological
criterion even if quantitative differences exist. Finally, we have
also proved numerically that the antisymmetric mode is stable
in the entire range of tested intensities.

These stability results together with those about the
decrease of the bifurcation threshold should facilitate
the design of specific structures in order to make possible
the experimental observation of these plasmon-soliton waves
more than 30 years after their theoretical discovery. Future
studies should be dedicated to the further reduction of the
bifurcation threshold and to the study of more sophisticated
configurations.
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