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Atom and quantum oscillator coupled by the vacuum field:
Radiation pattern, emission spectrum, and decay dynamics

P. R. Berman
Physics Department, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA

C. H. Raymond Ooi
Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia

(Received 28 July 2015; published 4 January 2016)

We study the dynamics of a system consisting of a two-level atom and a quantum oscillator coupled by the
vacuum radiation field. The oscillator and the atom are assumed to have the same resonance frequency. In contrast
to the two-atom or two-oscillator case, the atom-oscillator system leads to an unclosed hierarchy of equations
for the operators that determine the radiation pattern emitted by the atom-oscillator system. Instead of using the
operator equations, we formulate the problem in terms of density-matrix equations which can be solved once
the initial conditions are specified. As an example, we looked at the radiation pattern, the decay dynamics, and
the spectrum for an initial condition in which the oscillator is in its n = 1 state and the atom is in its excited state.
Dressed states (dressed by the static interaction between the atom and oscillator) prove to be especially useful
for interpreting the results and comparing them with the two-atom and two-oscillator systems. All calculations
are carried out using the resonance or rotating-wave approximation. The relationship of our work to damped
Jaynes-Cummings models is noted.
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I. INTRODUCTION

A problem of fundamental interest in quantum optics is the
coupling of two atoms or two oscillators via the transverse
vacuum field. By its very nature, this coupling includes all
effects related to retardation of the fields exchanged by the two
atoms or oscillators. For separations of the atoms or oscillators
that are less than a wavelength, one recovers interaction ener-
gies that can be obtained using an alternative theory in which
retardation is neglected and the atoms or oscillators are as-
sumed to interact by the longitudinal fields of their static charge
distributions, producing effects such as the van der Waals inter-
action. With increasing separation of the atoms or oscillators,
retardation begins to play a role and the calculations become
somewhat more complicated, especially when either or both of
the atoms or oscillators are prepared in their excited states [1].

For stationary atoms, the inclusion of retardation leads to
differential equations for state amplitudes that show explicitly
how the time rate of change of a given state amplitude depends
on other state amplitudes evaluated at retarded times [2]. For
example, the time rate of change of the state amplitude to
have one atom (atom A) excited and the other (atom B) in its
ground state at time t will depend on the amplitude to have
atom B excited and atom A in its ground state evaluated at
t − R/c, where R is the interatomic separation. However, in
the limit that

�R/c � 1, (1)

where � is an excited-state decay rate, the solution simplifies
considerably since effects related to retardation can be
neglected except insofar as they appear in phase factors.

Lehmberg [3] obtained equations from which the atomic
or oscillator dynamics could be calculated for arbitrary initial
conditions, under the assumption that Eq. (1) holds. He then
went on to study the radiated field intensity for several different
initial conditions, corresponding to excitation of each or both
of the atoms or oscillators with the equivalent of π/2 or π

pulses. In both the atomic and oscillator cases, it is possible
to obtain time-evolution equations for the relevant Heisenberg
operators that form a closed system; that is, one does not find
an open-ended hierarchy of equations for the operators.

On the other hand, if we replace the two-atom or two-
oscillator system with one consisting of a two-level atom and
a quantum oscillator, it appears that the equations for the op-
erators are no longer closed for arbitrary initial conditions. As
a consequence, the coupled atom–quantum-oscillator system
can exhibit fundamental properties not found in atom-atom or
oscillator-oscillator systems. For this reason alone, there is suf-
ficient motivation to understand the atom-oscillator dynamics.
From a somewhat more practical viewpoint, the coupling of an
atom to a quantum oscillator is a topic of current research in
the field of metamaterials [4]. There is considerable interest in
coupling atoms or quantum dots to nanoantennas to increase
the decay rate of the atoms [5]. If the antennas are modeled as
point quantum oscillators, we have exactly the physical system
we propose to study in this paper. Of course, real nanoantennas
are not point dipoles, and there can be important effects arising
from the excitation of surface plasmons; such effects are absent
in our atom-oscillator system.

In Sec. II we introduce the basic formalism and obtain gen-
eral expressions for the radiation pattern and the energy in the
atom-oscillator system. A dressed atom-oscillator approach is
introduced in Sec. III to allow one to easily view the relaxation
processes and level splittings that occur and to compare them
with the corresponding results for two oscillators or two atoms.
Using this dressed-atom approach in a secular approximation,
we obtain the spectra associated with the atom-oscillator
decay. In the Appendix, we review the results for the two-atom
and two-oscillator systems. All calculations are carried out
using a rotating-wave approximation (RWA).

At first glance, it would seem that our calculation is closely
linked to damped Jaynes-Cummings models. In these models
a two-level atom is coupled to a single-mode cavity field
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whose energy levels are identical to those of an oscillator.
When damping of the cavity field [6] or both the cavity field
and atoms [7] are taken into account, the physical systems
appear to be the same. It is true that the dressed states of
the Jaynes-Cummings model and our atom-oscillator system
are identical. On the other hand, there is no coupling of the
atom and the oscillator via spontaneous emission in these
damped Jaynes-Cummings models, while such coupling plays
a critical role in our model. In addition, the cavity in the
Jaynes-Cummings model is not a point-dipole radiator and
does not contribute to the type of radiation patterns considered
in this work. There is also a discussion of atom-oscillator
coupling in the paper of Eberlein and Janowicz [8], but
they are concerned mainly with level shifts without making
the RWA approximation; moreover, their Green’s-function
approach differs considerably from ours.

II. RADIATION PATTERN AND ENERGY

The physical system under consideration consists of an
atom located at R1 = −(X0/2)i and an oscillator at R2 =
(X0/2)i (Fig. 1). At t = 0 the atom and the oscillator are
prepared in some arbitrary initial state of the combined
atom-oscillator system. It is assumed that the oscillator is
constrained to move in the z direction and that the atom has
a J = 0 angular momentum ground state and J = 1 angular
momentum excited state. This allows one to treat the atom as a
two-level atom provided its m = ±1 excited state sublevels are
initially unpopulated. Physically, this type of initial condition
ensures that the field emitted by the atom is z polarized at the
position of the oscillator and the field emitted by the oscillator
is z polarized at the position of the atom. In the RWA and
with the neglect of the zero-point energy of the oscillator, the
Hamiltonian for the system is

Hao = �ω0σee + �ω0b
†b + �

∑
k,λ

ωka
†
kλakλ

+ �

∑
k,λ

(gkσ+akλe
ik·R1 + g∗

ka
†
kλσ−e−ik·R1 )

+ �

∑
k,λ

(g′
kb

†akλe
ik·R2 + g′∗

k a
†
kλbe−ik·R2 ), (2)

FIG. 1. Geometry of the problem. The atom is located at position
1, and the oscillator is at position 2. The electronic motion of the atom
and the motion of the oscillator are constrained to the z direction. The
atom and the oscillator are separated by a distance X0.

where σee = |e〉〈e|, |e〉 and |g〉 are the eigenkets of the atom,
b† and b are raising and lowering operators for the oscillator,
σ+ and σ− are raising and lowering operators for the atom, akλ

is the annihilation operator for a photon having momentum k
and polarization λ,

gk = ie

√
ωk

2�ε0V
zge sin θk, (3a)

g′
k = ie

√
ωk

2�ε0V

√
�

2mω0
sin θk, (3b)

ωk = kc, and θk is the angle between k and the z axis. The
quantity zge is the matrix element (assumed to be real) of the
operator z between the atomic states, and

√
�/2mω0 is

the matrix element between the n = 0 and n = 1 states of
the oscillator.

Since the Hamiltonian (2) is written in the RWA, it does
not include contributions from any virtual transitions induced
by the vacuum field. Such virtual transitions would lead to
position-independent Lamb shifts, as well as van der Waals
shifts of the atom-oscillator system that are proportional to
X−6

0 . In order to neglect the shifts that are proportional to X−6
0 ,

we must assume that

γa

ω0

1

ξ 3
,

γo

ω0

1

ξ 3
� 1, (4)

where

γa = �a

2
= 1

4πε0

2

3

e2z2
geω

3
0

�c3
, (5a)

γo = �o

2
= 1

4πε0

1

3

e2ω2
0

mc3
(5b)

are (half) decay rates associated with the atom and oscillator,
k0 = ω0/c, and

ξ = k0X0. (6)

Inequality (4) corresponds to the requirement that the shifts of
the resonantly coupled levels of the atom and the oscillator are
much less than the unperturbed level spacings of the atom and
the oscillator.

The objective is to calculate the radiation pattern for some
arbitrary initial condition of the system, as well as the system
dynamics. Using a source-field expression [9], we can write
the electric-field operator in the radiation zone as

E+(R,t) ≈
(

ω2
0e sin θ

4πε0c2R

)
uθ

[
zgeσ−

(
t − |R − R1|

c

)

+
√

�

2mω0
b

(
t − |R − R2|

c

)]
, (7)

where uθ is a unit vector in the direction of increasing θ .
Assuming that, in the radiation zone,

σ−

(
t − |R − R1|

c

)
≈ σ−

(
t − R

c

)
e−ik0uR ·R1 , (8a)

b

(
t − |R − R2|

c

)
≈ b

(
t − R

c

)
e−ik0uR ·R2 , (8b)
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where uR is a unit vector in the R direction, we find that the
differential time-averaged (over a cycle of the field) power is

d2W (�,τ )

dτd�
= R2〈S(τ )〉 · uR = 2γa�ω0

(
3

8π

)
sin2 θ

×
[
〈σ+(τ )σ−(τ )〉 + γo

γa

〈b†(τ )b(τ )〉

+ 2
√

γo

γa

Re(〈σ+(τ )b(τ )〉e−iα)

]
, (9)

where 〈S(τ )〉 is the time-averaged Poynting vector of the
radiated field,

α = ξ sin θ cos ϕ (10)

is the phase responsible for interference effects, and

τ = t − R

c
(11)

is a retarded time.
We can get equations of motion for the Heisenberg

operators appearing in Eq. (8) and for the field creation and
annihilation operators using the Hamiltonian (2). It is then
possible to formally solve for the field creation and annihilation
operators, substitute the results in the equations for the atomic
and oscillator operators, and take a quantum-mechanical
average using the Weisskopf-Wigner approximation (and
neglecting any position-independent Lamb shifts). In this
manner [1], for quantities defined by

M(τ ) = 〈σ+(τ )σ−(τ )〉 + 〈b†(τ )b(τ )〉 = 〈σee(τ )〉 + 〈n(τ )〉,
(12a)

P (τ ) = 〈σ+(τ )b(τ )〉 + 〈b†(τ )σ−(τ )〉, (12b)

D(τ ) = 〈σ+(τ )σ−(τ )〉 − 〈b†(τ )b(τ )〉 = 〈σee(τ )〉 − 〈n(τ )〉,
(12c)

Y (τ ) = i(〈b†(τ )σ−(τ )〉 − 〈σ+(τ )b(τ )〉), (12d)

T (τ ) = 〈σ+(τ )σ−(τ )b†(τ )b(τ )〉 = 〈σee(τ )n(τ )〉, (12e)

with

σee = |e〉〈e|, n(τ ) = b†(τ )b(τ ), (13)

we can arrive at the following equations:

dM

dτ
= −(γa + γo)M − (γa − γo)D − 2r

√
γaγoP, (14a)

dP

dτ
= −(γa + γo)P − 2r

√
γaγoM + 4r

√
γaγoT , (14b)

dT

dτ
= −2(γa + γo)T − (r − is)

√
γaγo〈σ+(τ )n(τ )b(τ )〉

− (r + is)
√

γaγo〈b†(τ )n(τ )σ−(τ )〉, (14c)

dD

dτ
= −(γa + γo)D − (γa − γo)M + 2s

√
γaγoY, (14d)

dY

dτ
= −(γa + γo)Y − 2s

√
γaγoD + 4s

√
γaγoT , (14e)

where

r = 3

2

(
sin ξ

ξ
+ cos ξ

ξ 2
− sin ξ

ξ 3

)
, (15a)

s = 3

2

(
−cos ξ

ξ
+ sin ξ

ξ 2
+ cos ξ

ξ 3

)
. (15b)

The initial values at τ = 0 are denoted by M0, P0, T0,D0, and
Y0.

Unfortunately, Eqs. (14) are not closed, in contrast to
the analogous equations for two atoms or two oscillators
(see the Appendix). We still need differential equations for
〈σ+(τ )n(τ )b(τ )〉 and 〈b†(τ )n(τ )σ−(τ )〉. These new equations
will bring in extra factors of n(τ ), and the equations will never
close [10].

In terms of the variables defined in Eqs. (12), the radiation
pattern (power radiated per unit solid angle) is

d2W (�,τ )

dτd�
= R2〈S(τ )〉 · uR = 2γa�ω0

(
3

8π

)
sin2 θ

×
[
M(τ ) + D(τ )

2
+ γo

γa

M(τ ) − D(τ )

2

+
√

γo

γa

P (τ ) cos α +
√

γo

γa

Y (τ ) sin α

]
. (16)

The time-integrated radiation pattern is defined as

dW

d�
=

∫ ∞

0
dτ

d2W (�,τ )

dτd�
(17)

and the spatially integrated radiated power is defined as

dW

dτ
=

∫
d2W (�,τ )

dτd�
d�

= 2γa�ω0

[
M(τ ) + D(τ )

2
+ γo

γa

M(τ ) − D(τ )

2

+
√

γo

γa

rP (τ )

]
, (18)

where, to arrive at this result, we used

∫
d�

(
3

8π

)
sin2 θ cos α = r, (19a)

∫
d�

(
3

8π

)
sin2 θ sin α = 0. (19b)

The total energy in the field at time t is given by

W (t) =
∫ t

0
dτ

dW

dτ
(20)

and it follows from Eqs. (14a) and (18) that the sum of the
energies of the atom, oscillator, and field is a constant of the
motion, that is,

�ω0M(t) + W (t) = �ω0M0. (21)

Since Eqs. (14) are not closed, they cannot be used to
calculate the values of M(τ ), P (τ ), and Y (τ ) needed in
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Eqs. (16)–(18). To get a solvable set of equations from which
these quantities can be evaluated, we go over to density-matrix
equations. In terms of density-matrix elements ρao;a′o′ , the
variables M(τ ), P (τ ), D(τ ), Y (τ ), and T (τ ) can be expressed
as

M(τ ) = 〈σee(τ )〉 + 〈n(τ )〉
=

∑
n

ρen;en(τ ) +
∑
j=g,e

∑
n

nρjn;jn(τ ), (22a)

P (τ ) = 2 Re〈σ+(τ )b(τ )〉
= 2 Re

∑
n

√
n + 1ρg,n+1;en(τ ), (22b)

D(τ ) = 〈σee(τ )〉 − 〈n(τ )〉
=

∑
n

ρen;en(τ ) −
∑
j=g,e

∑
n

nρjn;jn(τ ), (22c)

Y (τ ) = 2 Im〈σ+(τ )b(τ )〉 = 2 Im
∑

n

√
n + 1ρg,n+1;en(τ ),

(22d)

T (τ ) = 〈σee(τ )n(τ )〉 =
∑

n

nρen;en(τ ), (22e)

where the g and e indices refer to atomic states and the n indices
refer to oscillator states [11]. The time evolution of the density
matrix equations can be obtained from equations for state
amplitudes if “in terms” are added into the resulting density-
matrix equations. That is, in an interaction representation,
the equations for the state amplitudes cαn (α = g,e; n =
0,1,2, . . . ), obtained in a manner similar to the one employed
in Ref. [12], are

ċg0 = 0, (23a)

ċen = −(γa + nγo)cen − (r + is)
√

n + 1
√

γaγocg,n+1,

(23b)

ċgn = −(γa + nγo)cgn − (r + is)
√

n
√

γaγoce,n−1, n > 0.

(23c)

Special care must be given to the inclusion of the in terms
resulting from spontaneous emission in getting the density-
matrix equations. Such in terms are calculated in the usual
manner [9] by tracing over field states, that is,

dρin
αn;βm

dt
=

∑
k

dραnk;βmk

dt
. (24)

In this manner, forming density-matrix elements ρ̇αn;βm =
ċαnc

∗
βm + cαnċ

∗
βm using Eqs. (23) and adding in the terms

obtained using Eq. (24), we find

dρen;em

dt
= −[2γa + (n + m)γo]ρen;em

−√
n + 1(r + is)

√
γaγoρg,n+1;em

−√
m + 1(r − is)

√
γaγoρen;g,m+1

+ 2γo

√
n + 1

√
m + 1ρe,n+1;e,m+1, (25a)

dρgn;gm

dt
= −(n + m)γoρgn;gm − √

n(r + is)
√

γaγoρe,n−1;gm

−√
m(r − is)

√
γaγoρgn;e,m−1 + 2γaρen;em

+ 2γo

√
m + 1

√
n + 1ρg,n+1;g,m+1

+2r
√

γaγo[
√

m + 1ρen;g,m+1+
√

n + 1ρg,n+1;em],

(25b)

dρgn;em

dt
= −[γa + (n + m)γo]ρgn;em

−√
n(r + is)

√
γaγoρe,n−1;em

−√
m + 1(r − is)

√
γaγoρgn;g,m+1

+ 2γo

√
m + 1

√
n + 1ρg,n+1;e,m+1

+ 2r
√

γaγo

√
m + 1ρen;e,m+1, (25c)

ρen;gm = ρ∗
gm;en. (25d)

The in terms, underlined in Eqs. (25), give rise to interesting
exchanges between the atom and the oscillator. For example, if
the atom in its excited state and the oscillator in a superposition
of two neighboring states, as indicated in Fig. 2, spontaneous
emission can result in a “coherence swap,” in which the atom
acquires the dipole coherence of the oscillator, while the
oscillator transitions into the lower of its two initially excited
states. In other words, dρg0;e0/dt is driven by an in term of the
form 2r

√
γaγoρe0;e1.

Equations (16), (22), and (25) can be used to calculate
the radiation pattern and system dynamics for arbitrary
initial conditions. As a specific example we solve for initial
conditions in which the atom is inverted and the oscillator
is in its n = 1 state, M0 = 2, T0 = 1,D0 = Y0 = P0 = 0. We
then compare the results with those for two-atom (both atoms
excited initially) and two-oscillator (both oscillators initially
in their n = 1 states) cases for a specific value of ξ . With the

FIG. 2. A relaxation process in which coherence is transferred
from the oscillator to the atom.
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initial conditions as given, the maximum n possible is 2, and
we arrive at nine coupled equations for the variables,

x1 = ρe0;e0, (26a)

x2 = ρe1;e1, (26b)

x3 = ρg0;g0, (26c)

x4 = ρg1;g1, (26d)

x5 = ρg2;g2, (26e)

x6 = ρg1;e0, (26f)

x7 = ρg2;e1, (26g)

x8 = ρe0;g1, (26h)

x9 = ρe1;g2, (26i)

with initial condition x2(0) = 1 and all others equal to zero. In
the limit that γa = γo = γ , the equations of motion are

ẋ1 = −2γ x1 + 2γ x2 − γ (r + is)x6 − γ (r − is)x8, (27a)

ẋ2 = −4γ x2 −
√

2γ (r + is)x7 −
√

2γ (r − is)x9, (27b)

ẋ3 = 2γ x1 + 2γ x4 + 2rγ (x6 + x8), (27c)

ẋ4 = 2γ x2 − 2γ x4 + 4γ x5 − γ (r − is)x6 (27d)

+ 2
√

2rγ (x7 + x9) − γ (r + is)x8, (27e)

ẋ5 = −4γ x5 −
√

2γ (r − is)x7 −
√

2γ (r + is)x9, (27f)

ẋ6 = −γ (r + is)x1 + 2rγ x2 − γ (r − is)x4

− 2γ x6 + 2
√

2γ x7, (27g)

ẋ7 = −
√

2γ (r + is)x2 − 4γ x7 −
√

2γ (r − is)x5, (27h)

ẋ8 = −γ (r − is)x1 + 2rγ x2 − γ (r + is)x4

− 2γ x8 + 2
√

2γ x9, (27i)

ẋ9 = −
√

2γ (r − is)x2 −
√

2γ (r + is)x5 − 4γ x9. (27j)

These equations can be solved analytically for a given value
of ξ .

In terms of these variables,

M = x1 + 2x2 + x4 + 2x5, (28a)

P = x6 +
√

2x7 + x8 +
√

2x9, (28b)

T = x2, (28c)

D = x1 − x4 − 2x5, (28d)

Y = i(x6 −
√

2x7 − x8 +
√

2x9). (28e)

In Fig. 3, we plot the time-integrated radiation pattern
given in Eq. (17) as a function of ϕ for θ = π/2 and ξ = 1.5
[r + is = 0.601 + 0.626i] and compare it with that for two
atoms and two quantum oscillators when the atoms are both
inverted and the oscillators are both in their n = 1 states
at t = 0 (see the Appendix). The curves are normalized to
the corresponding result for two independent dipole emitters.
The radiation pattern of the atom-oscillator system differs
from both the two-atom case and the two-oscillator case.
For two atoms, the time-integrated signal does not exhibit
any interference phenomena, a result found by Lehmberg [3].

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

φ

8
π

3
W
0

W

FIG. 3. Time-integrated radiation pattern for θ = π/2 and ξ =
1.5. The solid blue line is for two atoms (there is no time-integrated
interference), the long-dashed green curve is for two oscillators,
and the short-dashed red curve is for the atom-oscillator system.
The results are expressed in dimensionless units, normalized to the
emission pattern of two independent dipole emitters. In this case,
W0 = 2�ω0 = �ω0M0. The curves for two atoms and two oscillators
are drawn using Eqs. (A9) and (A21) of the Appendix.

Interference effects are seen for the two-oscillator and atom-
oscillator systems. Other initial conditions and atom-oscillator
separations can be explored using the numerical solutions of
Eq. (25).

III. DRESSED STATES, DECAY DYNAMICS,
AND SPECTRA

It is convenient to introduce dressed states to explain the
decay dynamics and to calculate the spectrum of the radiation
emitted by the atom-oscillator system. If we look at the
amplitude equations (23) in the absence of decay, they take
the form

ċg0 = 0, (29a)

iċe,n−1 = gncg,n, (29b)

iċgn = gnce,n−1, n > 0, (29c)

where

gn = √
n
√

γaγos. (30)

These equations are those encountered in the Jaynes-
Cummings model for a two-level atom interacting with a
single-mode radiation field. Thus, in the absence of decay,
the atom-oscillator problem in free space maps into the
Jaynes-Cummings model for a two-level atom interacting with
a single-mode cavity field. In contrast to the Jaynes-Cummings
model, however, the coupling constant depends on the product
of the decay rates of the atom and the oscillator; that is,
spontaneous emission is responsible for the atom-oscillator
coupling. Moreover, the decay terms appearing in Eqs. (23)
have a structure similar to the coupling terms and must
be included for consistency. Nevertheless, as in the Jaynes-
Cummings model, we can use the coupled atom-oscillator
dressed states as our basis states to investigate the nature of
decay rates and the emission spectrum. This approach will be
especially useful only in the so-called secular approximation,
|s| 
 r , since the coherence between the dressed states in a
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given manifold (en; g,n + 1) oscillates rapidly on a time scale
(γaγo)−1/2 and averages to zero. The condition |s| 
 r will
be satisfied if ξ = ω0R/c � 1 since r + is ∼ 1 + 3i/(2ξ 3)
in this limit [see Eqs. (15)]. If |s| � r , different components
of the emission spectrum are not resolved, and there is little
advantage to using the dressed basis.

In this section we set

γo = γa ≡ γ = �/2. (31)

The dressed-state eigenkets and eigenenergies are given
by

|0〉 = |g0〉, Eg0 = 0, (32a)

|n±〉 = |e,n − 1〉 ± |gn〉√
2

, En± = �(ω0 ± √
nγ s).

(32b)

The density-matrix elements in the two bases are related by
[9]

ρn+n+ = 1
2 (ρe,n−1;e,n−1 + ρgn;gn + ρe,n−1;gn + ρgn;e,n−1),

(33a)

ρn−n− = 1
2 (ρe,n−1;e,n−1 + ρgn;gn − ρe,n−1;gn − ρgn;e,n−1),

(33b)

ρn+n− = ρ∗
n−n+

= 1
2 (ρe,n−1;gn − ρgn;e,n−1 + ρe,n−1;e,n−1 − ρgn;gn).

(33c)

It is now a relatively easy task to use Eqs. (25), Eqs. (33),
and the inverse of Eqs. (33) to get equations for the time
development of density-matrix elements in the dressed basis.
In the limit |s| 
 r ≈ 1, we can neglect the off-diagonal
density-matrix elements in the dressed basis and obtain rate
equations for the dressed-state populations given by

ρ̇n+n+ = −�(n + √
nr)ρn+n+

+ �

2
[(

√
1 + n + r)(

√
1 + n + √

n)]ρ(n+1)+(n+1)+

+ �

2
[(

√
1 + n − r)(

√
1 + n − √

n)]ρ(n+1)−(n+1)− ,

(34a)

ρ̇n−n− = −�(n − √
nr)ρn−n−

+ �

2
[(

√
1 + n + r)(

√
1 + n − √

n)]ρ(n+1)+(n+1)+

+ �

2
[(

√
1 + n − r)(

√
1 + n + √

n)]ρ(n+1)−(n+1)− ,

(34b)

ρ̇00 = �(1 + r)ρ1+1+ + �(1 − r)ρ1−1− , (34c)

where Eqs. (34a) and (34b) are valid for n � 1. If the maximum
value of n is nmax, the problem in the secular approximation
is reduced to solving a set of (2nmax + 1) coupled, linear
differential equations.

As a specific example, we use the dressed atom-oscillator
approach to calculate the decay dynamics and the spectrum

for initial conditions in which the atom is inverted and the
oscillator is in its n = 1 state corresponding to M0 = 2,
T0 = 1,D0 = Y0 = P0 = 0. Moreover, we compare the results
with the corresponding results for two atoms prepared in their
excited states and two oscillators prepared in their n = 1 states.
For this initial condition, Eqs. (34) reduce to

ρ̇2+2+ = −�2+ρ2+2+ , (35a)

ρ̇2−2− = −�2−ρ2−2− , (35b)

ρ̇1+1+ = −�1+ρ1+1+ + �2+,1+ρ2+2+ + �2−,1+ρ2−2−, (35c)

ρ̇1−1− = −�1−ρ1+1+ + �2+,1−ρ2+2+ + �2−,1−ρ2−2−, (35d)

ρ̇00 = �1+,0ρ1+1+ + �1−,0ρ1−1− , (35e)

where the decay rates are given by

�2+ = �(2 +
√

2r), (36a)

�2− = �(2 −
√

2r), (36b)

�1± ≡ �± = �(1 ± r), (36c)

and the repopulation rates are given by

�2+,1+ = �

2
(
√

2 + 1)(
√

2 + r), (37a)

�2+,1− = �

2
(
√

2 − 1)(
√

2 + r), (37b)

�2−,1+ = �

2
(
√

2 − 1)(
√

2 − r), (37c)

�2−,1− = �

2
(
√

2 + 1)(
√

2 − r), (37d)

�1±,0 = �±. (37e)

The initial condition ρe1;e1 = 1 in the “bare” basis translates
into ρ2+2+ = ρ2−2− = ρ2+2− = ρ2−2+ = 1/2 in the dressed
basis; the atom-oscillator system is prepared in a coherent
superposition of its two excited dressed states; however,
we are concerned here only with dressed-state populations.
Equations (35) can be solved exactly, but the solution is
somewhat unwieldy and is not given here.

A. Decay dynamics

In Fig. 4 we plot the energy remaining in the atom-oscillator
system in dimensionless units, namely,

E(t) = M(t)

M0
, (38)

along with the corresponding curves for (a) two noninteracting
atoms prepared in their excited states, (b) two interacting atoms
prepared in their excited states (see the Appendix), and (c) two
interacting quantum oscillators prepared in their n = 1 excited
states (see the Appendix). The curves are drawn for ξ = 0.2
(r + is = 0.992 + 8.2i). For this value of ξ, the exact value of
M(t) given by Eq. (28a) which is obtained by solving Eqs. (26)
differs insignificantly from the value

Ed (t) = ρ2+2+ (t) + ρ2−2− (t) + [ρ1+1+ (t) + ρ1−1− (t)]/2 (39)

obtained by solving the approximate dressed-state population
equations (35). For two noninteracting atoms, E(t) decays
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FIG. 4. Normalized dimensionless energy E(t) with ξ = 0.2
(r + is = 0.992 + 8.2i) for (a) two independent atoms, both initially
excited, (b) two coupled atoms, both initially excited, (c) two coupled
oscillators both initially in their n = 1 states, and (d) the coupled
atom and oscillator, with the atom initially excited and the oscillator
initially in its n = 1 state.

simply as exp(−2γ t). The decay is more rapid for the
two interacting atoms, characteristic of superradiant decay.
However, there are slowly decaying components for both the
two-oscillator and the atom-oscillator systems.

These results can be explained qualitatively using the
dressed-state diagrams shown in Fig. 5, drawn for ξ � 1.
The solid arrows indicate allowed decay paths, while the
dashed arrow indicate pathways that are suppressed owing to
a cancellation of matrix elements when ξ � 1 (|s| 
 r ≈ 1).
For the noninteracting atoms, each excited atomic state popu-

FIG. 5. Decay channels for (a) two independent atoms, both
initially excited, (b) two coupled atoms, both initially excited, (c)
two coupled oscillators both initially in their n = 1 states, and (d) the
coupled atom and oscillator, with the atom initially excited and the
oscillator initially in its n = 1 state. The levels shown are the dressed
states of the coupled systems. Dashed arrows indicate transitions
that are suppressed for r ∼ 1. The eigenkets |±〉 for two atoms and
|1±〉o,|2±〉o for two oscillators are given in the Appendix, while the
repopulation rates �i,j are given by Eqs. (37). All curves are drawn
for γo = γa = �/2.

lation decays exponentially with rate � [for two noninteracting
oscillators, E(t) also decays exponentially with rate �]. For the
two interacting atoms [Fig. 5(b)], the dominant decay channel
is through the symmetric intermediate state. The decay rates
in this channel are enhanced by a factor of 2 when r ∼ 1,
leading to the simplest example of superradiant decay. For
the two interacting oscillators [Fig. 5(c)], the oscillators are
prepared in an equal superposition of the dressed oscillator
states shown in the figure by the large dots. One of these states
is metastable when r ∼ 1; half of the population is almost
completely trapped in this state. From the exact solution for
M(t) = 2E(t) given by Eq. (A19a) in the Appendix [which
is identical to that calculated from the decay rates shown in
Fig. 5(c)], one finds

E(t) = 1
2 [e−�+t + e−�−t ]. (40)

The slowly decaying component seen in Fig. 4, curve (c),
corresponds to the second term in Eq. (40). Finally, for the
atom-oscillator system the initial state is a superposition of the
n = 2 symmetric and antisymmetric dressed states shown in
Fig. 5(d). Both of these states decay to the n = 1 symmetric
and antisymmetric dressed states. The n = 1 antisymmetric
state is metastable when r ∼ 1, decaying slowly to the ground
state with rate �−. The total decay rate out of the n = 2 dressed
states is 4�, and (2 + r)�/4 of the decay is via the symmetric
intermediate state and (2 − r)�/4 is via the antisymmetric one.
This explains the slow decay component having amplitude 1/4
and decay rate �− seen in Fig. 4, curve (d).

Explicitly, in the limit that r ≈ 1 but inequality (4) is still
respected, we find

E(t) ∼ e−�t (noninteracting atoms), (41a)

E(t) ∼ e−2�t (1 + �t) (two atoms), (41b)

E(t) ∼ (1 + e−2�t )/2 (two oscillators), (41c)

E(t) ∼ 1

4
+ e−2�t

2
+ (1 + √

2)

8
e−�(2−√

2)t

+ (1 − √
2)

8
e−�(2+√

2)t (atom-oscillator) (41d)

for the initial conditions depicted in Fig. 5. In each case, E(t) ∼
(1 − �t) for �t � 1.

Figure 6 shows the decay dynamics if the oscillator is
prepared initially in state n0 (n0 = 0,1,2,3,4) and the atom
is prepared in its excited state, in the limit that r ≈ 1.
These curves exhibit two interesting features. First, the energy
trapped in the system decreases with increasing n0, owing
to the fact that decay via the symmetric states is favored over
those into the antisymmetric states. As the population cascades
downwards from the initially excited state via spontaneous
emission, the population trapped in state |1−〉o is 1/[2(n0 + 1)]
as r approaches unity. The various decay rates of the cascade
emission are shown in Fig. 7. Second, although the decay rate
increases with increasing n0, there is never a superradiant effect
since the energy always decays more slowly than e−�t (an e−�t

decay is indicated by the dashed black curve in Fig. 6).
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FIG. 6. Normalized dimensionless energy E(t) with r ∼ 1 for
initial conditions in which the atom is excited and the oscillator is
in the n = n0 state. The solid curves from top to bottom correspond
to n0 = 0,1,2,3,4, while the dashed curve is the simple exponential
decay, e−�t .

B. Spectrum

In the secular approximation and for the initial conditions
depicted in Fig. 5(d), the spectrum for the atom-oscillator
system consists of four lines associated with transitions from
the second excited manifold to the first excited manifold and
two additional lines from the first excited manifold to the
ground state. The width of each line is one half the sum of the
widths of initial and final states of each transition,

γij = (�i + �j )/2, (42)

and the relative strength of each line is proportional to the
branching ratio for the given decay channel. With the various
decay rates �i defined by Eqs. (36) and repopulation rates �i,j

FIG. 7. Decay rates in the dressed-state basis for ξ � 1 (r ∼ 1).
In this limit, state |1−〉 is metastable. As can be seen, decay via the
symmetric channels is favored. The energy-level splitting �En =
�
√

n�s between the dressed states in a given manifold has been
suppressed.

defined by Eqs. (37) and with |s| 
 r , we find the spectrum is
given by a sum of six terms,

I (2+ → 1+) = S2+,1+

π

γ2+1+[
ωk − ω0 −

√
2−1
2 �s

]2 + γ 2
2+1+

,

(43a)

I (2+ → 1−) = S2+,1−

π

γ2+1−[
ωk − ω0 −

√
2+1
2 �s

]2 + γ 2
2+1−

,

(43b)

I (2− → 1+) = S2−,1+

π

γ2−1+[
ωk − ω0 +

√
2+1
2 �s

]2 + γ 2
2−1+

,

(43c)

I (2− → 1−) = S2−,1+

π

γ2−1−[
ωk − ω0 +

√
2−1
2 �s

]2 + γ 2
2−1−

,

(43d)

I (1+ → 0) = 2 + r

4

1

π

γ1+0[
ωk − ω0 − �s

2

]2 + γ 2
1+0

, (43e)

I (1− → 0) = 2 − r

4

1

π

γ1−0[
ωk − ω0 + �s

2

]2 + γ 2
1−0

, (43f)

where the branching ratios (relative to the total decay rate of
the n = 2 manifold) are given by

Si,j = �i,j /4�, (44)

with �i,j given by Eqs. (37). The corresponding dressed states
and spectra for two atoms and two oscillators are given in the
Appendix.

In all the cases considered, we have not included the
nonresonant van der Waals shifts in the definition of the dressed
states based on the assumption that inequality (4) is valid.

IV. SUMMARY

We have derived equations that characterize the dynamics
of a system consisting of a two-level atom and a quantum
oscillator coupled by the vacuum radiation field. In contrast to
the two-atom or two-oscillator case, the atom-oscillator system
leads to an unclosed hierarchy of equations for the operators
that determine the radiation pattern emitted by the atom-
oscillator system. Instead of using the operator equations, we
formulated the problem in terms of the density-matrix elements
associated with the problem. These density-matrix equations
can be solved once the initial conditions are specified. As
an example, we looked at the radiation pattern, the decay
dynamics, and the spectrum for an initial condition in which
the oscillator is in its n = 1 state and the atom in its excited
state. Dressed states (dressed by the static interaction between
the atom and oscillator) proved to be especially useful for
interpreting the results. Although we looked at the limit in
which γo = γa ≡ γ , another interesting limit is γo 
 γa . This
limit could correspond to a nanoantenna coupled to a quantum
dot in which the antenna is the oscillator and the quantum dot
is the “two-level atom.” For γo 
 γa , the antenna results in an
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enhanced radiation rate for the quantum dot. We have limited
the discussion to spontaneous emission from the coupled
atom-oscillator system, but the results can be generalized to
allow for driving of either the atom or the oscillator (or both)
by a cw or pulsed optical field.
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APPENDIX

In this Appendix, we summarize the results for the two-
atom and two-oscillator cases.

1. Two atoms

The Hamiltonian is

Ha = �ω0

∑
j=1,2

σ (j )
ee + �

∑
k,λ

ωka
†
kλakλ

+ �

∑
k,λ

∑
j=1,2

(gkσ
(j )
+ akλe

ik·Rj + g∗
ka

†
kλσ

(j )
− e−ik·Rj ),

(A1)

and the differential time-averaged power is

d2W (�,τ )

dτd�
= R2〈Sa〉 · uR

= 2γa�ω0

(
3

8π

)
sin2 θ [〈σ (1)

+ (τ )σ (1)
− (τ )〉

+ 〈σ (2)
+ (τ )σ (2)

− (τ )〉

+ 2 Re(〈σ (1)
+ (τ )σ (2)

− (τ )〉e−iα)]. (A2)

In obtaining the Heisenberg equations of motion for the opera-
tors needed in this equation, we find that an additional operator,
σ

(1)
+ (τ )σ (1)

− (τ )σ (2)
+ (τ )σ (2)

− (τ ), is needed. It is convenient to
define

M(τ ) = 〈σ (1)
+ (τ )σ (1)

− (τ )〉 + 〈σ (2)
+ (τ )σ (2)

− (τ )〉
= 〈

σ (1)
ee (τ )

〉 + 〈
σ (2)

ee (τ )
〉
, (A3a)

P (τ ) = 〈σ (1)
+ (τ )σ (2)

− (τ )〉 + 〈σ (2)
+ (τ )σ (1)

− (τ )〉, (A3b)

D(τ ) = 〈σ (1)
+ (τ )σ (1)

− (τ )〉 − 〈σ (2)
+ (τ )σ (2)

− (τ )〉
= 〈

σ (1)
ee (τ )

〉 − 〈
σ (2)

ee (τ )
〉
, (A3c)

Y (τ ) = i(〈σ (2)
+ (τ )σ (1)

− (τ )〉 − 〈σ (1)
+ (τ )σ (2)

− (τ )〉), (A3d)

T (τ ) = 〈σ (1)
+ (τ )σ (1)

− (τ )σ (2)
+ (τ )σ (2)

− (τ )〉 = 〈
σ (1)

ee (τ )σ (2)
ee (τ )

〉
.

(A3e)

Using the Hamiltonian (A1), it is then possible to obtain the
Heisenberg equations of motion for the operators appearing
in Eqs. (A3), as well as for the field annihilation and creation
operators. Eliminating the field states, we can arrive at the
closed equations:

dM

dτ
= −2γaM − 2rγaP, (A4a)

dP

dτ
= −2γaP − 2rγaM + 8rγaT , (A4b)

dT

dτ
= −4γaT , (A4c)

dD

dτ
= −2γaD + 2sγaY, (A4d)

dY

dτ
= −2γaY − 2sγaD. (A4e)

These equations can be solved easily for arbitrary initial
conditions to get the radiation pattern,

d2W (�,τ )

dτd�
= R2〈Sa〉 · uR = 2γa�ω0

(
3

8π

)
sin2 θ

× [M(τ ) + P (τ ) cos α + Y (τ ) sin α]. (A5)

The general solution of Eqs. (A4) for M , P , and Y is

M(τ ) = −4e−4γaτ T0
r2

1 − r2

+ e−2γ+ τ

[
M0

2
+ P0

2
+ T0

2r

1 − r2

]

+ e−2γ−τ

[
M0

2
− P0

2
− T0

2r

1 − r2

]
, (A6a)

P (τ ) =−4e−4γaτ T0
r

1 − r2
+ e−2γ+ τ

[
M0

2
+ P0

2
+ T0

2r

1 − r2

]

− e−2γ−τ

[
M0

2
− P0

2
− T0

2r

1 − r2

]
, (A6b)

Y (τ ) = e−2γaτ [Y0 cos(2γasτ ) − D0 sin(2γasτ )], (A6c)

with

γ± = γa(1 ± r). (A7)

The time-integrated values of these variables are

∫ ∞

0
dτM(τ ) = 1

2γa

M0 − rP0 − 2r2T0

1 − r2
, (A8a)

∫ ∞

0
dτP (τ ) = 1

2γa

P0 − rM0 + 2rT0

1 − r2
, (A8b)

∫ ∞

0
dτY (τ ) = 1

2γa

−sD0 + Y0

1 + s2
. (A8c)

Note that if the initial condition corresponds to both atoms
being inverted, then M0 = 2, T0 = 1, D0 = Y0 = P0 = 0. In
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this limit, the time-integrated signal is

dW

d�
= W0

(
3

8π

)
sin2 θ, (A9)

and there is no contribution from the interference term.
For dressed states and dressed-state energies defined by

|0〉 = |gg〉, Ea
0 = 0, (A10a)

|±〉 = |eg〉 ± |ge〉√
2

, Ea
± = �(ω0 ± γas), (A10b)

|2〉 = |ee〉, Ea
2 = 2�ω0, (A10c)

the decay rates appearing in Fig. 5(b) have been calculated by
Lehmberg [3]. The spectrum consists of a pair of Lorentzians
centered at ωk = ω0 − γas and a pair of Lorentzians centered
at ωk = ω0 + γas. Explicitly, the spectrum is given by

I (2 → +) = 1 + r

2

1

π

γ2+
[ωk − ω0 + γas]2 + γ 2

2+
, (A11a)

I (2 → −) = 1 − r

2

1

π

γ2−
[ωk − ω0 − γas]2 + γ 2

2−
, (A11b)

I (+ → 0) = 1 + r

2

1

π

γ+
[ωk − ω0 − γas]2 + γ 2+

, (A11c)

I (− → 0) = 1 − r

2

1

π

γ−
[ωk − ω0 + γas]2 + γ 2−

, (A11d)

where

γ2± = 2γ±. (A12)

2. Two oscillators

In this case,

Ho = �ω0

∑
j=1,2

b†(j )b(j ) + �

∑
k,λ

ωka
†
kλakλ

+ �

∑
k,λ

∑
j=1,2

(g′
kb

†(j )akλe
ik·Rj + g′∗

k a
†
kλb

(j )e−ik·Rj ),

(A13)

and

d2W (�,τ )

dτd�
= R2〈So〉 · uR = 2γo�ω0

(
3

8π

)
sin2 θ

× [〈b†(1)(τ )b(1)(τ )〉 + 〈b†(2)(τ )b(2)(τ )〉
+ 2 Re(〈b†(1)(τ )b(2)(τ )〉e−iα)]. (A14)

Defining

M(τ ) = 〈n(1)(τ )〉 + 〈n(2)(τ )〉, (A15a)

P (τ ) = 〈b†(1)(τ )b(2)(τ )〉 + 〈b†(2)(τ )b(1)(τ )〉, (A15b)

D(τ ) = 〈n(1)(τ )〉 − 〈n(2)(τ )〉, (A15c)

Y (τ ) = i(〈b†(2)(τ )b(1)(τ )〉 − 〈b†(1)(τ )b(2)(τ )〉), (A15d)

where

n(j )(τ ) = b†(j )(τ )b(j )(τ ), (A16)

we can arrive at the closed equations:

dM

dτ
= −2γoM − 2rγoP, (A17a)

dP

dτ
= −2γoP − 2rγoM, (A17b)

dD

dτ
= −2γoD + 2sγoY, (A17c)

dY

dτ
= −2γoY − 2sγoD. (A17d)

Note that the function T that was present in Eqs. (A3) for the
two-atom case is absent from these equations, a result related
to the linearity of the oscillator dynamics. These equations
can be solved easily for arbitrary initial conditions to get the
radiation pattern,

d2W (�,τ )

dτd�
= R2〈Sa〉 · uR = 2γo�ω0

(
3

8π

)
sin2 θ

× [M(τ ) + P (τ ) cos α + Y (τ ) sin α]. (A18)

The general solution of Eqs. (A17) for M , P , and Y is

M(τ ) = e−2γoτ [M0 cosh(2γorτ ) − P0 sinh(2γorτ )], (A19a)

P (τ ) = e−2γoτ [P0 cosh(2γorτ ) − M0 sinh(2γorτ )], (A19b)

Y (τ ) = e−2γoτ [Y0 cos(2γosτ ) − D0 sin(2γosτ )]. (A19c)

The time-integrated values of these variables are∫ ∞

0
dτM(τ ) = 1

2γo

M0 − rP0

1 − r2
, (A20a)

∫ ∞

0
dτP (τ ) = 1

2γo

P0 − rM0

1 − r2
, (A20b)

∫ ∞

0
dτY (τ ) = 1

2γo

−sD0 + Y0

1 + s2
. (A20c)

Note that if the initial condition corresponds to both oscillators
in their first excited states, then M0 = 2, D0 = Y0 = P0 = 0,
and the time-integrated radiation pattern is

dW

d�
= W0

(
3

8π

)
sin2 θ

(
1 − r cos α

1 − r2

)
. (A21)

Now there is a contribution from the interference term.
The amplitude equations for the two oscillators, derived

using the same method as that used for the atom-oscillator
system, are

ċm,m′ = −(
√

m +
√

m′)γocm,m′

− (r + is)γo[
√

m(m′ + 1)cm−1,m′+1

−
√

(m + 1)m′cm+1,m′−1], (A22)
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where the unprimed index is for oscillator 1 and the primed
one is for oscillator 2. Only states having a fixed value of
m + m′ = n are coupled in the RWA. In other words, for a given
value of n, there are n coupled equations. The corresponding
“in terms” for the density matrix equations are

ρ̇in
m,m′;m′′,m′′′ = 2γo

√
(m + 1)(m′′ + 1)ρm+1,m′;m′′+1,m′′′

+ 2γo

√
(m′ + 1)(m′′′ + 1)ρm,m′+1;m′′,m′′′+1

+ 2rγo

√
(m + 1)(m′′′ + 1)ρm+1,m′;m′′,m′′′+1

+ 2rγo

√
(m′ + 1)(m′′ + 1)ρm,m′+1;m′′+1,m′′′ .

(A23)

The dressed states and dressed-state eigenfrequencies are
obtained by finding the normal modes of Eqs. (A22), keeping
only terms on the right-hand side of the equation proportional
to s. The calculation can be done analytically [13]. For a given
m + m′ = n there are n eigenfrequencies equally spaced with
spacing 2γos, symmetrically located about the unperturbed
energy. The corresponding eigenkets |n,q〉o are given by

|n,q〉o =
n∑

n1=0

A(n1,n − n1,q)|n1,n − n1〉, (A24)

where −n � q � n, |n1,n2〉 = |n1〉|n2〉 are the eigenkets
associated with the uncoupled oscillators, and

A(n1,n − n1,q)

= 1

2n/2

1(
n1 − n−q

2

)
!

√
n1!

(
n+q

2

)
!

(n − n1)!
(

n−q

2

)
!

×F

(
q − n

2
, − (n − n1); 1 + n1 + q − n

2
; −1

)
,

(A25)

where F (a,b; c; z) is a hypergeometric function.

For n = 2, the appropriate dressed states and dressed-state
energies are

|0〉o = |0,0〉, Eo
0 = 0, (A26a)

|1±〉o ≡ |1, ± 1〉o = |1,0〉 ± |0,1〉√
2

, Eo
1± = �(ω0 ± γos),

(A26b)

|2±〉o ≡ |2, ± 2〉o = |2,0〉 + |0,2〉 ± √
2|1,1〉√

2
,

Eo
2± = �(2ω0 ± 2γos), (A26c)

|20〉o ≡ |2,1〉o = |2,0〉 − |0,2〉√
2

, Eo
20

= 2�ω0. (A26d)

The decay rates shown in Fig. 5(c) can be obtained from
Eqs. (A23) and (A26). The spectrum consists of a pair
of Lorentzians centered at ωk = ω0 − γos and a pair of
Lorentzians centered at ωk = ω0 + γos. Explicitly, the spec-
trum is given by

I (2+ → 1+) = 1 + r

2

1

π

γ2+1+

[ωk − ω0 − γos]2 + γ 2
2+1+

, (A27)

I (2− → 1−) = 1 − r

2

1

π

γ2−1−

[ωk − ω0 + γos]2 + γ 2
2−1−

, (A28)

I (1+ → 0) = 1 + r

2

1

π

γ1+0

[ωk − ω0 − γos]2 + γ 2
1+0

, (A29)

I (1− → 0) = 1 − r

2

1

π

γ1−0

[ωk − ω0 + γos]2 + γ 2
1−0

, (A30)

where

γ2±1± = 3γo(1 ± r), (A31)

γ1±0 = γo(1 ± r). (A32)
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