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This paper has been motivated by a recent paper by Dey [Phys. Rev. D 91, 044024 (2015)] on the known
Arik-Coon q oscillator. We construct q coherent, even and odd q-cat states in Fock representation for the
Biedenharn-Macfarlane q oscillator with q > 1 and study their nonclassical properties. The q-coherent states
minimize the Heisenberg uncertainty relation between the generalized position and momentum operators as
well as the x and y components of a q-deformed su(1,1) algebra in the Schwinger boson representation. The
latter is also minimized by the even and odd q-cat states. We show that, contrary to the undeformed harmonic
oscillator, the squeezing effect in both position and momentum operators can be exhibited by odd q-cat states. It
is also violated by even q-cat states. Furthermore, it is shown that the antibunching effect and sub-Poissonian or
super-Poissonian statistics can simultaneously appear by each of the even or odd q-cat states. Finally, a unitary
Fock representation of the q-deformed su(1,1) algebra is obtained by the q-deformed Bargmann-Fock realization.
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I. INTRODUCTION

During recent decades, coherent and cat states have made
their appearance in a large number of works in nonlinear
and quantum optics, both experimentally and theoretically.
For the first time Schrödinger introduced coherent states as
nonspreading wave packets that minimize the Heisenberg
uncertainty relation for the undeformed harmonic oscillator
[1]. They are the closest to classical states in this sense that
they remain localized around a classical trajectory and do not
change their functional form with time. Afterwards, Glauber
showed these states are the eigenstates of the annihilation
operator and are obtained by the application of the unitary
displacement operator on the ground state [2]. Then, the two
latter ideas were generalized separately to the noncompact
and arbitrary Lie groups and led to construct coherent states
in two distinct classes, the so-called Barut-Girardello and
Klauder-Perelomov classes [3–5]. A comprehensive review
of this development can be found in Refs. [6–10]. Photon
antibunching and squeezing in a quantum system are two of
the most remarkable properties of the radiation field which dif-
ferentiate the quantum correlations from those of the classical
ones, and considering and comparing quantum and classical
correlations remain the subject of further discussions since the
early days of quantum mechanics. Mandel showed that for
steady-state resonance fluorescence radiation, antibunching,
and sub-Poissonian behavior occur simultaneously when there
is a tuning between the exciting field and the atom [11]. He
also showed that for resonance fluorescence generated under
special conditions, the squeezing effect and sub-Poissonian
behavior need not accompany each other [12]. It is necessary
to mention the fact that, the cat states—which are also called
even and odd coherent states—are defined as the superposition
of two coherent states with opposite phase [13,14]. Both the
even and odd cat states are eigenstates of the square of the
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annihilation operator and exhibit the squeezing effect and
photon antibunching, respectively [15,16].

On the other hand, in continuation of the efforts to improve
some properties of quantum field theory, several authors
have proposed some changes in the canonical commutation
relations by adding a quantum parameter q, which in turn has
led to q deformations of the undeformed oscillator algebra.
Field theories based on q deformation of the canonical
commutation relations as such possess a small violation of
the Pauli exclusion principle and deviations from the Bose
statistics [17,18]. For this reason several attempts have been
made to introduce the various deformations of the one-
dimensional harmonic oscillator algebra in the last decades.
The most known q oscillators are Arik-Coon [19], Biedenharn-
Macfarlane [20–22], and Chung et al. [23]. Also, it must be
emphasized that the deformed oscillator algebras generated by
the operators {1,a,a†,N} have been unified by introducing a
positive analytic function �(x) with �(0) = 0 in the following
form [24–26]:

[N,a†] = a†, [N,a] = −a,

aa† = �(N + 1), a†a = �(N ). (1.1)

If we choose the structure function as �(x) = xF 2(x − 1),
then from the general scheme (1.1), we get the bosonization
scheme for the deformed oscillator algebra with the bosonic
creation and annihilation operators

[N,a†] = a†, [N,a] = −a, a† = b†F (N ), a = F (N )b,

(1.2)

in which {1,b,b†,N} is the undeformed oscillator algebra

[N,b†] = b†, [N,b] = −b, bb† = N + 1, b†b = N.

(1.3)

The bosonization scheme (1.2) was initially proposed by
Jannussis et al. in Ref. [27] and was afterwards called the f de-
formation in Ref. [28]. Some q-oscillator algebras that provide
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the boson realizations of quantum algebras can be derived from
the deformed oscillator algebras given above as special cases.
For example, it has already been reported in Refs. [29,30]
that the Biedenharn-Macfarlane q-oscillator algebra is directly
extracted from (1.1) and (1.2). We will introduce those
later in Sec. II. The well known Arik-Coon q-oscillator
algebra,

[N,a†] = a†, [N,a] = −a,

aa† − qa†a = 1, aa† − a†a = qN, (1.4)

can be directly obtained by choosing �(N ) = [[N ]] and

F (N ) =
√

[[N+1]]
N+1 where [[N ]] = 1−qN

1−q
. In the past decades,

after the paper by Arik and Coon [19], the constructions and
properties of the coherent and squeezed states associated with
a wide variety of q-oscillator algebras were the object of
numerous studies (see, for instance, [19,30–40]). Recently,
Dey in Ref. [41] has studied classical-like properties of the
nonlinear coherent states as well as nonclassical behaviors
of the Schrödinger cat states for the Arik-Coon q-oscillator
algebra (1.4) with 0 < q < 1. So, it will be interesting to follow
the studies along the line of Ref. [41] for the Biedenharn-
Macfarlane q-oscillator algebra. The purpose of this paper is
to use the Fock representation of the Biedenharn-Macfarlane
q-oscillator algebra with q > 1 to construct q coherent, even
and odd q-cat states and consider their nonclassical properties
in detail.

The plan of the paper is as follows. Section II contains a
brief review of the Biedenharn-Macfarlane q-oscillator algebra
and its unitary lowest weight representation, the so-called
Fock representation. In Sec. III we associate with the Fock
representation a pair of new boson creation and annihilation
operators that, in turn, gives a way to introduce a generalized
type of Hermitian position and momentum operators. They
are also used to make a q-deformed su(1,1) algebra that is
separately represented by both even and odd Fock states with
positive and negative parities. In Sec. IV we present q-coherent
states associated with Fock representation and realize the
resolution of the identity condition by an appropriate positive
definite measure on the whole complex plane. It is shown that
the Heisenberg uncertainty relation between the generalized
position and momentum operators as well as the x and y

components of the q-deformed su(1,1) is minimized by the
q-coherent states. In Sec. V, the even and odd q-cat states
associated with two orthogonal subspaces of the Fock space
representation together with their positive definite measures
are constructed for realizing the resolution of the identity
condition over the entire complex plane. We show that these
q-cat states minimize the Heisenberg uncertainty relation
between the x and y components of the q-deformed su(1,1)
algebra and exhibit the squeezing effect in both generalized
position and momentum operators. It is also shown that
the antibunching effect appears simultaneously with sub-
Poissonian or super-Poissonian statistics by each of the even
and odd q-cat states in some ranges of the parameter q and
the distance from the origin on the complex plane. In Sec. VI
we obtain the unitary Fock representation of the q-deformed
su(1,1) algebra by the q-deformed Bargmann-Fock realization
on two Hilbert spaces of even and odd entire holomorphic

functions associated with the even and odd q-cat states,
respectively. Finally, in the Appendix we give a q analog
of Euler’s formula for a factorial function by the symmetric
quantum numbers.

II. UNITARY REPRESENTATION
OF THE BIEDENHARN-MACFARLANE

Q-OSCILLATOR ALGEBRA Aq

The well-known Biedenharn-Macfarlane q-oscillator (uni-
tal and associative) algebra Aq = 〈a,a†,qN ,q−N 〉 over C is
defined by the commutation relations (with q ∈ R \ {−1,0,1})
[20,21,29,42]

qNa = q−1aqN, qNa† = qa†qN,

aa† − qa†a = q−N, aa† − q−1a†a = qN, (2.1)

where the first and second relations are adjoint of each
other and the third and fourth relations are self-adjoint. It
is also called the symmetric q oscillator since the relations
(2.1) are invariant under the transformation q → q−1. The
commutation relations (2.1) for the bosonic creation and
annihilation operators a† and a can be stated as follows:

[N,a†] = a†, [N,a] = −a, aa† = [N + 1], a†a = [N ],

(2.2)

where [N ] ≡ qN −q−N

q−q−1 . As it was mentioned above, the algebra
relations (1.1) and (1.2) simply reduce to (2.2), if we take

�(N ) = [N ] and F (N ) =
√

[N+1]
N+1 , respectively [29,30]. In

what follows we limit ourselves to the case q > 0 to deal
with the unitary lowest weight representation of the symmetric
q-oscillator algebra Aq . It is supposed that the generators
of Aq are the linear operators on the Hilbert space H =
Lin. Span{|n〉| n ∈ N0; 〈n|m〉 = δn m,

∑∞
n=0 |n〉〈n| = I } with

〈.|.〉 as a scalar product and I as the identity operator on that
space. Then, an irreducible representation of the algebra Aq

with the lowest weight on H is given by

a|n〉 =
√

[n]|n − 1〉, a†|n〉 =
√

[n + 1]|n + 1〉,
N |n〉 = n|n〉. (2.3)

It is now a unitary representation since the dagger plays the role
of a star structure and N is a self-adjoint operator and the two
operators a† and a are Hermitian conjugates of each other with
respect to the scalar product. The irreducible representation
(2.3) is briefly called a Fock representation of the Biedenharn-
Macfarlane q-oscillator algebra Aq with q > 0.

III. Q-DEFORMED POSITION-MOMENTUM
AND SU(1,1) ALGEBRAS FROM Aq

By defining new creation and annihilation operators as A =
a q

N
2 and A† = q

N
2 a† we get a different feature of q-deformed

oscillator algebra,

AA† = A†A + q2N+1 = q2A†A + q,

[N,A†] = A†, [N,A] = −A. (3.1)
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Their quadratic powers are faithful to the following commuta-
tion relations

A2A†2 = q8A†2
A2 + q3(q2 + 1)2A†A + q2(q2 + 1)

= A†2
A2 + q2 + 1

q2 − 1
[(q4 + 1)q2N − (q2 + 1)]q2N,

qNA2 = q−2A2qN, qNA†2 = q2A†2
qN . (3.2)

The generalized position and momentum operators associated
with the unitary symmetric q oscillator are given by

x ≡ 1√
2

(A† + A), p ≡ i√
2

(A† − A), [x,p] = iq2N+1.

(3.3)

Also, a unitary q-deformed version of su(1,1) in the Schwinger
boson representation is introduced by

Jx ≡ 1

4
(A†2 + A2), Jy ≡ 1

4i
(A†2 − A2),

Jz ≡ 1

4
(2N + 1),

[Jx,Jy] = −i
q2 + 1

8(q2 − 1)
[(q4 + 1)q4Jz−1 − (q2 + 1)]q4Jz−1,

[Jy,Jz] = iJx, [Jz,Jx] = iJy. (3.4)

The Hilbert space H can be uniquely decomposed into
two orthogonal subspaces He = Lin. Span{|2k〉| k ∈ N0} and
Ho = Lin. Span{|2k + 1〉| k ∈ N0} with positive and negative
parity states, respectively. Each of the subspaces He and Ho

is separately a Fock representation space of the q-deformed
su(1,1) algebra:

J+|n〉 = 1

2
qn+ 3

2

√
[n + 1][n + 2]|n + 2〉,

Jz|n〉 = 2n + 1

4
|n〉, (3.5)

J−|n + 2〉 = 1

2
qn+ 3

2

√
[n + 1][n + 2]|n〉.

It is clear that the undeformed harmonic oscillator algebra
and the classical su(1,1) Lie algebra are obtained as limiting
cases of the algebra relations (3.1) and (3.4) when q tends to 1,
respectively. Without loss of generality we shall assume q > 1
from now on.

IV. THE MINIMUM-UNCERTAINTY
Q-COHERENT STATES

Let w be a complex variable with the polar form as w =
|w|eiϕ , 0 � |w| < ∞, 0 � ϕ < 2π . The q-coherent states |w〉
of the carrier space of the Fock representation ofAq are defined
as the normalized eigenvectors of the annihilation operator A,
i.e., A|w〉 = w|w〉, with w ∈ C as eigenvalues. They can be
written in terms of the Fock bases {|n〉}n∈N0 as

|w〉 = 1√
ẽq−1 (q−1|w|2)

∞∑
n=0

q− n(n+1)
4 wn

√
[n]!

|n〉, (4.1)

where the tilde notation for the q-exponential function is
defined in the Appendix. From the remarks in the Appendix it

also follows that the coherent states |w〉 form an overcomplete
basis of H. More precisely:

(i) There exists a resolution of the unity in H,∫
C

dμq(w,w̄)|w〉〈w| =
∞∑

n=0

|n〉〈n|, (4.2)

with the positive definite measure as

dμq(w,w̄) = 1

1 + (q − q−1)|w|2
d̃q |w|2 dϕ

2π
. (4.3)

For a precise definition of the measure d̃q |w|2, see the
Appendix.

(ii) They are not orthogonal, and their overlapping rela-
tions have the forms

〈w|w′〉 = ẽq−1 (q−1w̄w′)√
ẽq−1 (q−1|w|2)̃eq−1 (q−1|w′|2)

. (4.4)

The Heisenberg uncertainty relation between x and p as
well as Jx and Jy is minimized by q-coherent states |w〉,

〈w|(�x)2|w〉〈w|(�p)2|w〉
= 1

4 |〈w|[x,p]|w〉|2 = 1
4 [(q2 − 1)|w|2 + q]2, (4.5)

〈w|(�Jx)2|w〉〈w|(�Jy)2|w〉
= 1

4 |〈w|[Jx,Jy]|w〉|2

= 1
256 [(q8 − 1)|w|4 + q3(q2 + 1)2|w|2 + q2(q2 + 1)]2.

(4.6)

In the limit q → 1, they reduce to the familiar values 1/4 and
(2|w|2 + 1)2/16 for undeformed harmonic oscillator, given in
Refs. [1,43].

V. THE Q-CAT STATES AND THEIR
NONCLASSICAL PROPERTIES

Let us briefly present the nonclassical properties we are
going to consider in this section. The Glauber-Sudarshan P

function which is analogous to the phase-space distributions
of statistical mechanics, and is a criterion for nonclassicality
based on the photon-number distribution of the field, charac-
terizes the properties of the quantum states [44,45]. States for
which P function is negative or more singular than a δ function
are nonclassical. The quadrature squeezing, as a nonclassical
behavior, is possible only for states for which the P function is
negative in some regions of the phase space. With respect to the
vacuum, the variance of one of the quadratures is less, while
the variance of the other quadrature is more [46,47]. Indeed,
according to the uncertainty relation, when the variance of
one of the quadratures becomes squeezed the variance of the
other quadrature is expanded. Furthermore, photon bunching
and photon antibunching are characterized by inequalities
g(2)(0) > 1 and g(2)(0) < 1 for the second-order intensity
correlation function, respectively [48]. States for which the
antibunching inequality holds are known as nonclassical fields
since they can only be interpreted in terms of the quantum
mechanical formalism. Therefore, photon antibunching effect
reflects the corpuscular nature of light. Also, the deviation
of standard photon statistics from the Poisson distribution
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is characterized by the Mandel’s Q parameter [11]. That is,
the zero value of the Q parameter corresponds to Poissonian
statistics, whereas the negative and positive values indicate
sub-Poissonian and super-Poissonian statistics, respectively.
Sub-Poissonian radiation is called nonclassical light, since its
photocount distribution is narrower than a Poissonian one with
the same intensity. The main focus of this section is on the
nonclassical properties, squeezing and antibunching effects as
well as sub-Poissonian statistics, for the q-cat states of the
Biedenharn-Macfarlane q oscillator and a comparison with
those of undeformed and Arik-Coon oscillators.

Two even and odd q-cat states as summations over even
and odd Fock states, respectively, i.e.,

|z〉e ≡
∑∞

n=0
q

− n(2n+1)
2 z2n√

[2n]!
|2n〉√

coshq−1 (q−1|z|2)
= coshq−1

(
q− 1

2 za†q
N
2
)|0〉√

coshq−1 (q−1|z|2)
,

(5.1)

|z〉o ≡
∑∞

n=0
q

− (2n+1)(2n+2)
4 z2n+1√

[2n+1]!
|2n + 1〉√

sinhq−1 (q−1|z|2)

= sinhq−1

(
q− 1

2 za†q
N
2
)|0〉√

sinhq−1 (q−1|z|2)
, (5.2)

are the orthonormalized eigenstates of the square of the boson
annihilation operator A. Therefore, A2|z〉e = z2|z〉e, A2|z〉o =
z2|z〉o, e〈z|z〉e = o〈z|z〉o = 1 and e〈z′|z〉o = 0. Here, z is again
a complex variable with the polar representation as z =
|z|eiθ , 0 � |z| < ∞, 0 � θ < 2π . We obtain the following
expressions if the cat states are to overlap:

e〈z′|z〉e = coshq−1 (q−1z̄′z)√
coshq−1 (q−1|z′|2) coshq−1 (q−1|z|2)

, (5.3)

o〈z′|z〉o = sinhq−1 (q−1z̄′z)√
sinhq−1 (q−1|z′|2) sinhq−1 (q−1|z|2)

. (5.4)

By using the q-integral relation given in the Appendix, i.e.,
(A15), it is easy to show that for the nonnegative definite
weight functions

μe
q(|z|) ≡ coshq−1 (q−1|z|2)

ẽq−1 (q|z|2)
= 1

2[1 + |z|2(q − q−1)]

+ 1

2

∞∏
n=0

1 − |z|2q−2n−2(q − q−1)

1 + |z|2q−2n(q − q−1)
, (5.5)

μo
q(|z|) ≡ sinhq−1 (q−1|z|2)

ẽq−1 (q|z|2)
= 1

2[1 + |z|2(q − q−1)]

− 1

2

∞∏
n=0

1 − |z|2q−2n−2(q − q−1)

1 + |z|2q−2n(q − q−1)
, (5.6)

resolutions of the identity condition are saturated as below:∫
C

d̃q |z|2 dθ

2π
μe

q(|z|) |z〉e e〈z| =
∞∑

n=0

|2n〉〈2n|, (5.7)

∫
C

d̃q |z|2 dθ

2π
μo

q(|z|) |z〉o o〈z| =
∞∑

n=0

|2n + 1〉〈2n + 1|. (5.8)

One can easily see that the q-coherent states with opposite
phases are superpositions of the even and odd q-cat states

|±z〉 =
√

coshq−1 (q−1|z|4) |z〉e ± √
sinhq−1 (q−1|z|4) |z〉o√

ẽq−1 (q−1|z|4)
.

(5.9)

The boson annihilation operator A maps the even and odd
q-cat states to each other as below:

A|z〉e =
√

z2 tanhq−1 (q−1|z|2) |z〉o,

A|z〉o =
√

z2 cothq−1 (q−1|z|2) |z〉e. (5.10)

Furthermore, all the necessary expectation values in the q-cat
states are

e〈z|A|z〉e = e〈z|A†|z〉e = o〈z|A|z〉o = o〈z|A†|z〉o = 0,

e〈z|A2|z〉e = o〈z|A2|z〉o = z2,

e〈z|A†2|z〉e = o〈z|A†2|z〉o = z̄2, (5.11)

e〈z|A†A|z〉e = |z|2 tanhq−1 (q−1|z|2),

o〈z|A†A|z〉o = |z|2 cothq−1 (q−1|z|2).

It is straightforward to conclude that the covariance of the
operators x and p as well as Jx and Jy over the normalized
even and odd q-cat states vanishes. Therefore, the minimum
uncertainty relations between the x and y components of
operator J in the even and odd q-cat states are calculated
in terms of their variances as below:

e〈z|(�Jx)2|z〉e e〈z|(�Jy)2|z〉e

= 1
256 [(q8 − 1)|z|4 + q3(1 + q2)2|z|2

× tanhq−1(q−1|z|2) + q2(1 + q2)]2, (5.12)

o〈z|(�Jx)2|z〉2〉o o〈z|(�Jy)2|z〉o

= 1
256 [(q8 − 1)|z|4 + q3(1 + q2)2|z|2

× cothq−1(q−1|z|2) + q2(1 + q2)]2. (5.13)

These results correspond to those of the undeformed harmonic
oscillator in the limit q → 1 [16].

Now, it will be interesting to consider the deviation of
the minimum uncertainty for the position and momentum
operators in the even and odd q-cat states. First, from (5.11)
we get the following results for the variance of the position
and momentum operators with respect to even and odd q-cat
states

e〈z|(�x)2|z〉e = 1
2 [q + 2|z|2 cos 2θ

+ (1 + q2)|z|2 tanhq−1 (q−1|z|2)], (5.14)

e〈z|(�p)2|z〉e = 1
2 [q − 2|z|2 cos 2θ

+ (1 + q2)|z|2 tanhq−1 (q−1|z|2)], (5.15)
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FIG. 1. The plots of the function tanhq−1 (q−1|z|2) against q and |z|. They denote that tanhq−1 (q−1|z|2) can be both smaller and larger than
the unit. In the first case, the squeezing effect is exhibited while in the second case, it is violated by even q-cat states, contrary to what occurs
in the limit q → 1.

and

o〈z|(�x)2|z〉o = 1
2 [q + 2|z|2 cos 2θ

+ (1 + q2)|z|2 cothq−1 (q−1|z|2)], (5.16)

o〈z|(�p)2|z〉o = 1
2 [q − 2|z|2 cos 2θ

+ (1 + q2)|z|2 cothq−1 (q−1|z|2)]. (5.17)

From (3.1) and (3.3), we note that the Heisenberg uncertainty
relation between the position and momentum operators in an
arbitrary normalized state can be expressed as below:

〈(�x)2〉〈(�p)2〉 � 1
4 |〈q + (q2 − 1)A†A〉|2. (5.18)

It is clear that this uncertainty relation is not minimized by
the even and odd q-cat states. This allows us to consider
a nonclassical behavior, i.e., squeezing effect, in the posi-
tion and momentum operators by the even and odd q-cat
states. If ± cos 2θ + tanhq−1 (q−1|z|2) < 0, then e〈z|(�x)2|z〉e
or e〈z|(�p)2|z〉e < 1

2
e〈q + (q2 − 1)A†A〉e, and even q-cat

states are “squeezed” in x or p, respectively. If ± cos 2θ +
cothq−1 (q−1|z|2) < 0, then o〈z|(�x)2|z〉o or o〈z|(�p)2|z〉o <
1
2

o〈q + (q2 − 1)A†A〉o, and odd q-cat states are squeezed in
x or p, respectively. If we fix θ = π

2 for squeezing in x and
θ = 0 for squeezing in p, then squeezing conditions for even
and odd q-cat states appear in the forms tanhq−1 (q−1|z|2) < 1
and cothq−1 (q−1|z|2) < 1, respectively. The first inequality is
clearly converted to a familiar one in the limit q → 1 while the
second one does not have such a limit. Indeed, it means that
for the undeformed harmonic oscillator, only even cat states
can exhibit the squeezing effect, which is in agreement with
the findings of Refs. [15,16]. We have plotted the changes in
the functions tanhq−1 (q−1|z|2) and cothq−1 (q−1|z|2) in terms
of q and |z|, in Figs. 1 and 2, respectively. They show
that in some ranges of the independent variables q and |z|,

both even and odd q-cat states of the Biedenharn-Macfarlane
q oscillator exhibit the squeezing effect in both quadrature
variances. Also, the inequalities are violated in some other
ranges. Consequently, the squeezing effect in both position and
momentum operators disappears. While according to Ref. [41],
the even q-cat states of the Arik-Coon q oscillator exhibit the
squeezing effect but its odd q-cat states do not exhibit this
nonclassical phenomena.

It is now easy to show that the second-order intensity
q-correlation function (for zero delay time) and q-Mandel
parameter associated with an arbitrary normalized state of the
model, i.e.,

g(2)(0) ≡ 〈A†2
A2〉

〈A†A〉2
, Q≡ 〈(A†A)2〉 − 〈A†A〉2

〈A†A〉 − 1, (5.19)

saturate the following equation

Q = 〈A†A〉[q2g(2)(0) − 1] + q − 1. (5.20)

This expression implies the deviation of the photon number
probability from the Poissonian distribution, and it is obviously
reduced to the standard formula in the limit of q → 1 [49]. Ac-
cording to (5.20), photon coherent state g(2)

e (0) = 1, bunching
g(2)

e (0) > 1, and antibunching g(2)
e (0) < 1 correspond, respec-

tively, to Poissonian, super-Poissonian, and sub-Poissonian
distributions in the undeformed harmonic oscillator. However,
we deal with a different variety of properties for q > 1.
It is not hard to verify the following results by direct
calculations:

g(2)
e (0) = coth2

q−1 (q−1|z|2),

Qe = q2|z|6 cothq−1 (q−1|z|2)

− |z|2 tanhq−1 (q−1|z|2) + q − 1, (5.21)
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FIG. 2. The plots of the function cothq−1 (q−1|z|2) against q and |z|. They denote that cothq−1 (q−1|z|2) can be both larger and smaller than
the unit. In the first case, the squeezing effect is violated while in the second case, it is exhibited by odd q-cat states, contrary to what occurs in
the limit q → 1.

g(2)
o (0) = tanh2

q−1 (q−1|z|2),

Qo = q2|z|6 tanhq−1 (q−1|z|2)

− |z|2 cothq−1 (q−1|z|2) + q − 1. (5.22)

It is quite clear from the above results that in the limit q → 1,
the light field of even cat states does not exhibit the nonclassical
antibunching effect. On the contrary, this effect is exhibited by
the light field of odd cat states in all ranges of the variable
|z|. This is exactly as has been reported in Refs. [15,16]. From
Figs. 1 and 2, we immediately notice that the antibunching
effect appears for both even and odd q-cat states in some
ranges of the parameters q and |z|. These findings, together
with (5.20), imply that sub-Poissonian statistics and the
antibunching effect, sub-Poissonian statistics and the bunching
effect, and super-Poissonian statistics and the antibunching
effect as well as super-Poissonian statistics and the bunching
effect can simultaneously occur by both even and odd q-cat
states in some ranges of the parameters q and |z|. While
according to Ref. [41], the Mandel parameters associated
with the odd and even q-cat states of the Arik-Coon q

oscillator could take negative (sub-Poissonian distribution) and
either positive or negative values (sub- and super-Poissonian
distributions), depending on the range of the parameters q and
|z|, respectively.

VI. THE q-DEFORMED BARGMANN-FOCK
REALIZATION OF THE q-DEFORMED su(1,1) ALGEBRA

We are now going to derive the q-deformed Bargmann-Fock
realization of the Fock representation of the q-deformed
su(1,1) algebra on two Hilbert spaces of even and odd entire
holomorphic functions associated with the even and odd q-cat

states, respectively. An even (odd) entire holomorphic function
is an even (odd) analytic map of the complex plane C into
itself. Each of the spaces of even and odd entire holomorphic
functions, which are expressed as even and odd power series
of z with complex coefficients, denoted by Ce[z] and Co[z],
constitutes a vector space with respect to the operations
of pointwise addition and scalar multiplication. It is now
straightforward to see that the coefficients in each of the
infinite superpositions of the even and odd q-cat states |z〉e
and |z〉o, i.e.,

ue
2k(z) ≡ [coshq−1 (q−1|z|2)]

1
2 e〈z̄|2k〉 = q

−2k(2k+1)
4 z2k

√
[2k]!

, (6.1)

uo
2k+1(z) ≡ [sinhq−1 (q−1|z|2)]

1
2 o〈z̄|2k + 1〉

= q
−(2k+1)(2k+2)

4 z2k+1

√
[2k + 1]!

, (6.2)

constitute separately an orthonormal basis of Ce[z] and Co[z]
with respect to the positive definite scalar products as

(
ue

2k,u
e
2k′

)e ≡
∫
C

ue
2k(z)ue

2k′(z)
μe

q(|z|)
coshq−1 (q−1|z|2)

d̃q |z|2 dθ

2π

= δk k′ , (6.3)(
uo

2k+1,u
o
2k′+1

)o

≡
∫
C

uo
2k+1(z)uo

2k′+1(z)
μo

q(|z|)
sinhq−1 (q−1|z|2)

d̃q |z|2 dθ

2π
= δk k′,

(6.4)

respectively.
Let now F e and Fo denote Hilbert space completions of

(Ce[z],(.,.)e) and (Co[z],(.,.)o). We can obtain the q-deformed
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Bargmann-Fock realization of the Fock representation of the
q-deformed su(1,1) algebra by isomorphisms from He and
Ho to F e and Fo which send |2k〉 and |2k + 1〉 to ue

2k(z)
and uo

2k+1(z), respectively. If we denote q differentiation with
respect to the variable z by zD̃q , then it is easy to see that

A2ue
2k(z) ≡

√
coshq−1 (q−1|z|2) e〈z̄|A2|2k〉

= zD̃q
2
q2z d

dz
−1ue

2k(z), (6.5)

A2uo
2k+1(z) ≡

√
sinhq−1 (q−1|z|2) o〈z̄|A2|2k + 1〉

= zD̃q
2
q2z d

dz
−1uo

2k+1(z). (6.6)

Therefore, under the isomorphisms from He and Ho to F e and
Fo, the explicit form of operator A2 in the spaces F e and Fo

is obtained as below:

A2 = zD̃q
2
q2z d

dz
−1. (6.7)

In a similar way, we get

A†2 = z2, N = z
d

dz
. (6.8)

For example, one can easily show that A2 in Eq. (6.7) is actually
the adjoint of A†2

in Eq. (6.8) with respect to the bilinear forms
on F e and Fo. Therefore, we have here obtained a unitary
Fock representation of the q-deformed su(1,1) algebra by the
q-deformed Bargmann-Fock realization.

VII. CONCLUDING REMARKS

A class of q-coherent states on the carrier space of the Fock
representation corresponding to the Biedenharn-Macfarlane
q-oscillator algebra was introduced and shown to minimize
an uncertainty relation between the position and momentum
operators. The Biedenharn-Macfarlane boson creation and
annihilation operators were used to make a q-deformed version
of su(1,1) algebra that is represented by both even and odd
Fock subspaces. We have shown that the even and odd q-cat
states associated with these Fock subspaces, which themselves
are superpositions of the two q-coherent states with an opposite
phase, have substantially nonclassical different properties with
respect to those of the undeformed boson oscillator and the
Arik-Coon q oscillator. The even cat states corresponding to
the latter two models exhibit the squeezing effect, whereas the
odd cat states do not exhibit this type of nonclassical behavior
[41,46,47]. Furthermore, in the undeformed boson oscillator,
the even and odd cat states display only super-Poissonian
and sub-Poissonian photon statistics, respectively [15,16].
Besides, in the Arik-Coon q oscillator, the odd q-cat states
exhibit only sub-Poissonian statistics of photons while the
even q-cat states exhibit sub-Poissonian or super-Poissonian
distributions which depend on the range of the parameters q

and |z| [41]. So, for the Arik-Coon q oscillator, the quantum
photon antibunching effect is visible not only through the odd
q-cat states but also through the even q-cat states. While,
according to our findings in this work, the even and odd
q-cat states of the Biedenharn-Macfarlane q oscillator can
demonstrate the squeezing effect in both position and mo-
mentum operators. They also exhibit the photon antibunching

and sub-Poissonian or super-Poissonian statistics simultane-
ously. The magnitudes of squeezing and antibunching can
be controlled by enlargement of the parameter q, too. It
was shown that, as expected, the even and odd q-cat states
minimize the Heisenberg uncertainty relation between the x

and y components of the q-deformed su(1,1) algebra. We
have also found the q-deformed Bargmann-Fock realization
of the q-deformed su(1,1) algebra on two Hilbert spaces of
even and odd entire holomorphic functions which in turn
can be utilized to generate two different classes of q-special
functions. Finally, it would be interesting to consider the non-
classical properties of the q-cat states of the more complicated
deformed oscillators such as the Chung-Chung-Nam-Um q

oscillator [23].

APPENDIX: q ANALOGUE OF EULER’S FORMULA
BASED ON THE SYMMETRIC QUANTUM NUMBERS

For a fixed parameter q, the symmetric q-differentiation
operator D̃q and q integration as an inverse operation to this q

differentiation are defined as [42]

D̃qF (x) := F (qx) − F (q−1x)

(q − q−1)x
≡ f (x) (A1)

and ∫ x

0
f (x)d̃qx := F (x) − F (0). (A2)

The Leibniz rule for the symmetric q derivative of the two
functions’ product is [42]

D̃q(F (x)G(x)) = F (qx)D̃qG(x) + G(q−1x)D̃qF (x), (A3)

D̃q(F (x)G(x)) = F (q−1x)D̃qG(x) + G(qx)D̃qF (x). (A4)

By symmetry, both relations (A3) and (A4) remain unaltered
under the interchange of F and G.

Now, we go on to define a q antiderivative and obtain a
q-integral representation of the q factorial in terms of the
symmetric quantum numbers. Thus, for q > 1, the q integrals
of a function f (x) on the intervals [0,a] and [0,∞) are,
respectively, calculated as follows

∫ a

0
f (x) d̃qx = a(q − q−1)

∞∑
j=0

q−2j−1f (q−2j−1a), (A5)

∫ ∞

0
f (x) d̃qx = (q − q−1)

∞∑
j=−∞

q2j+1f (q2j+1). (A6)

In Eqs. (A5) and (A6), the q integration by part for the
parameter a, whether finite or infinite, is immediate:∫ a

0
F (qx)D̃qG(x) d̃qx = F (a)G(a) − F (0)G(0)

−
∫ a

0
G(q−1x)D̃qF (x) d̃qx, (A7)∫ a

0
F (q−1x)D̃qG(x) d̃qx = F (a)G(a) − F (0)G(0)

−
∫ a

0
G(qx)D̃qF (x) d̃qx. (A8)
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(A7) and (A8) with each other are symmetric with respect to
the interchange of F and G.

Recall that a known q analog of the exponential function
with convergence radius equal to infinity for each q is [42,50]

Eq(x) =
∞∑

n=0

q
n(n−1)

2 xn

(q; q)n
= (−x; q)∞, (A9)

where (a; q)n = (1 − a)(1 − aq)(1 − aq2) · · · (1 − aqn−1)
and (a; q)0 = 1. In what follows, to abbreviate the formulas,
we define the following q-exponential function with a tilde
notation:

ẽq(x) ≡
∞∑

n=0

q
n(n−1)

2 xn

[n]!
= Eq2 [(1 − q2)x]. (A10)

Its associated hyperbolic sine and cosine functions are

sinhq x ≡ ẽq(x) − ẽq(−x)

2
=

∞∑
n=0

qn(2n+1)x2n+1

[2n + 1]!
,

coshq x ≡ ẽq(x) + ẽq(−x)

2
=

∞∑
n=0

qn(2n−1)x2n

[2n]!
. (A11)

It is now straightforward to show that, for a fixed parameter q,
we have

D̃q ẽq(x) = ẽq(qx), (A12)

D̃q

1

ẽq(x)
= −1

ẽq(q−1x)
. (A13)

Equation (A12), regarding the explicit definition of D̃q given
in Eq. (A1), straightforwardly gives the following expression
for ẽq−1 (x):

ẽq−1 (x) =
∞∏

k=0

(1 − xq−2k−1(q−1 − q)), for q > 1.

(A14)

Finally, one can show that the following q-integral rep-
resentation formula is held for the q-factorial [n]! = [n]
[n − 1] · · · [1]:∫ ∞

0

xn

ẽq−1 (qx)
d̃qx = q

n(n+1)
2 [n]!, for q > 1. (A15)

From (A14) we note that the integrand has no singular point
in the interval of integration.
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