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Grading plasmonic nanoparticles with light
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We introduce an approach for fine grading of plasmonic ellipsoidal nanoparticles by two interfering light
beams. We consider electrically neutral subwavelength metal nanoparticles whose response is described within
the dipole approximation. For the ellipsoidal nanoparticles, we find that their polarizability tensor is strongly
dispersive due to the existence of two orthogonal plasmon modes. These modes can be resonantly excited by
light and the optical force experienced by particles depends on the ratio of ellipsoid semiaxes. This dependence
allows us to spatially separate ellipsoidal particles with different aspect ratio. The eigenfrequencies of plasmons
depend on the depolarization factor as well as on the permittivity of the environment and therefore our results
can potentially be employed in a wide frequency range including near infrared, visible, and ultraviolet.
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I. INTRODUCTION

Increased interest in the development and application of
various nanoparticles requires advanced methods for their
manipulation, which is a complex task due to the size of
these particles. Finite tolerances in fabrication often lead to
the presence of various size particles in the output of the
fabrication process. This is why the development of efficient
techniques for separation and sorting of nanoparticles and their
clusters (e.g., in colloids, living cells, and macromolecules) is
of great interest. Proposals of size separation of microparticles
using laser radiation date back to 1970 [1], when it was first
demonstrated that one can manipulate the dielectric micro-
spheres using laser radiation pressure. Renewed interest in
this subject in the past decade has been motivated by advances
in nanofabrication technology, which aims to develop new
approaches for subwavelength light manipulation and signal
processing on the nanoscale.

Previous works have demonstrated that optical manipula-
tion and sorting of submicrometer objects can be realized by
means of evanescent wave interference patterns [2], by far-field
interference patterns [3], by time-modulated laser radiation
[4], and by using Bessel modes and Laguerre-Gaussian beams
[5,6]. The underlying mechanism of optical manipulation is
defined by ponderomotive forces experienced by particles
within the light field. In the simplest case these forces can
be represented as a superposition of a scattering force along
the beam axis and a gradient force resulting from nonuniform
spatial distribution of light intensity (for example, in the
vicinity of the beam focus) [7]. In the case of Rayleigh-sized
particles (nanoparticles), the dipole approximation method
has been successfully applied to calculate the force, giving
reasonable agreement with complete Mie theory [8].

The optical forces acting on nanoparticles are quite small
since they are proportional to the volume of a particle
and this makes manipulation of extremely small particles
challenging. This problem can be mitigated in the case of
metal nanoparticles by using their plasmonic resonances,
when the resonant growth of fields in the vicinity of the

particle leads to the enhancement of the ponderomotive forces,
including both gradient and scattering components. Resonant
plasmonic properties of noble-metal nanoparticles are already
used for biomolecular sensors [9], localized heaters [10],
photonic imaging [11], and tailoring metamaterial properties
[12]. Extensive studies in this area consider mainly size sorting
of spherical nanoparticles (see Refs. [13–16]).

Further studies propose the use of the nonspherical particles
for force calibration purposes [17]. In the present paper
we consider the problem of grading ellipsoidal plasmonic
nanoparticles. This problem did not receive appropriate at-
tention in earlier publications. However, the separation of
nanoparticles based on their aspect ratio seems to be an
important capability that can complement the size-sorting
processes in order to be able to extract particles that are highly
uniform in both size and shape from the mixtures of various
particles.

II. PONDEROMOTIVE FORCES

First, we consider a single small metallic particle sur-
rounded by a viscous medium in an inhomogeneous elec-
tromagnetic field. Our first goal is to find the forces acting
on this particle. We suppose that the particle is much smaller
than the wavelength, hence its response to the external field
can be studied within the dipole approximation, when the
photophoretic and light pressure forces can be neglected. In
contrast, the ponderomotive force does not vanish in the dipole
approximation. It consists of two parts: one is the force acting
on the dipole in a weakly inhomogeneous electric field and the
other is the Lorentz force acting on the polarization current
induced by the electromagnetic wave in the particle

F(PM) = ( p∇)E + 1

c

[
∂ p
∂t

× B
]
. (1)

We are interested in the averaged particle motion in the high-
frequency field E ∼ exp(iωt), neglecting fast oscillations, so
this motion is defined by the ponderomotive (or Miller [18])
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FIG. 1. (a) Schematics of the problem. The particle is oriented
along the static electric field. Two optical beams with wave vectors
k1 and k2 produce optical forces that strongly depend on the shape of
the particles. We consider the following ellipsoids of revolution: (b)
a prolate ellipsoid, (c) a sphere, and (d) an oblate ellipsoid.

force averaged over the period of the field

〈F〉 = 1
2 {( p∇)E∗ + [ p × curlE∗] + c.c.}, (2)

or equivalently

Fi = 1
2 (pk∇iE

∗
k + c.c.), (3)

where we sum over the repeating indices. In the linear
approximation the electric dipole moment can be expressed
as p = α̂E, where α̂ is a polarizability tensor of a particle. As
a particular example we consider a two-dimensional geometry
(the field is homogeneous along the y axis) and TE polarization
of the electromagnetic wave. In such a case the force can be
expressed in the explicit form

Fx = 1

2

(
αyyEy

∂E∗
y

∂x
+ c.c.

)
, (4)

Fy = 0, (5)

Fz = 1

2

(
αyyEy

∂E∗
y

∂z
+ c.c.

)
, (6)

where x is the axis along the wave vector, while the electric
field is directed along the y axis, as shown in Fig. 1(a). We
can represent the electric field as Ey = A(x,z) exp[−i�(x,z)],
where A(x,z) and �(x,z) are real amplitude and phase,
respectively. Then the expression for the force assumes a more
compact form

F = A2∇�, (7)

with

� = 1
2 Reαyy ln A2 − Imαyy�, (8)

where Re and Im stand for real and imaginary parts, respec-
tively. The ponderomotive force (7) can be conventionally split
into two parts: gradient force, which is proportional to the
real part of the polarizability, and scattering force, which is
proportional to the imaginary part of the polarizability. The

FIG. 2. Depolarization factor n as a function of the ratio of the
semiaxes of the ellipsoid of revolution a/b.

scattering force is caused by the momentum transfer from
absorbed photons to the nanoparticle.

III. ELLIPSOIDAL PARTICLES

As an example of the nontrivially shaped nanoparticles we
consider ellipsoids of revolution. For nanoparticles of such
shape the polarizability can be found in a quasistatic limit and
in the principal axes it is defined by a tensor

α̂0 =

⎛
⎜⎝

α⊥ 0 0

0 α⊥ 0

0 0 α‖

⎞
⎟⎠

≡ α⊥1̂ + (α‖ − α⊥)

⎛
⎜⎝

0 0 0

0 0 0

0 0 1

⎞
⎟⎠, (9)

where we have explicitly separated the isotropic part. In these
expressions

α⊥ = a2b

3

ε(ω) − εl

εl + [ε(ω) − εl](1 − n)/2
, (10)

α‖ = a2b

3

ε(ω) − εl

εl + [ε(ω) − εl]n
, (11)

where a and b represent principal semiaxes of the ellipsoid,
ε(ω) is the permittivity of the material of the particle, and εl is
the permittivity of the surrounding medium. The value n is a
so-called depolarization factor given by [19]

n = 1

2

(
a

b

)2 ∫ ∞

0

dx

(1 + x)3/2[x + (a/b)2]
. (12)

We note that n depends only on the ratio of semiaxes a/b,
which determines the shape of the ellipsoid. Figure 2 shows
the dependence of n on this ratio. There are three distinctive
shapes: 0 < n < 1/3 corresponds to the prolate ellipsoid
[see Fig. 1(b)], n = 1/3 corresponds to the sphere [shown
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in Fig. 1(c)], and 1/3 < n < 1 corresponds to the oblate
(disklike) ellipsoid, shown in Fig. 1(d).

In what follows we consider silver particles and use the
permittivity data from the refractive index database [20]. Ellip-
soidal metal nanoparticles generally support three quasistatic
plasmon modes, two of which are degenerate in the case of
the ellipsoid of revolution. We note that the eigenfrequencies
of surface plasmons of nanoscale particles may fall in quite a
wide frequency range, from ultraviolet down to visible and
near infrared, and this depends on the permittivity of the
surrounding medium εl and on the depolarization factor n.
The resonant frequencies can be found from Eqs. (10) and
(11) and they correspond to the zeros of the real parts of the
denominators.

IV. NANOPARTICLE GRADING BY THE FIELD OF TWO
CROSSING LIGHT WAVES

We consider the electromagnetic field created by two
identical plane waves propagating at an angle 2β with respect
to each other as schematically shown in Fig. 1(a). In addition,
we assume that there is a static homogeneous electric field,
which is strong enough so that it maintains the orientation
of the anisotropic nanoparticles and it does not affect the
dynamics of particles in any other way. Optical field can be
represented as a standing wave in the z direction and a traveling
wave in the x direction

Ey(x,z) = 1
2E0e

−ikx−i	z + 1
2E0e

−ikx+i	z

= E0 cos 	z exp(−ikx), (13)

where 	 = k0
√

εl sin β, k = k0
√

εl cos β, and k0 = ω/c is the
free-space wave number.

We use the amplitude-phase representation that was intro-
duced before and for A(x,z) and �(x,z) we get, respectively,

A2(x,z) = E2
0 cos2 	z, (14)

�(x,z) = −kx. (15)

The force components are then found as

Fx = −kE2
0Imαyy cos2 	z, (16)

Fz = − 1
2	E2

0Reαyy sin 2	z. (17)

The principal axes of a particle do not necessarily coincide
with x, y, and z since the orientation of the particle is imposed
by the direction of the constant electric field and can, in
principle, be arbitrary. For example, if the shape of the particle
is prolate, it orients with its symmetry (long) axis along the
static field. Suppose that the constant electric field is applied
in the direction characterized by spherical angles φ and θ [see
Fig. 1(a)]. Then the polarizability tensor of the prolate particle
takes the form

α̂ = α⊥1̂ + (α‖ − α⊥)σ̂ (φ,θ ), (18)

with

σ̂ (φ,θ )

=

⎛
⎜⎝

cos2 φ sin2 θ sin φ cos φ sin2 θ cos φ sin θ cos θ

sin φ cos φ sin2 θ sin2 φ sin2 θ sin φ sin θ cos θ

cos φ sin θ cos θ sin φ sin θ cos θ cos2 θ

⎞
⎟⎠.

The case of an oblate particle is more complicated. Indeed, it
orients so that the direction of the maximum of its polarization
is along the static field. However, now the maximum of
polarization is achieved along the long axis of the disklike
particle, which is orthogonal to the symmetry axis (short axis
of the oblate ellipsoid). At the same time the direction of the
short axis is indifferently stable in the plane orthogonal to the dc
field and may take any angular position in this plane. Denoting
this arbitrary angle by ψ and considering that ψ = 0 when the
short axis of the oblate ellipsoid lies in the plane formed by the
dc electric field and the z axis, we can rewrite the components
of the polarizability tensor in the form (18) with

σ̂xx = (cos φ cos θ cos ψ − sin φ sin ψ)2,

σ̂yy = (cos θ sin φ cos ψ + cos φ sin ψ)2,

σ̂zz = sin2 θ cos2 ψ,

σ̂xy = σ̂yx = −(sin φ sin ψ − cos θ cos ψ cos φ)

× (cos θ sin φ cos ψ + cos φ sin ψ),

σ̂xz = σ̂zx = −(cos φ cos θ cos ψ − sin φ sin ψ) sin θ cos ψ,

σ̂yz = σ̂zy = −(sin φ cos θ cos ψ + cos φ sin ψ) sin θ cos ψ.

Since in our geometry the forces are only affected by αyy , we
write this component explicitly

αprl
yy = α⊥ + (α‖ − α⊥) sin2 φ sin2 θ, (19)

αobl
yy = α⊥ + (α‖ − α⊥)(cos θ sin φ cos ψ + cos φ sin ψ)2

(20)

for prolate and oblate particles, respectively. We can take into
account ψ by using one of the following approaches. In the
first approach we can assume that ψ takes an arbitrary but fixed
value (it is somewhat justified when the additional influence
of the high-frequency field is also taken into account). In the
second approach we can assume that ψ takes random values
due to Brownian motion, it is homogeneously distributed from
0 to π , and in order to calculate polarizability (20) we need to
average it over ψ .

Figure 3 shows several typical spectra of the forces acting
on silver nanoparticles. The force components Fx,z depend
on the position zp of the particle and in our calculations we
choose it at the coordinate of the maximum gradient of the field
intensity along z for λ = 500 nm (i.e., zp = π/κp, where κp =
2π/λ

√
εl sin β). In what follows we present forces per unit

volume calculated for the incident field intensity of 1 W/cm2.
To calculate the full physical force for an arbitrary intensity,
the calculated force per unit volume has to be multiplied by
the volume of the particle and by the intensity of incident
light. For a particle of the size of 10 nm the force magnitude
can be estimated as F ∼ 10−20 N. For both oblate and prolate
ellipsoids we observe two resonant peaks that correspond to
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FIG. 3. Optical force components Fx (black dashed line)
and Fz (red solid line) as functions of wavelength for dif-
ferent shapes of ellipsoids: (a) n = 0.2, (b) n = 1/3, and
(c) n = 0.4. The insets show the schematics of the corresponding
particle shapes. Here φ = θ = π/4, β = π/6, and ψ = π/4. The
calculations are made for silver particles. The dielectric permittivity
of the viscous medium is εl = 1.7 (water) and z = 382 nm.

plasmon resonances. For the sphere, when n = 1/3, the modes
become degenerate and there is only one resonant peak [see
Fig. 3(b)]. Two-dimensional color maps in Fig. 4 show force
components Fx and Fz as functions of the wavelength and
depolarization factor n. We note that the Fx component of the
force is always positive, while Fz can change sign, and this is
the property that we are going to utilize.

For particle grading purposes, we choose parameters
for which the z component of the force changes its sign
[corresponding transitions are shown by black contours in
Fig. 4(b)]. Near this region of parameter space, particles
of slightly different shapes move in opposite directions and
get spatially separated provided their depolarization factors
are separated by a zero-force boundary. For the calculations
presented in Fig. 4, for particles with the shape of an oblate
ellipsoid (n > 1/3), we use the averaging over the angle ψ as
discussed above in order to account for the random orientation
of the particles due to their Brownian motion. However, if
the short axis direction of the oblate ellipsoid particle can be
somehow fixed, then the whole range of behaviors of αyy (and
correspondingly Fx,z) can be realized for identical particles
that have different orientation of the short axis ψ . This case is
illustrated in Fig. 5, where we show the dependence of the force
Fz on n for two orientation angles φ = θ = 0.2π [Fig. 5(a)]
and φ = θ = 0.4π [Fig. 5(b)] for three different wavelengths.
It is clear that the mean value of the force (averaged over ψ)
and also the range of possible forces exerted on the particle
depend considerably on the orientation of the dc field (i.e., on
angles φ and θ ). As angles φ and θ approach ±π/2, the forces
become larger and so do their gradients. The analysis of the
expression (20) shows that for a specific direction of the dc
field when it is parallel to the polarization of the optical wave
the forces do not depend on ψ and for this very direction the
magnitudes of the forces reach their maxima. As a result, we

FIG. 4. Components of the optical forces (a) Fx and (b) Fz in
units of mN cm−1 W−1 as a function of wavelength and depolarization
factor n. For n > 1/3 forces are averaged over ψ as discussed in the
text; other parameters are the same as in Fig. 2. The black contour in
(b) corresponds to a zero value of Fz.

conclude that this dc field orientation is preferable for sorting
the particles.

Material parameters for the particles of sizes of 10 nm and
below are different from those found in bulk materials [21,22]
since the mean free path of electrons becomes comparable to or
larger than the particle size. The permittivity εa of a spherical
particle of size a is related to the bulk permittivity via

εa = εbulk + ω2
p

ω2 + iωγ
− ω2

p

ω2 + iω(γ + vF /a)
,

where for silver �ωp = 9.1 eV, �γ = 0.02 eV [22], vF is
the Fermi velocity of conduction electrons, and vF ≈ 1.39 ×
108 cm/s. Since our particles are anisotropic with several
characteristic sizes, then 1/a has to be calculated by averaging
the inverse size of the particle over all angles. This averaging is
justified due to the isotropic distribution of the Fermi velocity
of electrons within the particle. Dashed curves in Fig. 5 show
forces calculated for particles whose smaller size is 10 nm,
while the larger size is determined via the corresponding
depolarization factor n. We see that at shorter wavelengths,
the small-size effect broadens the resonances and reduces the
magnitude of the forces, while for longer wavelengths the
effect is very minor.
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FIG. 5. Dependence of the optical force component Fz on the
depolarization factor n for different particle orientations (a) φ = θ =
0.2π and (b) φ = θ = 0.4π and different wavelengths λ = 400, 500,
and 600 nm. The force is calculated at maximum intensity gradient
in the standing wave, which corresponds to zp = 382, 479, and
575 nm, and β = π/6. Black curves show the mean value of the force
averaged over ψ and the cyan (gray) area highlights possible values
of Fz that can be achieved by varying ψ . Red dashed curves show
forces calculated by taking into account correction to the dielectric
permittivity due to the small size of the particles.

To illustrate particle dynamics that can be used for the
grading, we plot trajectories of particles of different shapes
in Fig. 6. For n1 < n < n2 particles are attracted to the area
of higher field intensity and they are pulled along the x axis
by the scattering force. We note that the scattering force does
not change the sign and it is always directed along the energy
density flow of light. On the other hand, for n < n1 and n > n2

particles are pushed away from the high-intensity gradient
region and they stop on the line where Ey = 0. Furthermore,
the x coordinate of the stopping point also depends on the form
of the particle, allowing for even finer grading of particles.
The trajectories of the particles are calculated for the same
parameters, as force in Fig. 5, where n1 ≈ 0.3144, and the
corresponding form of the particle is close to spherical. The
depolarization factor for the second zero value of force in
this case depends weakly on ψ , and n2 ≈ 0.369. Even in
the low-power regime, when the incident optical power flow
is 10 KW/cm2 we expect that the characteristic velocities
acquired by particles near the initial position are of the
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FIG. 6. Shown on the top is the normalized amplitude A/E0 of the
optical wave as a function of z. The bottom shows trajectories of the
particles of different shapes. Curves 1–7 correspond to the values of
n1,...,7 = (0.2744,0.2944, . . . , 0.3944). Particles with 0.369 > n >

0.3144 move to the left (trajectories 4 and 5), in the area of high field,
particles with n ≈ 0.3144 (trajectory 3) do not change z position, and
all other particles move to the right. The following parameters were
used in calculations: radiation wavelength λ = 400 nm, φ = θ =
0.4π , β = π/6, and the initial position of particles zp = 382 nm.

order of 1–10 μm/s. This estimation is obtained for particles
suspended in water at room temperature.

We note that the dynamics of particles placed in a liquid
environment can experience the effect of Brownian motion.
As a result, particles will not only move along the described
trajectories, but they will also randomly diffuse around these
trajectories. To describe this motion we use the Langevin
equation, which models random motion of the particle induced
by a random force. From the Langevin equation we can find
the standard deviation of the particle position from the average
as

� =
√

6Bt

η2
,

where B = kT η, with k the Boltzmann constant, T temper-
ature, and η the coefficient of viscous friction for moving
particle, and t is the time of motion. As shown in Fig. 6,
particles that are nearly spherical move to the area with higher
field intensity and then keep moving along straight lines in
the x direction, whereas other particles are trapped in the
dark fringes of the interfering waves. In order for separation
to work, the time of the spherical particle motion in the x

direction should exceed the time that it takes all other particles
to stop in the low-intensity region. This condition can be
explicitly written as t > L⊥/vD⊥, where L⊥ is the distance that
nonspherical particles have to move to their stopping point and
vD⊥ is the average speed of these particles in the z direction.
As a result, the standard deviation can be estimated as

� >

√
6kT L⊥
ηvD⊥

.

Since the friction coefficient is η = F⊥/vD⊥, where F⊥ is the
force in the z direction, the relative deviation of the particles
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can be written as

�

L⊥
>

√
6kT

F⊥L⊥
. (21)

The optical force depends on the light intensity; therefore
this condition can be satisfied by choosing an appropriate
power. At room temperature in our considered structure, when
L⊥ ∼ 500 nm, the above condition holds for power flows
of the order of MW/cm2 and higher. The Péclet number,
which characterizes the ratio between the drift velocity and
diffusion velocity, can be written as F⊥L⊥/kT and we see
that the inverse quantity appears under the square root on the
right-hand side of Eq. (21). We see that in order for sorting to
work, the Péclet number has to be greater than 6.

V. CONCLUSION

We have shown that optical forces acting on metal nanopar-
ticles strongly depend on the shape of the particles and on their
orientation, as well as on the field structure and frequency.
We have studied analytically the polarization of particles that

have the shape of an ellipsoid of revolution. We found that
its polarization can be expressed in terms of a depolarization
factor n, which depends on the ratio of ellipsoid semiaxes.
Fixing the orientation of ellipsoidal particles by using a static
electric field and then illuminating these particles by two
interfering light beams, we can create depolarization-factor
domains where the gradient ponderomotive force changes sign
for ellipsoidal particles with different depolarization factor.
Thus, the particles with a different aspect ratio can be moved
in opposite directions. This approach allows us to select metal
nanoparticles of a particular shape from the mix and extract
them. We expect that more complex electromagnetic field
patterns can create further possibilities for finer sorting of
anisotropic particles of different sizes.

ACKNOWLEDGMENTS

This research was supported in part by the RFBR Grant
No. 14-02-00439 and a grant agreement between the Ministry
of Education and Science of the Russian Federation and
Lobachevsky State University of Nizhni Novgorod, Grant No.
02.B.49.21.0003.

[1] A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[2] T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez,

and K. Dholakia, Phys. Rev. B 74, 035105 (2006).
[3] P. Jakl, T. Cizmar, M. Sery, and P. Zemanek, Appl. Phys. Lett.

92, 161110 (2008).
[4] I. Ricardez-Vargas, P. Rodriguez-Montero, R. Ramos-Garcia,

and K. Volke-Sepulveda, Appl. Phys. Lett. 88, 121116 (2006).
[5] L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez,

S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant,
A. C. Riches, and K. Dholakia, Appl. Phys. Lett. 87, 123901
(2005).

[6] M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K.
Dholakia, Opt. Express 16, 4991 (2008).

[7] K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787
(2004).

[8] A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A.
Sloot, J. Opt. Soc. Am. A 18, 1944 (2001).

[9] G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar,
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