
PHYSICAL REVIEW A 93, 013815 (2016)

Cascading processes in the nonlinear diffraction of light by standing acoustic waves
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The contribution of two types of cascading process to the nonlinear optical diffraction of electromagnetic
waves from a standing acoustic wave in a GaAs crystal is theoretically studied. The first type of cascading
process results from second-harmonic generation followed by linear acousto-optical diffraction, while the second
type involves linear acousto-optical diffraction from the standing acoustic wave and subsequent sum-frequency
generation. In contrast to the third, direct, nonlinear acousto-optical diffraction process we previously investigated,
the photoelastic interaction between electromagnetic and acoustic waves is here linear. We establish the rules
governing the cascading processes and show that in most cases the output signal simultaneously results from two
or even three of the possible nonlinear diffraction mechanisms. However, we demonstrate that a careful choice of
the incidence angles of the incoming electromagnetic waves, of the polarization combinations of the incoming
and diffracted waves, and of the type of acoustic wave (longitudinal or transverse) makes it always possible to
distinguish between the direct and either of the two cascading processes.
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I. INTRODUCTION

Nonlinear optical methods are very useful for the inves-
tigation of the static and dynamical properties of condensed
matter, not only in bulk media, but also in thin films and
structured materials. In particular, if a material exhibits a peri-
odic inhomogeneity of its properties, second-order nonlinear
diffraction of electromagnetic waves (EMWs) by the resulting
permittivity grating can be observed. This was investigated
for the first time, both theoretically and experimentally, by
Freund [1] in ferroelectrics with a laminar domain structure.
Since then, similar theoretical and experimental investiga-
tions have been devoted to various periodically modulated
systems, including materials with spatially modulated linear
and nonlinear polarizations [2], nonlinear photonic crystals
[3–9], magnetic films with regular magnetic domain structures
[10–12], periodically distributed grooves [13], and nonlinear
gratings [14,15].

In contrast to the aforementioned studies, it should be noted
that in bulk materials it is possible to excite transient, dynamic
spatially distributed inhomogeneities, e.g., through standing
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acoustic waves (AWs) that can induce a modulation of the
second-order nonlinear optical susceptibility of a material via
the nonlinear photoelastic interaction [16,17]. As a result
of this modulation, a nonlinear polarization at frequency
(2ω ± �) appears, where ω and � are the angular frequencies
of the incident light and of the AW, respectively. This
effect, named acoustically induced optical second-harmonic
generation (SHG), was theoretically predicted in [18] and
observed for the first time in GaAs [19], and later in
LiNbO3 [20], CsLiB6O10 nanocrystallites incorporated into
olygoether photopolymer matrices [21], Pb4.7Ba0.3Ge3O11

[22], hydrogenated amorphous silicon films (a-Si:H) [23],
InAs [24], and organometallic nanocomposites [25]. Recently,
we published a theoretical investigation of nonlinear acousto-
optical diffraction (NAOD), i.e., nonlinear optical diffraction
from a standing AW in a bulk material in the framework
of a phenomenological approach [26]. In that paper, we
studied the direct interaction between two incident EMWs
and a standing AW via a nonlinear photoelastic interaction
[16–18]. There are, however, other ways to obtain nonlinearly
diffracted EMWs from standing AWs, and the analysis of their
contribution to NAOD requires the careful investigation of a
two-stage cascading process, for instance the succession of
the linear acousto-optic diffraction of an incident EMW from
a standing AW—leading to the generation of a diffracted wave
at frequency (ω ± �)—and the subsequent interaction of that
diffracted wave with the incident EMW. As a result, nonlinear
diffraction at the same frequency (2ω ± �) as through direct
NAOD [26] can be achieved. This situation was discussed in
[20] from a quantum mechanical perspective as a second-order
perturbative contribution to acoustically induced optical SHG.

2469-9926/2016/93(1)/013815(8) 013815-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.013815


YU. S. DADOENKOVA et al. PHYSICAL REVIEW A 93, 013815 (2016)

The investigation of cascading effects in nonlinear optics
has a long history starting at least from the seminal paper
by Yablonovich et al. [27]. Since then, numerous works
have been devoted to the subject (see, e.g., references in
Ref. [28], which is devoted to degenerate four-wave mixing
in noncentrosymmetric materials, or the chapter in [29] about
multistep parametric processes in nonlinear optics). However,
cascading effects in the case of NAOD have apparently not
been investigated.

The goal of this paper is to present a precise theoretical
analysis of NAOD from standing AWs and to compare the
contributions of direct and cascading processes to the outgoing
radiation. This investigation is directed at understanding how
it would be possible to separate the contributions of the two
mechanisms (direct and cascading) and to predict the optimal
conditions for corresponding experiments, i.e., to design
polarimetric and angular measurement configurations in order
to distinguish between direct and cascading contributions to
NAOD-generated radiation.

We illustrate our study with the numerical analysis of
NAOD in a bulk GaAs crystal, because this cubic material is
noncentrosymmetric, which means that optical SHG is allowed
in the dipole approximation [30,31]. In practice, significant
SHG yield can be obtained from a GaAs crystal in the visible
and near-infrared domains. A great many papers have been
devoted to the modeling and observation of SHG in uniform
and patterned GaAs samples [32–35]. So far, however, no
detailed account of cascading effects coupled to a standing AW
appears to have been published and we believe that our study
brings insight to the angular and polarimetric dependences of
these mechanisms.

The paper is organized as follows. In Sec. II we briefly
describe acousto-optic diffraction by standing AWs. Section III
is devoted to a general description of the cascading processes
and Sec. IV presents the results and the detailed discussion of
our numerical calculations in the case of a GaAs crystal. The
principal results are summarized in Sec. V.

II. ACOUSTO-OPTICAL DIFFRACTION BY STANDING
ACOUSTIC WAVES

The study of linear light diffraction by AWs is well estab-
lished, both theoretically and experimentally [36–38]. As men-
tioned earlier, second-order nonlinear diffraction can result
from a direct process [26] or from a two-step cascade process.
In each case, EMWs and an AW are coupled, and the treatment
of the resulting interaction between light and sound is similar to
the second-order perturbation theory of the quantum mechan-
ical description of nonlinear acousto-optical processes [20].

A standing AW results from the interference between two
traveling AWs propagating in opposite directions. If those
directions are collinear to the z axis of a Cartesian system of
coordinates, the displacement vector u in a slab of crystalline
medium in which a bulk standing AW is established can be
written as [39]

u(r,t) = AL cos

(
�L z

vL

)
ei�Lt + AT cos

(
�T z

vT

)
ei�T t , (1)

where AL = [0,0,Az] and AT = [Ax,Ay,0] are the maximum
magnitudes of the displacements due to the longitudinal and

transverse standing AWs, respectively. The angular frequen-
cies of these waves are denoted �L,T = π vL,T /Lz, where Lz is
the slab length along the z axis and vL,T are the wave velocities.
The magnitudes of the displacement vectors vary with position
z and time t , but their extrema are stationary. For each type of
AW, the positions of the nodes (antinodes), i.e. the points in the
crystal slab where the vibration magnitude is zero (maximal),
are given by the conditions (�L,T z)/vL,T = (m + 1/2)π and
(�L,T z)/vL,T = mπ , m ∈ N, respectively. The amplitude of
the displacement induced by the AW is expressed as

A 2
L,T = 2IAW

� 2
L,T ρ vL,T

, (2)

where IAW is the acoustic intensity and ρ is the volumetric
mass density of the material.

In the presence of SHG, fields Eω and E2ω of EMWs at the
fundamental and second-harmonic frequencies must be taken
into account and are solutions of wave equations which, in SI
units, read [26]

∇ × ∇ × Eω(r,t) + n2
ω

c

∂2Eω(r,t)
∂t2

= −μ 0
∂2Pω(r,t)

∂t2
, (3)

∇ × ∇ × E2ω(r,t) + n2
2ω

c

∂2E2ω(r,t)
∂t2

= −μ 0
∂2PNL

2ω (r,t)
∂t2

,

(4)

where nω and n2ω are the refractive indices of the medium
at the fundamental and the second-harmonic frequencies,
respectively, Pω(r,t) and PNL

2ω (r,t) are the linear and second-
order nonlinear polarization vectors in the crystal, c is the
light velocity in vacuum, and μ0 is the vacuum permeability.
Taking the Fourier transform of Eq. (3) with respect to
time and using the slowly varying envelope approximation,
where k2ω · ∇E(2ω,r) � �E(2ω,r), we obtain the following
reduced form [26] for the nonlinear wave equation:

k2ω · ∇E(2ω,r) = −2i
ω2

c2
PNL(2ω,r) exp (i q2ω · r), (5)

where E(2ω,r) and PNL(2ω,r) are the temporal Fourier trans-
forms of the electric field at the second-harmonic frequency
and the corresponding nonlinear polarization, and

q2ω = 2 kω − k2ω (6)

is the phase-mismatch vector, kω and k2ω being the wave
vectors of the fundamental and second-harmonic EMWs,
respectively.

In the rest of the paper, conventional summation over
repeated indices (i,j,k,l) ∈ {x,y,z} is assumed. In the dipole
approximation the quadratic nonlinear polarization vector
PNL(2ω) in an anisotropic medium can be written in a Cartesian
referential as P NL

i = χ
(2)
ijkEjEk , where χ

(2)
ijk is the quadratic

nonlinear optical susceptibility (NOS) tensor of the medium
[20]. When a spatial modulation of the optical properties of the
medium takes place, second-order contributions of elasto-optic
effects to the NOS can locally be taken into account, such that

χ
(2)
ijk = χ

(2,0)
ijk +

(
∂χ

(2)
ijk

∂ulm

)
ulm=0

ulm + · · ·

= χ
(2,0)
ijk + pijklm ulm + · · · , (7)
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where χ
(2,0)
ijk is the NOS tensor in the absence of modulation,

pijklm is the nonlinear photoelastic tensor responsible for
NAOD, and ulm is the strain tensor. In the linear approximation,
the latter is symmetric, i.e., ulm = uml , and its components are
deduced from the local variations of the displacement vector
[Eq. (1)] with

ukl(r) = 1

2

(
∂uk

∂rl

+ ∂ul

∂rk

)
, (rk,rl) ∈ {x,y,z}. (8)

III. CASCADE PROCESSES

Besides the direct generation of second-harmonic radiation
scattered from a standing AW previously described [26], we
propose here two types of cascade processes (CPs) leading to
the same result, which can phenomenologically be described
as follows. In the first-type process (CP1) [Fig. 1(a)], an
incoming EMW at fundamental angular frequency ω first
diffracts on a standing AW (at angular frequency �); then
the diffracted beam (angular frequency ω ± �) interacts with
another incoming EMW at angular frequency ω, and a sum-
frequency nonlinear process produces EMWs at frequencies
2ω ± �. In the second-type process (CP2) [Fig. 1(b)], first
SHG takes place, producing an EMW at angular frequency
2ω; then the second-harmonic wave diffracts on the standing
AW, which yields EMWs at angular frequencies 2ω ± �. In
the following, we will establish the relations necessary to the
evaluation of the efficiencies of these two competing ways to
produce an output signal of the angular frequencies 2ω ± �.

In the frequency domain, the polarization vectors involved
in the first-type CP can be written as follows:

P
(I)

i (ω ± �) = pijkl ukl(�) Ej (ω), (9)

P
(II)

i (2ω ± �) = χ
(2)
ijk(2ω ± �) Ej (ω) Ek(ω ± �), (10)

where superscripts (I) and (II) refer to the two consecutive
subprocesses that constitute this process, namely, linear
diffraction from the standing AW (stage I) and sum-frequency
generation (stage II). Here pijkl and χ

(2)
ijk are elements of

the linear photoelastic tensor and of the second-order NOS
tensor of the crystal, respectively, and ukl are elements of the
strain tensor derived from the components of the displacement
vector u [see Eq. (8)]. It is worth noting that the photoelastic
interaction involved in the CPs is thus linear, whereas it is
nonlinear in the case of the direct process.

FIG. 1. Schematic of the cascade processes: (a) first-type CP
(CP1): linear acousto-optical diffraction by standing AWs and sum-
frequency generation; (b) second-type CP (CP2): second-harmonic
generation and linear acousto-optical diffraction by standing AWs.

Analogously, for the second-type CP, the polarization
vectors related to SHG (subprocess I) and diffraction from
the standing AW (subprocess II) are

P̃
(I)

i (2ω) = χ
(2)
ijk(2ω)Ẽj (ω)Ẽk(ω), (11)

P̃
(II)

i (2ω ± �) = pijklukl(�)Ẽj (2ω). (12)

The electric field components Ei(ω ± �) and Ẽi(2ω) of
the EMWs generated by the first subprocesses of the first-
and second-type CPs, respectively, can be obtained from
the corresponding polarization terms through the following
equations:

Ei(ω ± �) = iω2

2c2kω ± �

(
1

V

∫
V

P
(I)
i ei q·r dr

)
, (13)

Ẽi(2ω) = i(2ω)2

2c2k2ω

(
1

V

∫
V

P̃
(I)
i ei q̃·r dr

)
, (14)

where q = kω + ζ − kω±� and q̃ = 2kω − k2ω are the mis-
match vectors between the wave vectors of the waves taking
part in the processes, kω, kω±�, and k2ω being the wave vectors
of the fundamental, diffracted, and second-harmonic waves,
respectively, and ζ = �/vL,T ez being the wave vector of the
longitudinal (transversal) AW.

For the second stages of the first and second type of CPs
the electric field strengths of the generated EMWs are, again,
deduced from the associated source terms, or polarization
vectors:

Ei(2ω ± �) = i(2ω ± �)2

2c2k2ω±�

(
1

V

∫
V

P
(II)
i ei κ·r dr

)
, (15)

Ẽi(2ω ± �) = i(2ω ± �)2

2c2k2ω±�

(
1

V

∫
V

P̃
(II)
i ei κ̃·r dr

)
. (16)

The integrals in Eqs. (13)–(16) are taken over the interaction
volume V of the domain in the crystal where the average
intensity (or Poynting vector) of the incident EMW is nonzero.

The mismatch vectors q and q̃, as well as the quasi-phase-
matching conditions for the first and second stages of each CP
are given by

q = kω + ζ − kω±� and κ = kω + kω±� − k2ω±� (CP1),

(17)

q̃ = 2kω − k2ω and κ̃ = k2ω + ζ − k2ω±� (CP2). (18)

For comparison, the mismatch vector for the one-stage
direct NAOD process [26] obeys

qd = 2kω − k2ω + ζ, (19)

which shows that quasi-phase-matching conditions are quite
different for the CP and direct NAOD processes. The main
difference between the quasi-phase-matching conditions we
use and the conventional ones obtained for the theoretical
description of SHG in periodically modulated structures (see,
e.g., [40,41]) — or those obtained for instance with a specific
experimental setup that uses the total-internal-reflection phase
shift as a means to reach quasi-phase-matched SHG in a GaAs
film [42]—is as follows: In the latter cases, the modulation of
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FIG. 2. Schematic of the nonlinear acousto-optical diffraction for cascading processes CP1 (a) and CP2 (b) in the transmission geometry.

the refractive indices and of the nonlinear optical susceptibility
tensors is static, whereas it is time dependent in the case
of NAOD. However, it can be noted that NAOD may, like
the processes described in Refs. [40–42], lead to an efficient
phase-matched frequency conversion process in a crystal such
as GaAs thanks to the assistance of the acoustically-induced
index modulation.

Moreover, the wave vectors of the EMWs diffracted by the
AW must satisfy either of the Bragg conditions, i.e.,kω±� =
kω + NQL,T or k2ω±� = k2ω + NQL,T (N ∈ Z) for CP1 and
CP2, respectively, where QL,T are the wave vectors of the
longitudinal and transverse standing AWs and N denotes the
diffraction order (Fig. 2).

Phenomenologically, the field generated at frequency 2ω ±
� can be related to the incoming field at fundamental frequency
ω through a susceptibility tensor that takes the effect of the AW
into account. For CP1 and for given phase-mismatch vectors
q and κ in the crystal, the s- and p-polarized components
Es,p(2ω ± �) of the generated field are related to those of the
incoming field at the fundamental frequency as follows:

(
Es(2ω ± �,q,κ)

Ep(2ω ± �,q,κ)

)
=

[
χs,ss(q,κ) χs,pp(q,κ)

χp,ss(q,κ) χp,pp(q,κ)

](
E2

s (ω)

E2
p(ω)

)
.

(20)

Similarly, for CP2 and for given phase-mismatch vectors
q̃ and κ̃ in the crystal, the s- and p-polarized components of
the field Ẽ(2ω ± �) generated at angular frequency 2ω ± �

depend upon those of the incoming field at the fundamental
frequency:

(
Ẽs(2ω ± �,q̃,κ̃)

Ẽp(2ω ± �,q̃,κ̃)

)
=

[
χ̃s,ss(q̃,κ̃) χ̃s,pp(q̃,κ̃)

χ̃p,ss(q̃,κ̃) χ̃p,pp(q̃,κ̃)

](
Ẽ2

s (ω)

Ẽ2
p(ω)

)
.

(21)

In Eqs. (20) and(21), the relevant components of ten-
sors χ̂(q,κ) and ˆ̃χ (q̃,κ̃) depend on those of both the lin-
ear photoelastic tensor p̂ and the strain tensor û of the
crystal.

The numerical calculations discussed in Sec. IV are carried
out for a GaAs crystal. The crystalline symmetry of that
material (it belongs to the Td point group), leaves one, two,
or three nonzero elements in the (2 × 2) susceptibility tensors
χ̂(q) andˆ̃χ (q), depending on the polarization of the AW. Thus,

for a longitudinal AW, they become

χ̂L(q,κ) =
[

0 χL
s,pp(q,κ)

0 0

]
,

(22)

ˆ̃χL(q̃,κ̃) =
[

0 0

0 χ̃L
p,pp(q̃,κ̃)

]
,

for CP1 and CP2, respectively, whereas for a transverse AW,
the corresponding tensors are

χ̂T (q,κ) =
[

0 χT
s,pp(q,κ)

χT
p,ss(q,κ) χT

p,pp(q,κ)

]
,

(23)

ˆ̃χT (q̃,κ̃) =
[

0 χ̃T
s,pp(q̃,κ̃)

0 0

]
.

The nonzero susceptibility tensor elements can be ex-
pressed as functions of the angles of incidence ϕω and θω

of the fundamental frequency EMWs involved in any of
the cascading processes (Fig. 1). It is assumed here that
both incoming wave vectors belong to a plane of incidence
perpendicular to the surfaces of the GaAs slab. For any given
set of angles ϕω and θω, the susceptibility tensor elements
appearing in Eqs. (22) and (23) assume the following form:

χL
s,pp(q,κ) = −χ (2)(p11 sin θω cos φω

+p12 cos θω sin φω) Uzz(q,κ), (24a)

χT
p,pp(q,κ) = 2χ (2)p44 cos φω Uxz(q,κ), (24b)

TABLE I. Physical data for GaAs and AW parameters used for
calculations.

Volumic mass ρ = 5.316 × 10−3 kg cm−3

Indices of refraction [43] nω = 3.2919
n2ω = 3.3168

Unstrained GaAs χ̂ (2,0) tensor
element [34]

χ (2) = 188.5 × 10−12 m V−1

GaAs linear photoelastic tensor
elements [44]

p11 = −0.165

p12 = −0.14
p44 = −0.072

Acoustic wave velocities in
GaAs [45]

vL = 4.73 × 105 cm s−1

vT = 3.35 × 105 cm s−1

Acoustic wave intensity IAW = 30 W cm−2
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TABLE II. Combinations of s and p polarization states of the
incident and diffracted waves that can lead to ω → 2ω ± � nonlinear
diffraction in GaAs for each diffraction mechanism and each type of
AW.

Direct NAOD [26] CP1 CP2

Longitudinal AW s → p p → s p → p

p → p

Transverse AW s → s s → p p → s

s → p p → s

p → s p → p

p → p

χT
s,pp(q,κ) = 2χ (2)p44(q,κ) cos (θω − φω)

×Uyz(q,κ), (24c)

χT
p,ss(q,κ) = 2χ (2)p44 Uxz(q,κ), (24d)

χ̃L
s,pp(q̃,κ̃) = −χ (2)p12 (sin θω cos φω

+ cos θω sin φω) Uzz(q̃,κ̃), (24e)

χ̃T
s,pp(q̃,κ̃) = −2χ (2)p44 (sin θω cos φω

+ cos θω sin φω) Uxz(q̃,κ̃). (24f)

In Eqs. (24a)–(24f), p11 = pxxxx = pyyyy = pzzzz,
p12 = pxxyy = pxxzz = pyyzz = pyyxx = pzzxx = pzzyy , and
p44 =pxyxy =pxzxz =pyzyz =pyxyx =pzxzx =pzyzy =pxyyx =
pxzzx = pyxxy = pyzzy = pzxxz = pzyyz denote the three
nonzero components of the linear photoelastic tensor of
GaAs; χ (2) = χ (2)

xyz = χ (2)
yzx = χ (2)

zxy = χ (2)
xzy = χ (2)

yxz = χ (2)
zyx is

the only nonzero element of the second-order susceptibility
tensor of unstrained GaAs, while the functions Ukl(q,κ) and
Ukl(q̃,κ̃) derive from the strain tensor components in the
spatial frequency domain obtained via Fourier transform of
the real-space strain tensor components ukl(r) defined by
Eq. (8). Thus,

ukl (γ ) = 1

V

∫
V

ukl (r) exp (i γ · r) dr, (25)

where γ ∈ {q, κ̃} are the mismatch vectors involved in the
relevant cascading process, and finally

Ukl(q,κ) = 1

V
ukl(q)

∫
V

exp (iκ · r)dr, (26)

Ukl(q̃,κ̃) = 1

V
ukl(κ̃)

∫
V

exp (iq̃ · r)dr, (27)

for CP1 and CP2, respectively. The calculation procedure for
the integrals which define the spectral strain tensor components
ukl (γ ) and functions Ukl(q,κ) and Ukl(q̃,κ̃) in Eqs. (25)–(27)
has been described in [26].

Finally, in order to estimate the relative intensities of the
output diffracted waves for each CP, each type of standing
AW, and each polarization configuration, one introduces the
corresponding nonlinear diffraction efficiencies D A

α,ββ defined
as

D A
α,ββ = I (2ω ± �)

I 2(ω)
∝ |χα,ββ |2,

(28)
(α,β) = (s,p)andA = (L,T ),

where I (2ω ± �) and I (ω) are the intensities of the output and
incident beams, respectively.

IV. NUMERICAL RESULTS AND DISCUSSION

Numerical simulations discussed in this section are carried
out for an incoming fundamental EMW angular frequency ω =
1.77 × 1014 rad s−1 (i.e., for the CO2-laser vacuum wavelength
λ = 10.6 μm), and for frequencies fL,T = �L,T /2π of the
longitudinal and transverse standing AWs in the GaAs film
equal to 475 and 252.5 MHz, respectively. These frequencies
correspond to the same overtone value for the AW in the GaAs
slab of width L = 1 μm. The material and acoustic parameters
used for calculations are presented in Table I.

Following from the form of the nonlinear susceptibility
tensors [Eqs. (22) and (23)], for each cascading mecha-
nism leading to ω → 2ω ± � nonlinear diffraction, and for
each type of AW, only some of the potential polarization
combinations (s → s, s → p, p → s, and p → p) between
incident and diffracted waves are allowed by the symmetry
of the crystal, as shown in Table II. Thus, three of the four
combinations can be reached (and each of them through two
or three of the mechanisms), s → s being the only forbidden
combination for the CPs.

These results show that the type of process involved in
the production of second-harmonic radiation by nonlinear
diffraction cannot be deduced from the analysis of the input
and output states of polarization alone. Indeed, as indicated in
Table II, the p → p polarimetric combination can result from
the direct NAOD process as well as from CP2 for a longitudinal
AW. Similarly, for a transverse AW three combinations (p →
p,p → s, and s → p) can be obtained either through direct
NAOD process or from CP1, and the fourth one (p → s)
actually takes place in all three processes. In practical terms,

FIG. 3. Angular dependences of diffraction efficiencies D L
s,pp and D L

p,pp obtained in the zeroth order of diffraction from a longitudinal
standing AW through cascading processes CP1 (a) and CP2 (b). Insets show top views of the same dependences in semilogarithmic scale.
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FIG. 4. Angular dependences of diffraction efficiencies D L
s,pp and D L

p,pp obtained in the first order of diffraction from a longitudinal standing
AW through cascading processes CP1 (a) and CP2 (b). Insets show top views of the same dependences in semilogarithmic scale.

however, the experimental determination of the photoelastic
tensor elements of the crystal requires that the mechanisms
of nonlinear diffraction be unambiguously distinguished. For
that purpose, in addition to selecting the type of AW and the
polarization combination, one has to exploit the specific angu-
lar dependences of these mechanisms, which are presented in
Figs. 3–6 for the N = 0 and N = 1 orders of diffraction.

Figure 3 thus compares diffraction efficiencies D L
s,pp and

D L
p,pp obtained in the zeroth order of diffraction from a

longitudinal standing AW through cascading processes CP1
[Fig. 3(a)] and CP2 [Fig. 3(b)], respectively, as functions of
the angles of incidence ϕω and θω of the incident waves at the
fundamental frequency (as defined in Fig. 1). Top-views of
the same dependences are given as insets in semilogarithmic
scale. Figure 4 shows the same parameters for the first order of
diffraction. Thus the angular dependences of both p → s and
p → p combinations exhibit the same double broad peaks
in the zeroth order, but while the p → s combination can
unambiguously be attributed to the CP1 process, the p → p

combination can indeed result from either the CP2 or the direct
process (see Table II).

In comparison, the angular dependences of D L
s,pp and

D L
p,pp in the first order of diffraction are clearly different,

as evidenced by Figs. 4(a), with two main diffraction peaks
for CP1, and 4(b), with a single sharp peak for CP2. The
magnitudes of diffraction efficiencies decrease (by two orders
of magnitudes) between the zeroth and the first orders of
diffraction. Consequently, the study of the first order of
diffraction unambiguously lifts any uncertainty when it comes
to attributing the diffracted signal to a specific mechanism.

For a transverse standing AW, calculations show that the
angular dependences of the three D T

α,ββ (α,β) = (s,p) diffrac-
tion efficiencies associated with the three possible polarization
combinations allowed by the CP1 process are almost identical.

Their angular behavior, however, clearly differs from that of
the CP2 process for the p → s combination, i.e., the only one
that the latter process allows, as evidenced by Figs. 5 and 6 for
the zeroth and first orders of diffraction, respectively, in which
D T

s,pp obtained through either the CP1 mechanism [Figs. 5(a)
and 6(a)] or the CP2 mechanism [Figs. 5(b) and 6(b)] is
presented. In addition, it must be noted that the respective
angular dependences of the CPs are also different from that
of the direct process, which allows the p → s combination
as well. Moreover, in contrast to the case of a longitudinal
standing AW, the values of the diffraction peaks are of a similar
order of magnitude in the zeroth and first diffraction orders.

Overall, the various processes of the nonlinear diffraction
by a standing AW also differ from each other in the magnitude
of their efficiencies, depending on whether they are mediated
by a longitudinal or a transverse AW. A comparison of
Figs. 3–6 shows that the process efficiencies for a transverse
AW are three (respectively, four to five) orders of magnitude
larger than those for a longitudinal AW in the zeroth (respec-
tively, the first) order of diffraction.

As indicated in Table II, and as was demonstrated in [26],
the direct process for the observation of nonlinear diffraction
from a standing AW is allowed for all four polarization
combinations with a transverse AW, and for two of them
(s → p and p → p) with a longitudinal AW. This means that
in most cases the output signal at frequency 2ω ± � stems
from two or even three simultaneous processes. However, as
mentioned above, a careful choice of the incidence angles of
the incoming waves and of the polarization combinations and
type of AW makes it always possible to distinguish between
the three processes. As a consequence, it can be expected
that experimental measurements carried out with a sufficient
number of such experimental parameters, and confronted with
our calculations, can lead to an estimate of the values of the

FIG. 5. Angular dependences of diffraction efficiency D T
s,pp obtained in the zeroth order of diffraction from a transverse standing AW

through cascading processes CP1 (a) and CP2 (b). Insets show top views of the same dependences in semilogarithmic scale.
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FIG. 6. Angular dependences of diffraction efficiency D T
s,pp obtained in the first order of diffraction from a transverse standing AW through

cascading processes CP1 (a) and CP2 (b). Insets show top views of the same dependences in semilogarithmic scale.

nonlinear susceptibility tensor elements, as well as those of
the linear and nonlinear photoelastic tensor elements of GaAs
or any other crystal of the same symmetry group—provided
that it is sufficiently transparent at both the fundamental and
the second-harmonic frequencies.

V. CONCLUSIONS

In this paper, we have investigated the contribution of
two types of cascading processes to the nonlinear optical
diffraction of electromagnetic waves from a longitudinal or
transverse standing acoustic wave established in a GaAs
crystal. Contrary to the direct process described in detail in our
previous publication [26], the photoelastic interaction between
electromagnetic and acoustic waves is here linear. The first
type thus results from the succession of linear acousto-optical
diffraction and sum-frequency generation. The second type
of cascading process involves a nonlinear optical process,
second-harmonic generation, followed by linear acousto-
optical diffraction. The phase-matching conditions for these
two mechanisms are different, which accounts for the clear
specificity of their respective angular dependences with respect
to the angles of incidence of the interacting electromagnetic
waves. Moreover, the very existence of these processes, as well
as their efficiency and angular behavior, also depends on the
nature (longitudinal or transverse) of the acoustic wave that
mediates the linear photoelastic process, and on the states of

polarization of the incoming and diffracted electromagnetic
waves. We have carefully established in great detail all the
rules governing the dependence of the cascading processes
upon such parameters, and compared them to those previously
obtained for the direct mechanism. As a result, our simulations
can be confronted with a set of well-chosen measurements (in
terms of incidence angles of the incoming waves, input and
output polarization combinations, and type of acoustic wave)
in order to determine the values of the nonlinear susceptibility
tensor elements, as well as those of the linear photoelastic
tensor elements of any crystal belonging to the same symmetry
group as GaAs. Furthermore, carrying out similar calculations
for crystals with a different type of symmetry does not present
any particular difficulties.
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