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Using the density matrix formalism, we prove the existence of the periodic steady state for an arbitrary
periodically driven system described by linear dynamic equations. This state has the same period as the modulated
external influence, and it is realized as an asymptotic solution (t → +∞) due to relaxation processes. The
presented derivation simultaneously contains a simple and effective computational algorithm (without using either
the Floquet or Fourier formalisms), which automatically guarantees a full account of all frequency components.
As a particular example, for three-level � system we calculate the line shape and field-induced shift of the
dark resonance formed by the field with a periodically modulated phase. Also we have analytically solved a
basic theoretical problem of the direct frequency comb spectroscopy, when the two-level system is driven by the
periodic sequence of rectangular pulses. In this case, the radical dependence of the spectroscopy line shape on
pulse area is found. Moreover, the existence of quasiforbidden spectroscopic zones, in which the Ramsey fringes
are significantly reduced, is predicted. Our results have a wide area of applications in laser physics, spectroscopy,
atomic clocks, and magnetometry. Also they can be useful for any area of quantum physics where periodically
driven systems are considered.
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I. INTRODUCTION

For the last several decades rapid scientific and techno-
logical progress has been substantially connected with an
expansion of the lasers and laser technologies at different areas
of the science, engineering, and industry. In this process laser
physics, nonlinear optics, and laser spectroscopy take a special
place. Many impressive successes in these directions are due
to the theoretical support, motivation, and interpretation of
experimental researches. In this context, of paramount impor-
tance is the formulation of mathematical models (equations)
and finding of their solutions, which adequately describe the
physical picture of investigated problems. As an example, for
atomic mediums the density matrix formalism is the most
widespread approach describing the atom-field interaction
and different relaxation processes (spontaneous, collisional,
etc.). Especial significance has the so-called steady state,
which arises under the interaction of a quantum system with
stationary external fields.

Recall that the steady-state concept has the following
theoretical justification. For an arbitrary quantum system let
us consider the density matrix ρ̂(t) and its normalization
condition (integral of motion describing the conservation of
probability), which in a basis of states {|j 〉} can be presented as

ρ̂(t) =
∑
a,b

|a〉ρab(t)〈b|; Tr{ρ̂(t)} =
∑

j

ρjj (t) = 1, (1)

where ρab(t) are the matrix elements. The density matrix
dynamic equation can be written as

∂t ρ̂(t) = −(i/�)[Ĥ ,ρ̂(t)] + �̂{ρ̂(t)}; Tr{ρ̂(t)} = 1. (2)

Here we have separately selected the Hamiltonian term
[Ĥ ,ρ̂(t)] having the form of a commutator with Hamiltonian
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Ĥ , which describes the energy states of the quantum system
and the interaction with external fields. The other operator
functional �̂{ρ̂(t)} describes all possible relaxation processes
(e.g., for atomic gases it can be spontaneous, collisional,
time of flight, and other processes), and �̂{ρ̂(t)} cannot be
presented in the commutator form.

If Ĥ = const. and the initial state is ρ̂(0) (at t = 0, for
definiteness), then during the dynamic process the asymptotic
(i.e., under t → +∞) steady state ρ̂st-st ≡ ρ̂(+∞) is formed.
This state does not depend on the time (∂t ρ̂st-st = 0) and does
not depend on the initial condition ρ̂(0), and it satisfies the
equation

−(i/�)[Ĥ ,ρ̂st-st] + �̂{ρ̂st-st} = 0; Tr{ρ̂st-st} = 1. (3)

Note that the existence of the single asymptotic state ρ̂(+∞)
is completely determined by the relaxation processes. Indeed,
in the absence of relaxation (i.e., �̂{. . . } = 0) the evolution
equation (2) corresponds in essence to the Schrödinger
equation, and its solution has the well-known form

ρ̂(t) = exp{−iĤ t/�} ρ̂(0) exp{iĤ t/�}, (4)

which describes the undamped dynamics of the quantum
system, starting from the initial state ρ̂(0). In this case, the
mathematical expression (4) even for t → +∞ does not allow
the existence of the asymptotically unique steady state ρ̂st-st,
which is independent of the initial state ρ̂(0). Thus, the steady-
state concept is directly connected with the non-Hamiltonian
relaxation term �̂{ρ̂(t)} in the dynamic equation (2).

During long time, steady states play a key role in the
theoretical description of the basic problems in laser physics
and spectroscopy (for example, see [1–3]). However, in the
last few years the devices in which different parameters of
electromagnetic fields are periodically modulated have gained
a greater importance. First of all, the so-called frequency
comb generators use the periodic pulse modulation of a laser
field. Such sources of pulse radiation are actively used now in

2469-9926/2016/93(1)/013820(9) 013820-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.013820


V. I. YUDIN, A. V. TAICHENACHEV, AND M. YU. BASALAEV PHYSICAL REVIEW A 93, 013820 (2016)

modern atomic clocks for frequency measurements [4,5], and
they have promising perspectives for direct frequency comb
spectroscopy (e.g., see [6–9]). Also, the phase (frequency)
and/or amplitude periodic modulation of the laser field is now
widely used for different tasks and applications (including
atomic clocks and magnetometers) [10–16]. Other promising
and interesting directions in atomic clocks and magnetometers
are connected with periodically modulated polarization of the
laser field [17–22]. Furthermore, a periodically driven quan-
tum system displays many curious features, e.g., dynamic sup-
pression of tunneling in a double well [23], Bloch-Siegert shift
[24], and effects of counter-rotating terms. Of late, the under-
standing of periodically driven systems is also one of the most
active areas of research in many-body physics (e.g., see
[25–38]). In particular, there is the problem of a stationary state
existence. In all these examples the standard concept of steady
state based on the time-independent equation (3) is inapplica-
ble, generally speaking, because of time dependence Ĥ (t).

In this paper, we generalize the steady-state concept for an
arbitrary quantum system under arbitrary periodic external in-
fluence. In this way we prove the following existence theorem:
if the coefficients of density matrix dynamic equation (2) have
the period T , then the periodic solution with the same period T

exists always. A completely unexpected result is that so univer-
sal and fundamental a statement is based only on the normal-
ization condition for the density matrix. Due to the relaxation
processes this solution is realized as an asymptotics (t → +∞)
and, therefore, can be characterized as a periodic steady
state. The developed simple algorithm allows us to directly
construct this solution independently of initial conditions and
without the use of either Floquet or Fourier formalisms. Our
approach considerably simplifies the analysis regardless of the
periodic modulation character: from smoothly harmonic type
to ultrashort pulses. As a striking example, for two-level atoms
we have analytically calculated the signal and have found
unknown features of the direct frequency comb spectroscopy
formed by the periodic sequence of rectangular pulses.

II. GENERAL THEORY

The general mathematical formulation of the steady-state
problem for periodically driven systems is the following. First
of all, let us rewrite the differential equation for the density
matrix (2) in the vector form:

∂t �ρ(t) = L̂(t) �ρ(t); Tr{ρ̂(t)} = (�n, �ρ(t)) = 1, (5)

where the column vector �ρ(t) is formed by the matrix elements
ρab(t) using some definite rule, the linear operator L̂(t)
corresponds to the right-hand member of Eq. (2). As an
example, for a two-level system with basis states |1〉 and |2〉
there are four matrix elements ρab(t) (a,b = 1, 2), which can
be ordered as the following vector:

�ρ(t) =

⎛
⎜⎝

ρ22(t)
ρ21(t)
ρ12(t)
ρ11(t)

⎞
⎟⎠. (6)

Besides we define the supplementary column vector �n per-
mitting us to express the value Tr{ρ̂(t)} as the dot product in
Eq. (5), where we use the standard definition of the dot product

for arbitrary complex-valued vectors: (�x,�y) = ∑
m x∗

mym. The
vector �n is formed in the following way: for the positions
corresponding to the diagonal elements ρjj (t) [as components
of the vector �ρ(t)] the vector �n has the value 1, and it equals
0 for all other positions. In particular, for two-level systems,
according to the definition (6), we obtain

�n =

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠. (7)

The normalization condition in Eq. (5) implies the degeneracy
of equations [right-hand members, L̂(t) �ρ(t)] which corre-
sponds to the following expression:

(�n,L̂(t) �ρ) = 0 (8)

for an arbitrary vector argument �ρ. Note that the existence
of the time-independent vector �n is a base point for the next
reasonings.

Let us suppose an existence of the time period T in the
operator L̂(t):

L̂(t + T ) = L̂(t). (9)

In this case, as it will be shown below, Eq. (5) always has a
periodic solution with the same period T :

�ρ(t + T ) = �ρ(t) (10)

for each t .
To begin the proof of this theorem, we assume that at some

instant of time t1 we have an arbitrary vector �ρ(t1). Then, in
accordance with Eq. (5), for other instant of time t2 we can
write

�ρ(t2) = Â(t2,t1) �ρ(t1), (11)

where the two-time evolution operator Â(t2,t1) is determined
by the matrix L̂(t). Note that in the case of periodicity condition
(9) the following relationship takes place:

Â(t2 + T ,t1 + T ) = Â(t2,t1) (12)

for arbitrary t1,t2.
However, before the consideration of the periodic case,

let us prove several general statements. For this purpose, we
multiply Eq. (11) by the vector �n as the dot product:

(�n, �ρ(t2)) = (�n,Â(t2,t1) �ρ(t1)) = (Â†(t2,t1) �n, �ρ(t1)), (13)

where Â†(t2,t1) is the Hermitian conjugate operator to Â(t2,t1).
Because (�n, �ρ(t2)) = (�n, �ρ(t1)), from Eq. (13) we obtain

(�n, �ρ(t1)) = (Â†(t2,t1) �n, �ρ(t1)) (14)

for arbitrary �ρ(t1). This formula directly implies

Â†(t2,t1) �n = �n, (15)

i.e., the operator Â†(t2,t1) always has the eigenvector with
the real eigenvalue 1. Therefore, the same eigenvalue 1 also
exists for the direct operator Â(t2,t1), i.e., there is always the
eigenvector �r(t2,t1), which satisfies the equation

Â(t2,t1) �r(t2,t1) = �r(t2,t1). (16)

In contrast to Eq. (15), the eigenvector �r(t2,t1) depends on t2,t1
in the general case.
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Let us return to the case of periodicity [Eq. (9)]. Consider
�ρ(t) at arbitrary instant of time t . In conformity with Eq. (11),
the vector �ρ(t + T ) is determined as

�ρ(t + T ) = Â(t + T ,t) �ρ(t). (17)

Supposing the existence of the periodic solution �ρ(t + T ) =
�ρ(t), it follows from Eq. (17) that this solution satisfies the
equation

�ρ(t) = Â(t + T ,t) �ρ(t); (�n, �ρ(t)) = 1, (18)

which always has a nonzero solution due to the above
proven statement of existence of eigenvector with eigenvalue
1 for the operator Â(t2,t1) for arbitrary t1,t2 [see Eq. (16)].
Using Eqs. (12), (17), and (18), it can be easily shown that
�ρ(t + lT ) = �ρ(t) (l = ±1, ± 2, . . . ). Taking into account an
arbitrariness of the time t in Eqs. (17) and (18), we can assert
that the existence theorem of the periodic solution (10) is
proven.

Due to the relaxation processes there is a unique (in
the majority of cases) periodic solution which is realized
during the time evolution as an asymptotic state (t → +∞)
independently of initial conditions [similar to the well-known
stationary case in Eq. (20) below]. The solution (10) can be
called a dynamic steady state because of its dependence on t .

However, taking into account a mathematical generality,
for some theoretical models we can hypothetically assume the
possibility of several solutions { �ρ1(t), �ρ2(t), . . . , �ρQ(t)} for
Eq. (18), when the eigenvalue 1 for the matrix Â(t + T ,t) is
degenerated in spite of relaxation processes. In this case, the
general periodic solution has a form of superposition:

�ρ(t) =
Q∑

q=1

αq �ρq(t); (�n, �ρq(t)) = 1;
Q∑

q=1

αq = 1, (19)

where the number set {α1, . . . ,αQ} for the asymptotic solution
(t → +∞) will depend on initial conditions (under the
dynamic consideration).

Let us show that the found solution (18) is a generalization
of the well-known steady state [see the matrix ρ̂st-st in Eq. (3)]
for the constant operator L̂ in Eq. (5):

L̂ �ρst-st = 0; ∂t �ρst-st = 0; (�n, �ρst-st) = 1. (20)

It is obvious that the stationary case can be considered as a
periodic case with an arbitrary value of the period T . Therefore,
according to the above analysis, the state �ρst-st also must satisfy
Eq. (18) for arbitrary t,T . Indeed, in the case of L̂ = const.,
we have for arbitrary t,T

Â(t + T ,t) = eL̂T = 1 +
+∞∑
k=1

1

k!
T kL̂k. (21)

Taking into account Eqs. (20) and (21), we obtain perfect
compliance with Eq. (18): Â(t + T ,t) �ρst-st = �ρst-st.

Let us consider our results in relation to the general Floquet
theory (e.g., see [39]). According to this theory, the solutions of
the differential equation system (5) with periodic coefficients
can be presented in the following form:

�ρ(t) = D̂(t)eK̂t �a, (22)

where the matrix D̂(t) = D̂(t + T ) is periodic, K̂ is a certain
constant matrix connected with the matrix L̂(t), and �a is an
arbitrary constant vector. Using the set of eigenvectors K̂ �aj =
λj �aj , expression (22) can be rewritten as the superposition of
independent solutions:

�ρ(t) = D̂(t)
∑

j

Cje
λj t �aj , Cj = const. (23)

From this formula it follows that the existence of the periodic
solution �ρ(t + T ) = �ρ(t) seems to be an exception to the gen-
eral rule, because such solution can be realized only if at least
one eigenvalue λs = i2πm/T exists [where m is an arbitrary
integer number (including 0)]. However, in the framework
of the general Floquet theory the universal approach to this
problem is absent, i.e., the special consideration is required for
each concrete task. In this context, our result is that the equation
class, describing the density matrix dynamics for different
quantum systems with arbitrary relaxation processes, always
has a periodic solution. Our theorem proof is based only on
the normalization condition and it is done without the Floquet
expansion (23) [instead of this, we use the two-time evolution
operator (11)]. Apart from the density matrix equations (2), the
developed approach can be applied to prove a similar existence
theorem of periodic solutions for other differential equation
systems, for which some linear integrals of motion exist.

In regard to the other states in the superposition (23) with
λj 	= i2πm/T , for the majority of the adequate mathematic
models of quantum systems with relaxation these states
should be damped under t → +∞, i.e., Re{λj } < 0 (see
also comments [40,41]). In contrast, without relaxation (i.e.,
�̂{. . . } = 0) the periodically driven systems can be described
by the Schrödinger equation (e.g., see the classical paper
[42]) and all possible solutions in Eq. (23) will be undamped:
Re{λj } = 0. In this case, the unique asymptotic steady state
�ρ(+∞) does not exist. It is precisely this fact that explains
the base difference between damped and undamped quantum
systems with respect to the long-time dynamics.

Note that some authors supposed (without proof) the
existence of the periodic steady-state solution [Eq. (10)] for
some certain problems. In this case they usually used the
Fourier analysis for numerical calculations (e.g., see [12,43]).
However, an intuitive assumption about the periodic steady
state is now rigorously substantiated. At the same time, of
special interest is the direct and simple method, which allows
us to construct the periodic solution on the base of Eq. (18)
without Fourier expansion. Thus, our approach automatically
takes a full account of all frequency components and can
radically simplify the calculations (numerical and analytical).

Let us describe one possible numerical algorithm based
on Eq. (18). We consider an arbitrary periodic dependence
of the operator L̂(t) (see Fig. 1). For instance, under an
atom-field interaction such a dependence can be produced
by the modulation of the field parameters (amplitude, phase,
polarization, etc.). The selected time interval [t0,t0 + T ] is
divided into N small subintervals, where tN = t0 + T . The
character of partition (uniform or nonuniform discrete mesh)
and number of subintervals are determined in conformity
with the studied problem. The dependence L̂(t) we will
approximate by step function (see Fig. 1), where the matrix
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FIG. 1. Partition of the time interval [t0,t0 + T ] at N subintervals
and symbolic approximation of the dependence L̂(t) by the step
function (red step line).

L̂(t) has the constant value L̂(tm−1) inside of subinterval
(tm−1,tm]. In this case the vector �ρ(t0) in initial point t0
is determined by Eq. (18), where the evolution operator
Â(t0 + T ,t0) has the form of a chronologically ordered product
of the matrix exponents (in the manner of [44]):

Â(t0 + T ,t0) ≈
m=N∏
m=1

e(tm−tm−1)L̂(tm−1)

= e(tN −tN−1)L̂(tN−1) × · · · × e(t1−t0)L̂(t0). (24)

The vectors �ρ(tm) in other points of the interval [t0,t0 + T ] are
determined by the recurrence relation

�ρ(tm) = e(tm−tm−1)L̂(tm−1) �ρ(tm−1). (25)

Below we consider several important examples (related to the
atomic clock and spectroscopy of atomic transitions), which
demonstrate the simplicity and high efficiency of our method.

III. DARK RESONANCES IN THREE-LEVEL � SYSTEM
DRIVEN BY THE PHASE-MODULATED FIELD

The first example is the so-called dark resonance, which
is formed in a three-level � system by a bichromatic
field (see Fig. 2). This resonance occurs when a difference
between the optical frequencies (ω1 − ω2) is varied near the
transition frequency between the lower energy levels |1〉
and |2〉: ω1 − ω2 ≈ 
. Currently, such resonances at the
hyperfine structure of the alkali-metal atoms (first of all,
for 87Rb and 133Cs) underlie the chip-scale atomic clocks,

FIG. 2. Three-level system where the dark resonance can be
formed.

which have a great practical importance. At the same time the
harmonic phase modulation (frequency deviation) of miniature
semiconductor lasers (so-called VCSEL) is ordinarily used in
practice. In this case the field can be written as

E(t) = E0e
−i[ωt+ϕ(t)] + c.c.; ϕ(t) = A sin(νt), (26)

where E0 is the field amplitude, ω is the central frequency
of laser, and A and ν are the amplitude and frequency of
phase modulation, respectively. It is obvious that this field is
polychromatic, in which the frequency difference between the
adjacent components equals ν. The phase modulation at full or
half of the hyperfine splitting is usually used: ν ≈ 
 or 
/2.
However, the dark resonance can be observed in the more
general case of ν ≈ 
/l (l = 1,2,3, . . . ).

For theoretical description of this problem the Fourier
expansion of the field (26) is traditionally used. In this case,
to solve the density matrix equation one can extract two
resonant components (e.g., see [12]), which are involved
in the absorption and directly form the dark resonance.
While the remaining frequency components are taken into
account only from the viewpoint of field-induced shifts of the
clock transition. It is evident that such an approach is quite
cumbersome and incomplete. In contrast, our method does
not use the Fourier expansion and we directly calculate the
time-dependent periodic ρ̂(t). In the resonance approximation,
the equations for the density matrix components ρjk(t) have
the following form:

[∂t + � − iδ1 − iϕ′(t)]ρ31 = i�1(ρ11 − ρ33) + i�2ρ21,

[∂t + � − iδ2 − iϕ′(t)]ρ32 = i�2(ρ22 − ρ33) + i�1ρ12,

[∂t + G0 − i
]ρ12 = i(�∗
1ρ32 − ρ13�2),

[∂t + G0]ρ11 = γρ33/2 + G0Tr{ρ̂}/2 + i(�∗
1ρ31 − ρ13�1), (27)

[∂t + G0]ρ22 = γρ33/2 + G0Tr{ρ̂}/2 + i(�∗
2ρ32 − ρ23�2),

[∂t + G0 + γ ]ρ33 = i(�1ρ13 − ρ31�
∗
1) + i(�2ρ23 − ρ32�

∗
2),

ρjk = ρ∗
kj (j,k = 1,2,3); Tr{ρ̂} = ρ11 + ρ22 + ρ33 = 1.

Here δ1,2 = (ω − ω
(0)
1,2) are one-photon detunings, �1 =

d31E0/� and �2 = d32E0/� are the Rabi frequencies (d31 and
d32 are the reduced matrix elements of the dipole moment for
the respective transitions), γ is the decay rate of excited level

|3〉, � is the total decoherence rate (spontaneous, collision, time
of flight) of optical transitions |1〉 → |3〉 and |2〉 → |3〉, G0

is the relaxation rate of lower energy levels to the equilibrium
isotropic state: (|1〉〈1| + |2〉〈2|)/2. Note, if we delete the

013820-4



DYNAMIC STEADY STATE OF PERIODICALLY DRIVEN . . . PHYSICAL REVIEW A 93, 013820 (2016)

(a)

(b)

FIG. 3. (a) The dark resonance line shape in the case when ν

is varied near 
/2 for different values of the phase modulation
amplitude A: A = 1.0 (green dashed line) and A = 2.4 (solid black
line). (b) The dependence of the dark resonance position (relative to

/2) on parameter A. Calculations are done for �1/γ = �2/γ = 1;
G0/γ = 1.5 × 10−3; �/γ = 50; 
/γ = 1000, δ2 = −δ1 = 
/2.

derivative by phase modulation ϕ′(t), then Eqs. (27) formally
coincide with the description of interaction between the
monochromatic field (at the frequency ω) and the three-level
� system.

In particular, we have calculated by our method the
resonance line shapes as dependencies on the frequency of
phase modulation ν ≈ 
/2 for different values of amplitude
A [see Fig. 3(a)]. The taken parameters are typical for atomic
cells with vapor of 87Rb in the buffer gas. Figure 3(b) displays
the dependence of the field shift of the dark resonance δ̄shift

(with respect to 
/2) on the modulation amplitude A. There
is the value set of A, for which the field shift vanishes (see
also [45]). In Fig. 4 similar graphics are shown for the case
of phase modulation frequency ν ≈ 
/4. From Fig. 4(a) it is
seen that the amplitude of dark resonance can be comparable
with the case of ν ≈ 
/2 [compare with Fig. 3(a)].

IV. TWO-LEVEL SYSTEM DRIVEN BY
THE PULSE-MODULATED FIELD

For another example, let us consider a two-level system
(with unperturbed frequency ω0) interacting with the field at
the frequency ω:

E(t) = Re{E(t) e−iωt }, (28)

where the amplitude modulation E(t) has the form of
rectangular-pulse periodic sequence [see Fig. 5(a)], which is

(a)

(b)

FIG. 4. (a) The dark resonance line shape in the case when
ν is varied near 
/4 for the phase modulation amplitude A =
3.59. (b) The dependence of the dark resonance position (relative
to 
/4) on parameter A. Calculations are done for �1/γ =
�2/γ = 1; G0/γ = 1.5 × 10−3; �/γ = 50; 
/γ = 1000, δ2 =
−δ1 = 
/2.

a basic model of direct frequency comb spectroscopy and can
be considered as a limiting case of Ramsey spectroscopy.
In this case the field has an equidistant spectrum ωm =
ω + mfr (m = 0, ± 1, ± 2,. . .) (so-called frequency comb),
where fr = 2π/T is the repetition frequency, and a spectral
width (with respect to the central frequency ω) is determined by
the pulse duration as 1/τ . The dynamic equations for density

(a)

(b)

FIG. 5. Two-level system interacting with (a) periodic sequence
of rectangular pulses and (b) periodic sequence of (±)-phase
jumps.
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(a)

(b)

(c)

(d)

FIG. 6. The line shapes for direct frequency comb spectroscopy
[see Fig. 5(a)] over large interval of detuning δ, where the narrow res-
onances are visually inseparable (dark areas). Calculations are done
for � = γ /2 = 0.02fr , τ/T = 0.001 and for different pulse areas:
(a) �0τ = π/15; (b) �0τ = π/2; (c) �0τ = π ; and (d) �0τ = 2π .

matrix components are given by

[∂t + � − iδ]ρ21 = i�(t)(ρ11 − ρ22)/2,

[∂t + � + iδ]ρ12 = −i�∗(t)(ρ11 − ρ22)/2,

[∂t + γ ]ρ22 = i[�(t)ρ12 − ρ21�
∗(t)]/2, (29)

∂tρ11 = γρ22 + i[�∗(t)ρ21 − ρ12�(t)]/2,

Tr{ρ̂} = ρ11 + ρ22 = 1,

(a)

(b)

FIG. 7. The line shapes for direct frequency comb spectroscopy
[see Fig. 5(a)] over two small intervals of detuning δ, where the
narrow resonances are visually separated. Calculations are done for
� = γ /2 = 0.02fr , τ/T = 0.001, �0τ = π/2.

where �(t) = dE(t)/� is the time-dependent Rabi frequency
(d is the dipole matrix element), and δ = (ω − ω0) is the detun-
ing of the central frequency ω. The constants γ and � describe
the relaxation rates of the exited state population (ρ22) and
optical coherence (ρ12,ρ12), respectively. Note that for pure
spontaneous relaxation the condition � = γ /2 takes place.

Of most interest is a regime in which the repetition
frequency significantly exceeds the relaxation rate of atomic
system: �, γ � fr . Figure 6 demonstrates the dependences
of period-averaged value 〈ρ22〉T as a function of detuning δ

for different pulse areas. The structure of these line shapes
consist of large number of resonances at the frequencies
ω = ω0 + mfr (m = 0, ± 1, ± 2, . . . ). Their amplitudes lie
between two envelope curves. The dark areas in Fig. 6
correspond to the resonances, which are visually inseparable
for the given scale. A more detailed picture (using small
frequency intervals) is presented in Fig. 7, where the individual
resonances are visible.

As seen in Figs. 6(b)–6(d), under condition �0τ � 1 the
dependences become quite unusual. We have found that the
lower envelope has a typical width of the order of 2�0 [see
in Figs. 6(b)–6(d)] and it looks similar to the line shape on
δ in the case of single-pulse Rabi spectroscopy. The upper
envelope is much more broadened (with width of the order
of �0fr/γ  �0 in the case of �0τ � 1). Moreover, this
envelope curve has a series of relatively narrow resonance-
like dips (practically to zero), which can be characterized as
quasiforbidden spectroscopic zones. The positions of these

zones are determined from the condition τ

√
�2

0 + δ2 = 2kπ

(k = 1,2, . . . ), and their widths are proportional to γ , i.e., they
tend to zero if γ → 0.
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Note the high efficiency and simplicity of our method in
the case of periodic pulse modulation. Indeed, for the above
considered task with rectangular pulses [see Fig. 5(a)] the
operator Â(t0 + T ,t0) includes the product of only two matrix
exponents:

Â(t0 + T ,t0) = eτL̂(�=�0) eT L̂(�=0), (30)

where T = (T − τ ) is a free evolution time between pulses.
As a result, the calculation of the dynamic steady state in
concordance with Eq. (18) becomes quite simple. Moreover,
for a two-level atom we have obtained the analytical expres-
sions (exact and approximative) for the operator Â(t0 + T ,t0)
and vector �ρ(t0). In particular, for the short pulses (τ �
min{1/γ ; 1/�; T }) we can neglect the relaxation processes
during the pulse duration τ . In this case, the atomic evolution
is described by the Schrödinger equation, which leads to the
following approximation:

eτL̂(�=�0)

≈

⎛
⎜⎜⎜⎜⎜⎜⎝

|w|2 �0w
∗Re{w}
δ

�0wRe{w}
δ

�2
0Re2{w}

δ2

�0w
∗Re{w}
δ

−(w∗)2 �2
0Re2{w}

δ2 −�0w
∗Re{w}
δ

�0wRe{w}
δ

�2
0Re2{w}

δ2 −w2 −�0wRe{w}
δ

�2
0Re2{w}

δ2 −�0w
∗Re{w}
δ

−�0wRe{w}
δ

|w|2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(31)

where the value w is determined as

w = δ

V
sin(V τ/2) + i cos(V τ/2); V =

√
�2

0 + δ2. (32)

The atomic evolution between pulses is determined only by
the relaxation processes:

eT L̂(�=0) =

⎛
⎜⎜⎝

e−γT 0 0 0
0 e−(�−iδ)T 0 0
0 0 e−(�+iδ)T 0

1 − e−γT 0 0 1

⎞
⎟⎟⎠.

(33)

Note that Eqs. (31) and (33) are written according to definition
(6) for the vector �ρ(t).

Using Eqs. (31)–(33) for the operator (30), we find the
solution �ρ(t0) of Eq. (18) in analytical form (see also comments
[46]). For example, the exited state population has the
following approximation:

ρ22(t0) ≈ �2
0e

γT (e2�T − 1) sin2(V τ/2)
{
(e(2�+γ )T − 1)V 2

+ 2e�T (eγT − 1)V δ sin(δT ) sin(V τ )

− e�T (eγT −1) cos(δT )
[
�2

0 + (
2δ2 + �2

0

)
cos(V τ )

]
− (e2�T − eγT )

[
�2

0 cos(V τ ) + δ2]}−1
. (34)

For the pure spontaneous relaxation (� = γ /2) expression (34)
can be transformed to the form

ρ22(t0) ≈ �2
0 exp(γT /2) sin2(V τ/2)

× {
2V 2 cosh(γT /2) + 2V δ sin(δT ) sin(V τ )

− cos(δT )
[
�2

0 + (
2δ2 + �2

0

)
cos(V τ )

]}−1
. (35)

(a)

(b)

(c)

(d)

FIG. 8. The spectroscopic line shapes for the field modulation
which is formed by the (±)-phase jumps [see Fig. 5(b)]. Calculations
are done for � = γ /2 = 0.1fr and for different Rabi frequencies: (a)
�0 = 0.2fr ; (b) �0 = 5fr ; (c) �0 = 10fr ; and (d) �0 = 15fr .

Note that Eq. (34) (i.e., if � 	= γ /2) allows us to model
the nonzero spectral width of the laser field at the carrier
frequency ω. In this case, we can use � = (γ /2 + σ ), where
the parameter σ is proportional to the given spectral width. If
the value σ is comparable with γ (or exceeds it), then Eq. (34)
will be more adequate than Eq. (35).

In addition, under condition of τ � T we have a close
approximation:

〈ρ22〉T ≈ ρ22(t0)[1 − e−γ T ]/γ T , (36)
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with an absolute inaccuracy less than small value (τ/T ) � 1.
Thus, to reproduce with good accuracy the line shape 〈ρ22〉T
we can calculate only the dependence ρ22(t0) on δ. Note that
Eq. (36) can be used for an arbitrary pulse form (not only
rectangular).

In contrast, using the Fourier analysis for the frequency
comb spectroscopy to numerically solve Eq. (5) we should use
the following decomposition:

�ρ(t) =
∑
m

�ρmemfr t (m = 0, ± 1, ± 2, . . . ), (37)

where the components �ρm satisfy certain recurrent relations.
For example, the direct Fourier calculation of the dependences
in Fig. 6 requires a huge computational burden.

The last numerical example is shown in Fig. 8. There are
the spectroscopy line shapes for the field modulation, which is
formed by (±)-phase jumps [see Fig. 5(b)]. In the case of �0 
γ , these interesting dependences have the lower resonance-
like envelope, which has a width of the order of 2�0 [see
Figs. 8(b)–8(d)].

V. CONCLUSION

Note that for a free atom gas it is necessary to take into
account the motion of atoms, which results in dependence
of the density matrix on velocity v. In this case the periodic
steady state ρ̂(t + T ,v) = ρ̂(t,v) should be found for each
velocity group, and then the spectroscopic signal is computed
with the use of velocity averaging. Also our consideration of
temporal periodic modulation can be adapted for the case of
spatially periodic modulation of field parameters (amplitude,
phase, polarization, etc.). It implies the proof of existence and
the calculation of the spatially periodic steady state of the
atoms (including the problems of laser cooling and trapping of
atoms in optical lattices). In addition, apart from the density

matrix equations (2), the developed approach can be applied
to prove the existence theorem of periodic solution for other
differential equation systems for which some linear integrals
of motion exist.

In summary, in the framework of density matrix formalism
we have rigorously proven the existence theorem of the
periodic steady state for an arbitrary periodically driven
system. Due to the relaxation processes this state is realized as
an asymptotics (t → +∞) independently of initial conditions,
i.e., periodicity is the main attribute of steady state. The
presented proof simultaneously contains a computational
algorithm, which uses neither Floquet nor Fourier theories.
Our method radically simplifies the calculations for arbitrary
types of periodic modulation (including the ultrashort pulses)
and opens up great possibilities for analysis and development
of new methods in laser physics, nonlinear optics, and
spectroscopy. As an important example, we have analytically
solved a basic theoretical model of the direct frequency comb
spectroscopy, when two-level atoms are driven by the periodic
sequence of rectangular field pulses. Also our results are
applicable to any area of quantum physics where periodically
driven systems are considered. The significance of the obtained
results becomes especially obvious due to the infinite variety
of possible periodic actions for different quantum systems.
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