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All-optical polarimetric generation of mixed-state single-photon geometric phases

D. Barberena, O. Ortı́z, Y. Yugra, R. Caballero, and F. De Zela
Departamento de Ciencias, Sección Fı́sica, Pontificia Universidad Católica del Perú, Apartado 1761, Lima, Peru
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We report robust polarimetric measurements of mixed-state geometric phases. An all-optical setup was used
to generate geometric phases with great versatility, thereby extending the scope of analogous methods used in
neutron polarimetry. Our method allows us to explore geometric phases generated by unitarily evolving mixed
states. These are realized as partially polarized single-photon states whose degree of polarization and normalized
Stokes vector can be fixed independently of one another. The geometric phases correspond to both open and
closed trajectories in Poincaré space. By exploiting the gauge invariance of geometric phases we nullify their
dynamical part, thereby making the geometric phase coincide with the total (Pancharatnam) phase, which can be
directly addressed by employing standard techniques.
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I. INTRODUCTION

An important task of current interest consists of extending
the concept of geometric phase to the case of mixed states
[1–6]. The motivation comes mainly from the fact that mixed
states are the ones we have to deal with in real life, especially
when dealing with applications in quantum information. Two
widely used definitions of geometric phases for mixed states
are Uhlman’s phase [7] and Sjöqvist’s phase [8]. While the
former was theoretically motivated, the latter has an opera-
tional meaning based on interferometry. Thus, it is nothing but
natural that Sjöqvist’s phase has been more extensively tested
in experiments compared to Uhlman’s phase. However, even
though Sjöqvist’s phase has been experimentally explored,
the reported results do not exhibit all its predicted features,
mainly because the paths followed by state vectors have been
constrained to a limited class. The most versatile experiments
have been carried out with polarized neutrons [9] and with
nuclear magnetic resonance [10,11]. In the case of polarized
neutrons, besides interferometry, polarimetric methods [12]
have also been employed with some advantage. Polarimetry
has, indeed, a natural robustness that derives from being based
on a single-beam configuration. Mixed-state geometric phases
generated with all-optical setups have not been extensively
explored so far, even though they are very versatile for
testing the robustness and viability of geometric gates and
other quantum information applications. These are among
the main reasons for exploring various features of geometric
phases [13–15]. The present work addresses Sjöqvist’s phase
for mixed states by employing an all-optical polarimetric
setup. We apply a recently demonstrated secondary source
of partially polarized light [16] to generate polarization mixed
states with great versatility. We have adapted this source to the
case of single photons, thereby having a means to control the
length and direction of the Stokes vector independently of one
another. Previous single-photon experiments that were based
on interferometric techniques have been constrained to explore
closed trajectories made of geodesic paths on the Poincaré
sphere and its interior [17]. Similarly, experiments using
polarized neutrons [9] have exhibited geometric phases that
were given in terms of the solid angle enclosed by a geodesic
path and its shortest geodesic closure on the Bloch sphere.
In this case, polarimetric techniques were employed to test

mixed-state phases accumulated by neutrons being injected
in states with different purities [9]. Such experiments are
technologically very demanding, as they need a nuclear reactor
as a source, pulsed magnetic fields to generate the required spin
rotations, a 3He neutron detector with high efficiency at an
energy range that must be preselected with pyrolytic graphite
crystals, polarizing and analyzing supermirrors, and so on [9].
In comparison, all-optical setups are considerably less de-
manding. In our setup, we exploit a recently demonstrated
polarimetric technique to generate and test geometric phases
associated with arbitrary paths on the Poincaré sphere [18].
This technique allows us to nullify the dynamical contribution
to the total (Pancharatnam) phase [19], thereby making the
latter coincide with the geometric phase. The gauge-invariant
character of the geometric phase, i.e., its invariance under local
phase changes |ψ(s)〉 → |ψ ′(s)〉 = exp[iα(s)]|ψ(s)〉, clearly
shows up through this approach. Our experimental results are
in very good agreement with theoretical predictions and serve
as a proof of principle for polarimetric, all-optical techniques
to generate geometric phases.

The rest of this paper is organized as follows. We first
present in Sec. II the theoretical background of our polarimetric
approach to the generation of mixed-state geometric phases.
This comprises the general formula for these phases as well as
the method we use to measure them by polarimetry. In Sec. III
we describe our all-optical setup and present our experimental
results. We close the paper with our conclusions.

II. POLARIMETRY

Interferometric techniques involving two beams can be
mirrored by polarimetric, single-beam techniques. Instead
of using a dichotomic path degree of freedom, on which
interferometry is often based, one can use a dichotomic
polarization degree of freedom. Let us consider, for example,
a Mach-Zehnder interferometric array. If we assign the vectors
|±〉 to the two paths of the interferometer, the total action of
this device on an input state |ψ〉 ∈ Span {|+〉,|−〉} is given
by |ψ〉 → UBSUϕUBS|ψ〉, where UBS = (σx + σz)/

√
2 and

Uϕ = exp(iϕσz/2) represent the individual actions of the beam
splitter and phase shifter, respectively [20]. Here, σi=x,y,z are
the standard Pauli matrices. The intensity that is recorded at
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the outputs |±〉 is then given by I± = |〈±|UBSUϕUBS|±〉|2 =
(1 ± cos ϕ)/2. If we now assume that |±〉 no longer correspond
to path but to polarization states, interferometry turns into
polarimetry. In such a case, Uϕ and UBS can be implemented
with quarter-wave plates Q and half-wave plates H as Uϕ =
Q(π/4)H [(−ϕ − π )/4]Q(π/4) and UBS = iH (π/8). The ar-
guments in H and Q refer to the angles made by the plate’s
major axis and the vertical direction. Up to a global phase factor
(of eiπ ), the transformation UBSUϕUBS in polarization space
can be brought to the form Q(π/2)H [(2π − ϕ)/4]Q(π/2). A
detector with a polarizer before it lets us record the intensity
as a function of ϕ, thereby getting a pattern that is equivalent
to the interferogram produced by the Mach-Zehnder array.
Polarimetry is largely insensitive to thermal and mechanical
perturbations that produce random phase shifts in the case
of interferometry. However, because the states |±〉 cannot be
individually addressed, as is the case with interferometry, we
must figure out how to go around this constraint in order to
extract the desired information. In the case of geometric phases
this is indeed possible, as we show below. But before that
and for the sake of completeness, we give a short account of
mixed-state geometric phases, the main subject matter of this
work.

A. Mixed-state geometric phases

According to the kinematic approach [21], the geometric
phase is given by

�g(C) = arg〈ψ(0)|ψ(s)〉 − Im
∫ s

0
〈ψ(s ′)|ψ̇(s ′)〉ds ′ (1)

for a path C joining the initial state |ψ(0)〉 with the final
state |ψ(s)〉, no matter which dynamics governs the evolution
of the pure state |ψ(s ′)〉, as long as this evolution can be
described as a path C : s ′ ∈ [0,s] → |ψ(s ′)〉. In (1), |ψ̇(s ′)〉
stands for d |ψ(s ′)〉 /ds ′. The geometric phase contains a
total (Pancharatnam) phase arg〈ψ(0)|ψ(s)〉 and a dynamic
phase Im

∫ s

0 〈ψ(s ′)|ψ̇(s ′)〉ds ′. The sum of these two contri-
butions makes �g invariant under local gauge transformations
|ψ(s)〉 → |ψ ′(s)〉 = exp[iα(s)]|ψ(s)〉. We can use this prop-
erty to nullify either of the two contributions. In order to nullify
the dynamic phase, we can gauge transform |ψ(s)〉 → |ψ ′(s)〉
so that 〈ψ ′(s)|ψ̇ ′(s)〉 = 0.

We can similarly address the evolution of mixed
states ρ(s) by considering the path P : s ′ ∈ [0,s] →
ρ(s ′) = ∑

k pk(s ′)|ψk(s ′)〉〈ψk(s ′)|. Here, pk(s ′) are parameter-
dependent occupation probabilities of the states |ψk(s ′)〉. The
total (Pancharatnam) phase is given in this case by

α(s) = arg

(
N∑

k=1

√
pk(0)pk(s)〈ψk(0)|ψk(s)〉

)
. (2)

The two orthonormal bases, {|ψk(0)〉} and {|ψk(s)〉}, are related
to each other by some unitary transformation U (s), such that
|ψk(s)〉 = U (s)|ψk(0)〉. This transformation is not uniquely
defined but belongs to a family whose members realize the
given path P . In order to define a geometric phase associated
with P , we may choose a unitary U‖ that satisfies the parallel
transport conditions 〈ψk(0)|U †

‖ (s)U̇‖(s)|ψk(0)〉 = 0 ∀ k. In

such a case, the geometric phase for path P is given by

�g(P) = arg

(
N∑

k=1

√
pk(0)pk(s)〈ψk(0)|U‖(s)|ψk(0)〉

)
. (3)

The required U‖ can be obtained from any unitary U (s) such
that |ψk(s)〉 = U (s)|ψk(0)〉 by setting

U‖(s) = U (s)
N∑

k=1

e− ∫ s

0 〈ψk(0)|U †(s ′)U̇ (s ′)|ψk(0)〉ds ′ |ψk(0)〉〈ψk(0)|.
(4)

This leads to a geometric phase given by

�g(P)

= arg

(
N∑

k=1

√
pk(0)pk(s)〈ψk(0)|ψk(s)〉e− ∫ s

0 〈ψk (s)|ψ̇k(s)〉ds ′
)

.

(5)

The definition of �g(P) does not restrict the evolution P :
s ′ ∈ [0,s] → ρ(s ′) to be generated by a unitary transformation
ρ(0) → ρ(s) = U (s)ρ(0). Indeed, �g(P) applies for unitary
and nonunitary evolutions. When the evolution is unitary, pk

are parameter independent, and �g(P) reads

�g(P) = arg

(
N∑

k=1

pk〈ψk(0)|U (s)|ψk(0)〉

× e− ∫ s

0 〈ψk (0)|U †(s ′)U̇ (s ′)|ψk(0)〉ds ′
)

. (6)

This is the case we address here, with N = 2 and U (α) =
exp [−iαq(θ,φ) · σ ], where we have set s = α to empha-
size that it denotes an angle. By applying U (α) to a
polarization state |ψk(0)〉, the corresponding Stokes vec-
tor gets rotated an angle 2α around the unit vector q =
(sin θ cos φ, sin θ sin φ, cos θ ). In this case,∫ α

0
〈ψk(0)|U †(α′)U̇ (α′)|ψk(0)〉dα′ = −iα〈ψk(0)|q·σ |ψk(0)〉.

(7)

B. Partially polarized single-photon states

The mixed states we use are partially polarized states. The
general form of these states is given by

ρ = 1
2 (1 + rn · σ ), (8)

with r ∈ [0,1] denoting the degree of polarization and n being
a unit vector. Thus, rn is the Stokes vector, whose length varies
between 0 and 1. In terms of the eigenvectors |n±〉 of n · σ ,
i.e., of ρ, we can write

ρ = 1 + r

2
|n+〉〈n+| + 1 − r

2
|n−〉〈n−|. (9)

The vectors entering Eq. (7) are |ψk=±(0)〉 = |n±〉 in the
present case, for which we have

〈n±|q · σ |n±〉 = ±n · q = ± cos θ, (10)
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where θ is the angle between q and n. As for U‖ [see Eq. (4)],
it is given by

U‖(α) = exp(−iαq · σ )[eiα cos θ |n+〉〈n+|
+ e−iα cos θ |n−〉〈n−|]. (11)

The unit vector q is still expressed as q =
(sin θ cos φ, sin θ sin φ, cos θ ), where we take as the
reference frame one whose triad of orthonormal unit vectors is
given by n, m, and n × m. That is, φ is the (azimuthal) angle

between m and the projection of q on the plane whose normal
is n = (0,0,1). In a matrix representation with |n+〉 = (1,0)T

and |n−〉 = (0,1)T , we have

q · σ =
(

cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
. (12)

The input state ρ is submitted to the transformation UMZ =
UBSU‖(α)UϕUBS before being detected. In matrix form, UMZ

reads

UMZ =
(

cos α cos χ+ sin α[cos θ sin χ−i cos(φ+χ ) sin θ ] i(cos α sin χ− cos θ cos χ sin α)+ sin α sin θ sin(φ+χ )

i(cos α sin χ− cos θ cos χ sin α)− sin α sin θ sin(φ+χ ) cos α cos χ+ sin α[cos θ sin χ+i cos(φ+χ ) sin θ ]

)
,

(13)
with χ = ϕ/2 + α cos θ .

The intensity that is recorded at the |n+〉-output channel is given by I = Tr (|n+〉〈n+|UMZρU
†
MZ); explicitly,

I = 1

2
+ r

2
[cos2 α cos 2χ − sin2 α cos2 θ cos 2χ + sin 2α cos θ sin 2χ + sin2 α sin2 θ cos(2χ + 2φ)]. (14)

The geometric phase can be calculated from �g = arg �
f
g , where

�f
g = 1 + r

2
〈n+|U (α)|n+〉eiα cos θ + 1 − r

2
〈n−|U (α)|n−〉e−iα cos θ . (15)

We readily obtain

�g = − arctan

(
r

cos θ tan α − tan(α cos θ )

1 + cos θ tan α tan(α cos θ )

)
. (16)

As for the Pancharatnam phase, it is given by

�P = − arctan(r cos θ tan α). (17)

We recover �P from �g by setting to zero in Eqs. (15) and (16)
the additional phase shift α cos θ that was required to satisfy
the parallel transport conditions, i.e., to nullify the dynamical
contributions to �g . Notice also that in the case of a closed
trajectory (α = π ), Eq. (16) reduces to the experimentally
tested [9,10,17] result

�c
g = − arctan

(
r tan

�

2

)
, (18)

with � = 2π (1 − cos θ ) being the solid angle enclosed by the
trajectory on the Bloch sphere.

Equation (14) can be written in the form

I = 1

2
+ r

2
(X cos 2χ + Y sin 2χ ), (19)

with

X = cos 2α + 2 sin2 α sin2 θ cos2 φ, (20)

Y = cos θ sin 2α − sin2 α sin2 θ sin 2φ. (21)

The extremal values of I are reached for χ = χ0 such that
cos 2χ0=±X(X2 + Y 2)−1/2 and sin 2χ0=±Y (X2 + Y 2)−1/2.
They read

Imax = 1

2
+ r

2
(X2 + Y 2)1/2, (22)

Imin = 1

2
− r

2
(X2 + Y 2)1/2. (23)

In principle, by relating X and Y with experimentally ob-
servable quantities such as Imin, Imax, and the visibility V =
r(X2 + Y 2)

1/2
/2, we can fix θ and α, which in turn determine

�g [see Eq. (16)]. However, for technical reasons, it is easier
to implement the generation and measurement of �g with
an array that does not correspond exactly to the conceptually
simplest one given by UMZ = UBSU‖(α)UϕUBS but slightly
differs from it. Indeed, by using U ′

MZ = UBSU
†
ϕU‖(α)UϕUBS

one has some experimental advantages, for instance, a constant
intensity for α = 0, which is useful for calibration purposes.
Besides, it is difficult to determine parameters such as φ, which
enter Eqs. (22) and (23). In contrast, φ′ enters the intensity I

given by Eq. (29) (see below) in such a way that Imax and Imin

turn out to be independent of φ′. In order to use U ′
MZ one has to

redefine θ and α so that �g is directly given by an expression
that is identical to Eq. (17) but written in terms of the redefined
θ and α. We describe next how this adaptation can be carried
out.

C. Polarimetric array

The transformation U‖ [see Eq. (11)] required to fulfil the
parallel transport conditions belongs to the group SU(2), and
as such it can be written in the form U‖ = exp (−iα′q′ · σ ),
with suitably defined α′ and q′(θ ′,φ′). Written in terms of these
parameters, �g = �P reads as given by Eq. (17). This is the
expression against which we want to test our experimental
results. As U‖ ∈ SU(2), it can be implemented with the help
of three retarders, whose orientations can be numerically
calculated and used to automatize data recording.

In order to put U‖ in the desired form, it is convenient
to proceed as follows. We write U‖ = UαUβ , with Uα =
exp (−iαq · σ ) and Uβ = eiβ |n+〉〈n+| + e−iβ |n−〉〈n−|, where
β = α cos θ . Both Uα and Uβ can be written in the form
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cos γ − i sin γ m · σ . This last expression can, in turn, be
written in terms of two unit vectors, n1 and n2, as

A(n1,n2) := n1 · n2 − in1 × n2 · σ , (24)

with n1 · n2 = cos γ and n1 × n2 = sin γ m. The quantity
A(n1,n2) is known as a “Hamilton turn” [22]. It can be
graphically represented as a directed great circle arc going
from n1 to n2 on the unit sphere. A straightforward calculation
shows that A(n2,n3)A(n1,n2) = A(n1,n3); that is, “turns”
satisfy the same sum rule that holds for planar vectors but
applied to directed arcs on the sphere. Just as a planar vector
can be represented by any arrow in a family of equally oriented,
parallel arrows, a turn can be represented by all directed arcs
that can be obtained by sliding a given one along its great
circle. This means that the unit vectors entering A(n1,n2) are
not uniquely defined. We can exploit this nonuniqueness in
order to write U‖ = UαUβ in the desired form. To this end, we
express Uα and Uβ such that they share a common vector n2:

Uβ = n1 · n2 − in1 × n2 · σ ,
(25)

Uα = n2 · n3 − in2 × n3 · σ ,

with

n1 = [− sin(α cos θ + φ), cos(α cos θ + φ),0],

n2 = (− sin φ, cos φ,0),

n3 = (− cos θ cos φ sin α − cos α sin φ, cos α cos φ

− cos θ sin φ sin α, sin α sin θ ). (26)

This lets us bring U‖ to the form

U‖ = exp(−iα′q′ · σ ) = cos α′ − i sin α′q′ · σ , (27)

with cos α′ = n1 · n3 and q′(θ ′,φ′) = n1 × n3/
√

1 − (n1 · n3)2.
In this way we are provided with explicit expressions for α′ and
q′ in terms of the input data. Next, we can express �g = �P

as in Eq. (17) with (α,θ ) → (α′,θ ′):

�g = − arctan(r cos θ ′ tan α′). (28)

Noting that cos θ ′ = q ′
3, we get cos θ ′ tan α′ =

(n1 × n3)3/ cos α′ = (n1 × n3)3/(n1 · n3). Calculating this
last expression with the help of Eqs. (26) and inserting it into
Eq. (28), we recover Eq. (16).

The intensity that corresponds to our present ap-
proach, i.e., I = Tr[|n+〉〈n+|U ′

MZρ(U ′
MZ)†], with U ′

MZ =
UBSU

†
ϕU‖(α)UϕUBS, is given by

I = 1 + r

2
cos2 α′ + 1 − r cos2 θ ′

2
sin2 α′

+ r

2
sin2 α′ sin2 θ ′ cos(2φ′ − 2ϕ). (29)

By calculating the minimum and maximum of I as a function
of ϕ, we can express the geometric phase in terms of
measurable quantities as

�g = − arctan

(
r

√
1 + r − 2Imax

2Imin − 1 + r

)
, α′ < π/2, (30)

�g = arctan

(
r

√
1 + r − 2Imax

2Imin − 1 + r

)
− π, π/2 < α′ < π. (31)

These are the theoretical expressions that we have submitted
to experimental test. They correspond to trajectories in
Poincaré space that can be open or closed. Although we have
focused on circular trajectories, our approach applies for a
great variety of paths, which becomes clear by looking at the
technical details of our array, which we address next.

III. EXPERIMENTAL SETUP AND RESULTS

Our experimental array is shown in Fig. 1. Its main parts are
a preparation stage where the mixed states can be produced,
followed by a second stage where the geometric phase is
generated and a third stage for counting probabilities in
coincidence with heralding photons.

In each run, two photon beams (800 nm) are produced in
a beta barium borate (BBO) crystal by type-I spontaneous
parametric down-conversion. The BBO crystal is pumped by
a cw diode laser (measured central wavelength of 400 nm,
spectral linewidth between 0.5 and 1 nm, and output power
of 37.5 mW). The heralding photon beam is directed towards
an avalanche photodetector, while the signal beam is directed
towards the preparation stage. Coincidence counts of heralding
and signal beams are defined within a time window of 10.42 ns.
Our photon-counting module (Perkin-Elmer SPCM-AQ4C)
has a dark count rate of 500 ± 10 counts/s. Photons are
collected with the help of converging lenses that focus
them into multimode fiber-optic cables with fiber-coupling
connectors at both ends. In front of our detectors we set
dichroic filters (Thorlabs FB800-40, FWHM: 40 ± 8 nm)
that are centered at 800 ± 8 nm. Single-photon production is
checked by measuring the degree of second-order coherence
g(2) between the reflected (R) and transmitted (T) beams of
a beam splitter [23,24]. Detections at gates T and R are
conditioned upon detection at a third gate, G. In that case,

FIG. 1. Experimental setup. In the preparation stage (Prep) the
degree of polarization of single photons, generated by parametric
down-conversion, is fixed by incoherently mixing |H 〉 and |V 〉
polarization states, after which the Stokes vector is brought to its
desired orientation with the help of two quarter-wave plates. The
next stage (E) consists of a QHQ array that implements the required
unitary transformation (see text). The projection stage (Proj) serves
to normalize coincidence counts (in the |n±〉 basis) between idler (I)
and signal (S) photons.
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g(2) = PGTR/(PGTPGR), where Pk denote probabilities for
simultaneous detection at gates specified by label k. In terms of
photocounts Nk , the degree of coherence can be expressed as
g(2) = NGTRNG/(NGTNGR) [25]. A value g(2) < 1 corresponds
to nonclassical light. In our case, g(2) = 0.187 ± 0.011.

Our preparation stage consists of two substages, one for
fixing the degree of polarization r followed by a second part
that serves to fix the orientation of the Stokes vector. In the
first substage the horizontally polarized state |H 〉 of an input
photon is transformed to cos θr |H 〉 + sin θr |V 〉. This pure state
is submitted to the action of a polarizing beam splitter (PBS)
followed by two polarizers, one on each output arm of the PBS.
One polarizer is set to 0◦ and the other to 90◦ to ensure that
both beams are either parallel or plane polarized with respect
to the reflection surface of a second beam splitter (BS), thereby
preventing the appearance of spurious phase shifts. The pure
state cos θr |H 〉 + sin θr |V 〉 comes out from the second BS as
the mixed state cos2 θr |H 〉〈H | + sin2 θr |V 〉〈V |. This occurs
because the difference in arm lengths is larger than the photon
coherence length, which is on the order of 10 μm. The angle
θr is set so that cos2 θr = (1 + r)/2. The mixed state exiting
the second beam splitter is subsequently converted to the
desired state, cos2 θr |n+〉〈n+| + sin2 θr |n−〉〈n−|, with the help
of two quarter-wave plates, which perform the transformation
{|H 〉 〈H | , |V 〉 〈V |} → {|n+〉 〈n+| , |n−〉 〈n−|}. In this way,
polarization states given by ρ = (1 + rn · σ )/2 can be pre-
pared and launched to the next stage, where they are submitted
to unitary evolution along the targeted paths in Poincaré
space. As already explained, the unitary evolution must be
supplemented by an additional one that serves the purpose of
nullifying the dynamical contribution to the geometric phase.
We must also generate the UBS and Uϕ transformations in order
to simulate the Mach-Zender interferometer. The complete
unitary transformation is UBSU

†
ϕU‖(α)UϕUBS. In order to ad-

dress separately the evolutions generated by UBS, Uϕ , and U‖,
respectively, we would need 18 retarders. However, this is un-
necessary in the present case. Our full unitary transformation
can be implemented with just three retarders in the configura-
tion QHQ (see Fig. 1), stage E. Besides the unitary transfor-
mation it is also necessary to characterize the states for which
a QHP array has been used, where P stands for polarizer.

Once the initial state and the evolution have been chosen, the
geometric phase can be generally determined by the following
measuring procedure: a point in the evolution curve is selected
[by fixing α in U (α)], and then an interferogram is generated
by varying ϕ [see Eq. (29)]. In principle, we would only
need to vary the settings in the E stage (see Fig. 1), but it
proves useful to measure the orthogonal projections as well, in
order to normalize the counts of coincidences. The geometric
phase can then be fixed by first finding maximal and minimal
intensities of the interferogram (either by fitting it to a suitably
parametrized sinusoidal curve or by Fourier inversion), after
which one needs only to introduce these extremal values in
Eq. (30) or Eq. (31), so as to obtain a continuous curve
as α varies. The values of the measured geometric phases
should coincide, within experimental uncertainties, with the
theoretical ones that are obtained by using Eq. (16). As Fig. 2
shows, this is indeed the case. We should stress that the solid
curves shown in Fig. 2 are not fits to the measured values but
theoretical predictions without adjustable parameters.

(a)

(b)

(c)

FIG. 2. Geometric phases as a function of the evolution pa-
rameter α for three different initial mixed states and evolutions.
The experimentally measured values (dots) are shown with their
error bars. They closely agree with theoretical predictions (solid
curves). The curves correspond to the evolutions shown in Fig. 3. (a)
Initial state: r = 0.7 ± 0.01, n̂ = (0.31 ± 0.05,0.59 ± 0.05,0.75 ±
0.04). Axis of rotation: q̂ = (0,1,1). (b) Initial state: r = 0.4 ±
0.01, n̂ = (0.71 ± 0.03,0.5 ± 0.04,0.5 ± 0.04). Axis of rotation: q̂ =
(0.85, − 0.45, − 0.26). (c) Initial state: r = 0.3 ± 0.01, n̂ = (0.71 ±
0.03,0.5 ± 0.04,0.5 ± 0.04). Axis of rotation: q̂ = (0.31,0.4,0.86).

Depending on the case at hand, the general measuring
procedure must be refined in order to achieve the desired
accuracy. There are also cases in which the geometric phase
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is too sensitive to experimental inaccuracies and no reliable
results can be found. Figure 2 shows three illustrative examples
of data recording. As explained below, in each of these cases it
was required to apply some slight modification of the general
measuring procedure in order to achieve the desired accuracy.
These examples show that our experimental results fit very
well theoretical predictions, i.e., that our array produces the
prescribed mixed-state geometric phases. Each curve shows
the geometric phase acquired by an initial state that traverses
a circular trajectory in Poincaré space (see Fig. 3). Since the
associated evolutions are unitary, each trajectory is contained
in a sphere whose radius is fixed by the purity of the state.
The geometric phases in Fig. 2 correspond to initial states
with degrees of polarization r = 0.7 ± 0.01, 0.4 ± 0.01, and
0.3 ± 0.01 and with normalized Stokes vectors given by
(0.31 ± 0.05,0.59 ± 0.05,0.75 ± 0.04) in the first case and by
(0.71 ± 0.03,0.5 ± 0.04,0.5 ± 0.04) in the second and third
cases. The states perform rotations around three different axes
q̂, nominally given by (0,0,1), (0.85, − 0.45, − 0.26), and
(0.31,0.4,0.86), respectively. The uncertainties in fixing these
axes are embedded in our overall error bars (see Fig. 2), as
we do not implement the unitary U‖(q̂) separately. Indeed,
this unitary is immersed in the QHQ configuration that
implements the complete transformation of our array.

Now, because the experimentally determined geometric
phase requires measuring maximal and minimal intensities,
its value could turn inaccurate for those points in the evolution
where Imax ≈ (1 + r)/2 or Imin ≈ (1 − r)/2 [see Eqs. (30)
and (31)]. This situation arose, for instance, for the first
five points of Fig. 2(a). Occasionally, imaginary values were
obtained, accompanied by large error bars. In such cases
we made use of the relationship linking �g to the solid
angle enclosed by the state’s trajectory on the Poincaré sphere
[see Eq. (18)]. In the case of Fig. 2(a), we obtained �g by
performing a complementary evolution in the following sense.
The targeted path was part of a circle and had an initial point
A and a final point B (see Fig. 4). This open path can be
closed in two ways. The first is by completing the circular
path so that A is its initial and final point. Such a closed path
subtends a solid angle �. A second closed path is obtained
by joining A and B with a great circle (see Fig. 4). Such
a closed path subtends a solid angle �2, which determines
�g . Thus, � becomes the sum of two solid angles, one
corresponding to the targeted phase, �2, and a complementary
one, �1. Both � and �1 could be accurately determined
by measuring their corresponding geometric phases. Thus,
�2 = � − �1, viz., �g , could be accurately determined as
well. There are, however, exceptional cases in which the
geometric phase cannot be accurately measured by means of
the present method. In the case of Fig. 2(b), for instance, �g has
a large gradient in the region between α = 75◦ and α = 100◦,
where no reliable measurement outcomes could be obtained.
Whether this is a method-independent feature is an issue that
remains to be explored. Finally, in the case of Fig. 2(c), the
values obtained by applying the general procedure showed
large variances for the first points (small α). In order to get
reliable values of �g , we traversed the same curve twice and
then subtracted the contribution to �g that came from the first
loop. This procedure proved to be robust against inaccuracies
in data recording.

FIG. 3. Curves followed by the state in the Poincaré sphere as
it evolves under the action of U (α). |H 〉, |D〉, and |R〉 stand for
horizontal, diagonal, and right-handed circular polarization, respec-
tively. (a) Axis of rotation: q̂ = (0,1,1). (b) Axis of rotation: q̂ =
(0.85, − 0.45, − 0.26). (c) Axis of rotation: q̂ = (0.31,0.4,0.86).

Generally, there were several sources of experimental error.
Reflection imperfections in the preparation stage of the array,
due to nonideal BS, PBS, and mirrors, affect the degree of
polarization of the input state. To circumvent this problem, we
adjusted the first half-wave plate to compensate imbalances,
while through quantum state tomography we made sure that the
generated state was the targeted one. Furthermore, the angles of
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FIG. 4. The geometric phase acquired while following path A1B
is directly related to solid angle �2. This solid angle can also be found
as the total solid angle enclosed by path A2B1A minus �1. These
solid angles determine the geometric phase accumulated along paths
A2B1A and A2B, respectively. Path AGB is a geodesic (great circle)
that closes the open curves A1B and A2B.

the wave plates could be set to within ±1◦, causing cumulative
errors. Thus, possible mismatches between targeted and actual
values of the angles contributed to the error bars shown in
Fig. 2. We should notice, however, that our method provides
accurate values for �g , even though this quantity may vary
within quite different ranges. In Fig. 2(b), for example, �g

varies in a range that is roughly five times larger than that of
Fig. 2(a) and roughly 20 times larger than that of Fig. 2(c).

IV. CONCLUSIONS

Our all-optical, polarimetric setup proved to be a useful
tool to generate and test mixed-state geometric phases with
great versatility. We were able to produce any desired mixed
state and to generate Sjöqvist’s geometric phase by submitting
the state to unitary evolution along nongeodesic paths. Even
though we restricted ourselves to the subset of circular
trajectories in Poincaré space, any piecewise unitary evolution
can be investigated with the same array. It should also be
possible to generate geometric phases arising from nonunitary
evolutions by using similar tools based on a polarimetric
setup, but a somewhat more involved array is then required.
Such an array is within reach for all-optical setups of the
kind that we have exhibited here. Our all-optical setting has
obvious advantages compared to neutron polarimetric and
interferometric arrays [9,14,26–29] because it requires less
demanding experimental resources and gives access to, in
principle, arbitrary paths on the Poincaré sphere. This feature
is particularly important in relation to possible simulations of
noisy evolutions [30] that can be designed to test the robustness
of geometric phases against decohering effects [13].
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