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Shaping the joint spectrum of down-converted photons through optimized custom poling
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We present a scheme for engineering the joint spectrum of photon pairs created via spontaneous parametric
down-conversion. Our method relies on customizing the poling configuration of a quasi-phase-matched crystal.
We use simulated annealing to find an optimized poling configuration which allows almost arbitrary shaping of the
crystal’s phase-matching function. This has direct application in the creation of pure single photons—currently
one of the most important goals of single-photon quantum optics. We describe the general algorithm and provide
code, written in C++, that outputs an optimized poling configuration given specific experimental parameters.
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I. INTRODUCTION

The generation of pure nonclassical states of light is one
of the most important goals of optical quantum information
science [1]. A popular and versatile source of nonclassical light
is spontaneous parametric down-conversion (SPDC) [2]—a
nonlinear process that converts high-energy photons into pairs
of lower energy photons. SPDC has been employed in the
generation of squeezed light [3], Schrödinger kitten states
[4] and entangled photons [5], and is the most widely used
technique for generating single photons [2].

Sources based on SPDC have widespread application in
quantum computation [6], quantum communication [7], and
quantum metrology [8,9], as well as in more specialized areas
such as quantum imaging [10], quantum lithography [11], or
optical coherence tomography [12]. The ability to control the
characteristics of quantum states of light becomes increasingly
important as these applications mature.

In general, photon pairs generated via SPDC are correlated
in frequency and are described by a joint spectral amplitude
(JSA), which is determined by the properties of the incident
pump field and the material properties of the nonlinear crystal
used to mediate the down-conversion process. In this paper,
we focus on controlling the spectral properties of down-
conversion sources.

One particularly challenging but important application of
spectral shaping is in the production of single photons, which
are generated from SPDC photon-pair sources through a
heralding process, whereby the detection of one photon heralds
the presence of the other. Spectral correlations between the
photons degrade the spectral purity of heralded photons and
are therefore undesirable.

The simplest method for modifying the JSA’s shape is
filtering, which can reduce spectral correlations. But because
it introduces a spectrally dependent loss which acts on
the individual photons independently, spectral filtering can
degrade the quantum state’s photon-number purity [13,14].

More sophisticated methods involve shaping the spectrum
at the source using techniques such as quasiphase matching
(QPM) [15,16]. Because such methods act on both photons in
a pair simultaneously, they do not affect the quantum state’s

*abranczyk@perimeterinstitute.ca

photon-number purity. QPM can be achieved through a tech-
nique known as periodic poling, where the nonlinear medium
is constructed from individual domains of birefringent material
with alternating orientation; see Fig. 1. Chirped gratings have
been employed for pulse compression in second-harmonic
generation, as well as the generation of ultrabroad-spectrum,
top-hat shaped photons for optical coherence tomography
[12]. Correlations in the JSA can be reduced by using
periodic poling in conjunction with group-velocity matching
[17–24]; however, the extent to which spectral separability
can be achieved is limited by the crystal’s inherent sinc-type
phase-matching function, which manifests itself in the JSA as
undesirable diagonal sidelobes; see Fig. 2(a).

A technique for shaping the phase-matching function using
nontrivial QPM was proposed by Brańczyk et al. [25], who
showed that modulation of the nonlinearity profile of a
down-conversion crystal can drastically reduce side lobes in
the JSA. In this method, a discretized approximation to the
desired nonlinearity profile was achieved using higher-order
poling. Dixon et al. [26] proposed an alternative method for
spectral decorrelation, in which the crystal’s duty-cycle pattern
is customized while the grating period is fixed.

In this paper, we introduce a method in which we directly
manipulate the domain orientations while keeping their widths
fixed (Fig. 1, bottom). In contrast with the methods proposed
in [25,26], our method allows almost arbitrary shaping of
the phase-matching function, which provides flexibility in
designing the maximum nonlinearity for a given phase-
matching function width. Furthermore, in contrast with the
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FIG. 1. Periodic poling produces a sinc-shaped phase-matching
function. Alternative phase-matching functions, e.g., Gaussian, can
be generated by customizing the poling configuration. The phase
mismatch, �k, has units of rad/m.
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method in [26], we fix the width of each domain in the
grating, which preserves the phase-matching properties of the
crystal—a stringent requirement in many experiments.

While we focus on correlations in the spectral domain,
spatial correlations also exist and similar concepts have been
discussed in [27–30].

II. JOINT SPECTRAL AMPLITUDE OF
DOWN-CONVERTED PAIRS

The SPDC process mediates the conversion of high-
energy pump photons in mode p into pairs of lower energy
photons in modes a and b. This process satisfies energy
and momentum conservation according to: ωp = ωa + ωb and
kp(ωp) = ka(ωa) + kb(ωb), where ωj is the frequency in mode
j , and kj (ω) = nj (ω)ω/c is the wave vector associated with
the polarization of mode j , evaluated at frequency ω.

Theoretically, the two-photon state generated via SPDC can
be described by [31]

|ψ〉 =
∫

dωa

∫
dωbf (ωa,ωb)|ωa〉a|ωb〉b, (1)

where |ωi〉j is a one-photon Fock state of frequency ωi

prepared in mode j . The JSA, f (ωa,ωb) = α(ωp)�(ωa,ωb),
characterizes the joint spectrum of the two photons. The spec-
tral properties of down-converted photons can be manipulated
via the pump beam spectral amplitude function α(ωp) and the
phase-matching function �(ωa,ωb).

The JSA cannot, in general, be factorized into a product
of separable single-photon spectral amplitudes, u(ωa)v(ωb);
however, it can always be decomposed into a weighted sum
of separable single-photon spectral amplitudes, f (ωa,ωb) =∑

k bkuk(ωa)vk(ωb), known as the Schmidt decomposition.
The functions uk(ωa) and vk(ωb) each form a discrete basis of
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FIG. 2. Comparison of phase-matching functions (top), joint spectral amplitudes (middle), and Schmidt coefficients (bottom), which are
all dimensionless, for different apodization schemes. The Gaussian target function is also shown in red. (a) Standard first-order periodically
poled crystal (no apodization). We define the peak nonlinearity of this crystal to be unity and scale all other peak nonlinearities accordingly.
(b) Customized duty cycle method proposed by Dixon et al. [26]. In this scheme, the peak center is shifted, but this does not affect the photon
purity. The dashed, red line shows the Gaussian target function shifted for comparison. (c) Custom-poled crystal generated using simulated
annealing. We used a randomized initial trial configuration, then ran the algorithm with 2 × 105 iterations, using q = 0.999 and A = 1000. We
used M = 2001 samples to compute the objective function ds, over the range [a,b] = [2π (1 − 0.025)/�,2π (1 + 0.025)/�]. The height of the
target function was H = 0.8Nlc/π . All plots were generated using the Sellmeier equations given in [34,35]. We define �ωj = ωj − ω̄j where
ω̄j = ωp/2. The number of domains is (a) N = 740, (b) N = 860, and (c) N = 1300. We note that N = 1300 is roughly the optimal number
of domains needed for a custom-poled crystal, and increasing N does not improve the performance of the algorithm, but rather degrades it.
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complex orthonormal functions and the Schmidt coefficients
bk are real and satisfy

∑
k b2

k = 1 if f (ωa,ωb) is normalized.
In terms of the Schmidt decomposition, the down-converted

state can be written as

|ψ〉 =
∑

k

bk|uk〉a|vk〉b, (2)

where |uk〉 = ∫
dωauk(ωa)|ωa〉a and |vk〉 =∫

dωbvk(ωb)|ωb〉b.
The degree of correlation of a pure bipartite state, i.e.,

entanglement, can then be characterized by the entropy of
entanglement [32]. In terms of the Schmidt coefficients, this is
given as E = −∑

k b2
k log2(b2

k). For a completely decorrelated
JSA, the Schmidt decomposition contains only one term, i.e.,
b1 = 1, and the entropy of entanglement is E = 0.

III. PURITY OF HERALDED SINGLE PHOTONS

Consider any pure entangled bipartite state. The reduced
density matrix of either subsystem will necessarily be mixed.
The archetypical example of this is the Bell state—a Bell
state is maximally entangled, and thus the subsystems are
maximally mixed.

Similarly, spectral correlations in the biphoton spectral
amplitude will necessarily reduce the spectral purity of the
individual photons. Consider the state in Eq. (2). Given
detection of a single photon in mode b by a detector that does
not provide any spectral information, the single-photon state in
mode a can be written as ρa = ∑

k b2
k |uk〉a〈uk|a . The purity of

the reduced density matrix is given by P = Tr[ρ2
a ] = ∑

k b4
k .

If the Schmidt decomposition has only one nonzero Schmidt
coefficient, ρa is a pure state and P = 1. To increase the purity
of the heralded photon, one should therefore aim to reduce
correlations such that the Schmidt decomposition has only
one nonzero Schmidt coefficient.

Group-velocity-matching reduces JSA correlations by ori-
enting the functions �(ωa,ωb) and α(ωa + ωb) perpendicular
to each other and matching their widths as closely as possible.
This occurs when the group velocities satisfy k′

p = (k′
a +

k′
b)/2, where k′

j = ∂kj (ω)/∂ω|ω=ω̄j
and ω̄j are the central

frequencies [17–24]. Experiments in this regime typically
employ a periodically poled crystal which leads to a sinc-type
phase-matching function that manifests itself in the JSA as
undesirable diagonal sidelobes. In this paper, we focus on
directly shaping the phase-matching function to remove the
side lobes, thus increasing the separability of the joint spectral
amplitude.

IV. SHAPING THE PHASE-MATCHING FUNCTION

The phase-matching function is related to the nonlinearity
profile of the crystal via the Fourier transform [31]

�(ωa,ωb) ∝ 1

L

∫ ∞

−∞
χ (z)e−i�k(ωa,ωb)zdz, (3)

where L is the crystal length, χ (z) represents the nonlinear
optical coupling, and where phase matching within the
crystal can be described by the phase mismatch �k(ωa,ωb) =
kp(ωa + ωb) − ka(ωa) − kb(ωb). We will use �k as shorthand
for �k(ωa,ωb).

In principle, an arbitrary �(ωa,ωb) could be realized with
appropriate design of the crystal’s nonlinearity profile such
that it corresponds to the Fourier transform of the desired
phase-matching function. Unfortunately, it is nontrivial to
directly change the material properties of a nonlinear crystal,
and different methods must be used.

Consider a nonlinear medium composed of N domains of
birefringent material of length lc, where each domain can be
oriented either up or down. A flip in the orientation of the
domain introduces a phase shift of π . The nonlinearity profile
χ (z) in such a crystal is a discontinuous function that only takes
on values of ±χ0. The phase-matching function for the entire
crystal is a linear superposition of phase-matching functions
for individual crystal domains:

�(ωa,ωb) ∝ χ0

L

N∑
n=1

sn

∫ ∞

−∞
rect

(
z − zn

lc

)
e−i�kzdz (4)

∝ χ0lc

L
sinc

(
�klc

2

) N∑
n=1

sne
−i�kzn , (5)

where sn accounts for the phase shift due to the orientation
of the domain and zn = (n − 1

2 )lc specifies the origin of
the nth domain. The special case, where sn = einπ = (−1)n,
corresponds to a periodically poled crystal. In this case,
constructive interference near the point �k = 2π/�, where
� = 2lc is the poling period, produces a phase-matching
function that approximates

�(ωa,ωb) ∝ sinc

((
�k − 2π

�

)
L

2

)
. (6)

Since, in principle, the domains can take on other con-
figurations, a natural question to consider is whether the
phase-matching function can be tailored by manipulating
the relative orientations of the individual domains in a
nontrivial way. This was demonstrated by Brańczyk et al.
[25], where the authors designed and experimentally verified
a Gaussian phase-matching function for a 1 cm potassium
titanyl phosphate (KTP) crystal with � = 10.85 μm. But the
design in [25] was specific to a particular set of parameters,
and cannot easily be generalized.

In this paper, we introduce a general technique for opti-
mizing the domain orientations in order to achieve a desired
phase-matching function. Since periodically poled crystals
are optimized for source brightness (around a specific center
frequency), a custom poled crystal will necessarily generate
fewer pairs compared to a periodically poled crystal of the
same length pumped with the same pump.

In the next section, we describe the algorithm used for this
optimization.

V. ALGORITHM

The task of finding an optimal domain configuration is
formulated in terms of discrete optimization. The variables
are the N possible domain orientations sn, constrained as
sn ∈ {−1,1} and the solution space consists of 2N possible
crystal configurations. Neighbor configurations are defined as
those which differ by exactly one domain orientation. Since
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there are N domains which could be flipped, any particular
configuration has N neighbors.

Each domain configuration s ≡ (s1, . . . ,sN ) has a corre-
sponding nonlinearity profile, with a phase-matching function
�s(�k) given by the Fourier transform of this nonlinearity
profile. The task is to find the crystal alignment s0 which
yields a �s0 (�k) closest to some target function, �target(�k),
on a specified range [a,b].

We define a cost function

ds =
M∑

m=1

|�s(�km) − �target(�km)| (7)

as a measure of the distance between �s(�k) and �target(�k).
This distance is measured by selecting sufficiently many, say
M = 2000, points �km in the range [a,b]. The objective is to
minimize ds.

Because N will typically range from approximately one
hundred to a few thousand, the solution space is too large
to check each possible configuration with currently available
computing resources. It is also not convex, meaning that there
exist configurations which are locally optimal—that is, each
neighbor is a worse configuration—but not globally optimal;
one cannot simply move from neighbor to neighbor, always
selecting the better configuration. We solve this problem
by using simulated annealing [33], a method which accepts
worse configurations with a decaying probability p, and better
configurations with some probability q that is close to 1.

Starting with either a random or preselected domain
configuration, the algorithm iterates through randomly chosen
neighbor configurations, deciding whether to flip a given
domain or not. If s is the current configuration, and s′ is a
neighbor configuration being considered, then when ds′ � ds,
the algorithm moves to (worse) s′ with probability pi at
iteration i; however, when ds′ < ds, the algorithm moves to
(better) s′ with probability q.

The probability of accepting a worse configuration at
iteration i is given by pi = (hi/A) × (ds/ds′ ), where hi is a
decaying function known as the “heat function” (in analogy
with physical annealing), and A is roughly the number of
domains explored before the algorithm would hit a local
minimum if pi were set to zero. The heat function is chosen
to be hi = 2 × 2−i/J − 1, where J is the total number of
iterations.

Finally, we use q = 0.999, determined heuristically. Any
number close, but not equal to 1 tends to give good results.
Parameters q and A can be adjusted further to improve
performance of the algorithm.

After J iterations, the algorithm performs an additional
optimization by systematically sweeping through the crystal
(say, from left to right), flipping each domain and only keeping
the new configuration if ds′ < ds. The algorithm stops when
an entire sweep does not reduce the cost function.

The algorithm is probabilistic, and may therefore occasion-
ally yield an unsatisfactory solution. This can be ruled out by
running the algorithm several times and comparing the results.

The solutions are not unique, in that different configurations
can yield the same value of the cost function.

A. Choosing appropriate input parameters

Here, we provide some rules of thumb for selecting input
parameters. We imagine a situation where the experimenter
knows the desired target function �target(�k) and wants to
choose the crystal parameters lc and L appropriately for best
performance of the algorithm. If these parameters are chosen
arbitrarily, the algorithm will still find an optimized solution;
however, this solution may not be sufficiently close to the
desired function.

A good value for the parameter lc can be determined by
identifying the peak of the desired phase-matching function,
let’s call it �kpeak, and setting lc = π/�kpeak (if there is
no identifiable peak, �kpeak can be chosen to be a point in
the range [a,b]). The parameter N should be chosen large
enough such that the Fourier transform of �target(�k) has
strong support in the range [−Nlc/2,Nlc/2], but not much
larger. When inputting the phase-matching function into the
algorithm, the height of �target(�k) should be between 0
and 2Nlc/π . The ideal height—that is, the height for which
the algorithm performs best—seems to have a nontrivial
dependence on N and lc, as well as the form of the target
function. However, the dependence isn’t overly sensitive: a
deviation of 5% from the ideal height still works very well.
It is relatively simple to identify the ideal height through trial
and error.

VI. RESULTS

In this section, we primarily consider the task of engineering
a Gaussian phase-matching function for the purpose of
generating pure heralded single photons, and compare our
method to existing methods. We also demonstrate that the
algorithm can be used to approximate other phase-matching
functions of interest.

A. Pure heralded single photons

Recall that spectral correlations between two down-
converted photons necessarily reduce the spectral purity of
the individual photons. Here, we show how to dramatically
reduce JSA correlations by designing a crystal with a Gaussian
phase-matching function.

For a poled KTP crystal in the type-II configuration, group-
velocity matching can be achieved for a crystal with � =
46 μm, pumped with a 791 nm laser. In our example, we will
work with a pump laser of bandwidth σ = 1 nm.

We first consider a standard periodically poled crystal.
For maximal decorrelation, the width of the phase-matching
function should match the width of the pump function, which
can be achieved with a periodically poled crystal with N = 740
domains. Figure 2(a) shows this crystal’s phase-matching
function, corresponding joint spectral amplitude, and Schmidt
coefficients. Notice that the side lobes that arise from the sinc
profile of the phase-matching function admit some correlations
between the two photons, resulting in a heralded photon purity
of P = 0.865.

Next, we consider a crystal with a customized duty cycle.
Choosing the duty cycle appropriately can drastically reduce
the sidelobes, as demonstrated by Dixon et al. [26]; see
Fig. 2(b). Since modifying the duty cycle broadens the phase-
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matching function, we reduce broadening by increasing the
number of domains to N = 860 to ensure that the widths of
the phase matching and pump functions match. Modifying the
duty cycle also shifts the phase-matching function, which can
be offset by decreasing �, but since this has no effect on the
spectral purity, we do not compensate for this. Customizing
the crystal’s duty cycle increases the heralded photon’s purity
to P = 0.979.

Finally, we consider the technique proposed in this paper in
which the domain configuration is customized. The technique
relies on nontrivial interference between the fields in the
crystal to generate a customized phase-matching function. In
Sec. V A, we described how to choose an appropriate N for a
given phase-matching function. The phase-matching function
that matches the width of the 1 nm pump calls for N = 1300
domains. Note that this N is optimized and increasing the
number of domains does not increase the performance of
the algorithm, but rather degrades it. In Fig. 2(c), we see
that for the optimized custom-poled crystal, the sidelobes are
almost entirely absent and the purity of the heralded photons
is increased to P = 0.999.

The algorithm optimizes the phase-matching function
within the range [a,b], which may result in a nonzero joint-
spectral amplitude immediately outside the corresponding
frequency range. Since photon-number impurities are only
introduced when the filter has nonzero or nonunit transmission
in a region of nonzero amplitude, these frequencies can be
safely filtered out without compromising the photon-number
purity, provided they are sufficiently far from the central peak.

The technique introduced by Brańczyk et al. [25], which
showed that a purity of up to 0.99 can be achieved by
modulating the crystal nonlinearity using higher-order poling,
was demonstrated for specific σ , �, and N , and is not readily
adaptable to other regimes for direct comparison.

B. Other functions

The simulated annealing technique can also be used
to approximate other phase-matching functions of interest.
Here, we demonstrate this for phase-matching functions with
triangular and rectangular profiles.

Figure 3(a) shows a triangular phase-matching function,
generated with an initial configuration of N = 3500 randomly
oriented domains. The algorithm used 4 × 104 iterations,
with q = 0.999 and A = 100, and M = 2001 samples to
compute the objective function ds, over the range [a,b] =
[2π (1 − 0.005)�,2π (1 + 0.005)�]. The height of the target
function was 0.4Nlc/π .

Due to the sharp edges of a rectangular function, the number
of domains needed to produce a reasonable approximation
was higher. To generate the phase-matching function shown in
Fig. 3(b), we increased the number of domains to N = 5000.
We then ran the algorithm with 105 iterations, using A = 1000.
The height of the target function was 0.2Nlc/π . All other
parameters were the same as for the triangle.

VII. REMARKS AND FUTURE DIRECTIONS

We proposed a technique for shaping the phase-matching
profile of a pair of down-converted photons by exploiting
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FIG. 3. Phase-matching functions (dimensionless) for (a) trian-
gular and (b) rectangular phase-matching functions. Target functions
are in red; optimized custom-poled functions are in black. We define
the peak nonlinearity of a first-order-poled crystal of the same length
as unity and scale all other peak nonlinearities accordingly. We
define �k′ = �k − 2π/�. We note that sharp edges make the top-hat
function very difficult to approximate with a decomposition of smooth
functions. For comparison with other methods, see [12,25].

nontrivial interference inside a custom poled crystal. Our
method can be used to approximate profiles of interest, e.g.,
those with Gaussian, triangular, and rectangular profiles. In
particular, Gaussian phase-matching functions are desirable
as they can decorrelate the JSA of down-converted photons.

Because it eliminates the need for spectral filtering, which
reduces the purity of a down-converted squeezed state as
a function of the pump power [13,14], our technique may
facilitate the creation of purer multiphoton states for quantum
information processing, e.g., heralded Fock states with high
photon number.

Recent work by Quesada and Sipe [36] shows that the
joint spectrum for higher Fock states can differ from that
of single-photon pairs. It would be interesting to apply our
technique in this regime. It might also be possible to apply
our technique to the optimization of the entire joint spectral
amplitude, rather than just the phase-matching function, as was
shown by Phillips et al. [37]. While simulated annealing was
sufficient for solving the present problem, more sophisticated
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algorithms, such as genetic algorithms, might be necessary for
further extensions.

We also expect our technique to have applications in
classical nonlinear optics, such as second harmonic gener-
ation, where similar spectral shaping techniques have been
demonstrated [15,16].
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APPENDIX: C++ CODE

A C++ implementation of the algorithm described in this
paper is also available. The zipped package can be downloaded
(see Supplemental Material [38]).
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