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Large-N ground state of the Lieb-Liniger model and Yang-Mills theory on a two-sphere
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We derive the large-particle-number limit of the Bethe equations for the ground state of the attractive one-
dimensional Bose gas (Lieb-Liniger model) on a ring and solve it for arbitrary coupling. We show that the ground
state of this system can be mapped to the large-N saddle point of Euclidean Yang-Mills theory on a two-sphere
with a U(N ) gauge group, and the phase transition that interpolates between the homogeneous and solitonic
regime is dual to the Douglas-Kazakov confinement-deconfinement phase transition.
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I. INTRODUCTION

The Lieb-Liniger (LL) model is an interesting laboratory to
study properties of strongly interacting quantum many-body
systems, both experimentally [1–4] and theoretically. The
attractive version has been used extensively to study, e.g.,
quench dynamics [5–9], and is known to undergo a phase
transition at large particle number [10]. Yet, at the same time,
the model is integrable and can be solved exactly using the
Bethe ansatz [11].

In practice, however, a closed-form expression for the Bethe
state has only been available in the weak- and strong-coupling
limits. Therefore studies of the phase transition have mostly
resorted to mean-field methods or numerical diagonalization
of the Hamiltonian (see, e.g., [12–15]).

In this paper, we derive the continuum limit of the Bethe
equations for the ground state of the attractive LL model and
solve it for arbitrary coupling. We confirm the second-order
phase transition by considering the ground-state energy [16].

Finally we observe that the ground state can be mapped
exactly to the large-N saddle point of U(N ) Yang-Mills theory
on a two-sphere, where the phase transition manifests itself
as the confinement-deconfinement phase transition of Douglas
and Kazakov [17], which is deeply connected to random matrix
theory [18] and has diverse manifestations [19,20].

II. BETHE ANSATZ FOR THE GROUND STATE

We are interested in the Lieb-Liniger Hamiltonian [11],

H = −
∑
i�N

∂2

∂x2
i

− c
∑
i �=j

δ(xi − xj ), (1)

for N identical bosons on the interval [0,L) with periodic
boundary conditions. We use the sign convention in which the
coupling is attractive for c > 0.

The eigenstates of this Hamiltonian can be computed
exactly using the Bethe ansatz [11,21]. They are fully char-
acterized by a set of complex numbers kj , roots of the Bethe
equations

eikiL =
∏
j �=i

ki − kj − ic

ki − kj + ic
. (2)
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The energy and momentum eigenvalues of the Bethe states are
E = ∑

i k2
i , P = ∑

i ki .
In the repulsive regime, it was shown [22] that the Bethe

states with real roots form a complete set of the N -particle
Hilbert space. For attractive c > 0, there exist bound states:
subsets of roots with identical real but differing imaginary
parts. The ground state of the system is then characterized by
a bound state of zero real momentum, with all the ki purely
imaginary [23].

Replacing kj → −ikj , we then arrive at the form of the
Bethe equations that we will deal with:

kiL =
∑
j �=i

ln
ki − kj + c

ki − kj − c
. (3)

Their real solution characterizes the ground state of the system.
In the thermodynamic limit, where N and L are taken to

infinity with fixed density N/L, the Bethe roots form an exact
string with exponentially small deviations: kj ≈ c[j − (N +
1)/2] [23]. This limit, however, is inherently a strong-coupling
limit, which can be seen by noticing that the coupling in the
Hamiltonian scales as cL with the length of the interval.

At weak coupling for c → 0 (N fixed), the distance between
adjacent roots is much larger than c and the roots are distributed
according to the semicircle law [24].

In both limits, the roots obey the following inequality that
is a direct consequence of (3) but will have to be imposed in
the continuum limit:

|ki − kj | > c. (4)

To see why this inequality holds, imagine changing the
coupling adiabatically. Assume that at some point ki+1 − ki =
c for a pair of roots (if there are several such pairs, focus on
the one with lowest index). The sum in the Bethe equation (3)
for ki has just one diverging contribution at this point and can
no longer be satisfied.

III. LARGE-N LIMIT

From here on, we will consider the large-N limit of the LL
model at finite effective coupling g,

N → ∞ while g = cLN = const, (5)

which is the correct limit to observe the phase transition. We
also set L = 1 for convenience. It turns out that the root
distribution converges to a continuous function in this limit
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FIG. 1. Continuum root distribution ρ = 1/k′ (black) and numerical data points at N = 400 (red fill).

if we define

ki ≡ g k(i/N). (6)

The sum on the right-hand side of the Bethe equation can
be split in a near contribution from |j − i| < εN and the rest
for some ε > 0. A closer analysis reveals that for k′ > 1, the
near contribution vanishes in the double limit limε→0 limN→∞
(see Appendix). For the rest of the sum, the following Taylor
expansion is valid:

lim
N→∞

ln
ki − kj + g

N

ki − kj − g

N

= 2g

N

1

ki − kj

. (7)

In the continuum limit, the Bethe equation thus becomes an
integral equation

gk = 2 P
∫ kmax

−kmin

ρ(u)

k − u
du, (8)

where ρ(k) ≡ 1/k′ is the density of roots and the principal
value symbol is a remnant of the ε excision. The bounds
must be chosen such that

∫ kmax

−kmin
ρ(u) du = 1, and the density

must satisfy the constraint (4), which in the continuum limit
becomes

ρ(k) � 1. (9)

The solution of the integral equation (8) is a semicircle

ρ(k) = 1

π

√
g − g2k2

4
. (10)

As long as g < π2, the constraint (9) is satisfied and (10) is the
correct ground-state root distribution. For g > π2, however,
this distribution violates the constraint.

Studying the large-N limit of the exact string solution
reveals that the continuum root distribution may saturate the
constraint ρ(k) = 1 on an interval k ∈ [−b,b]. We therefore
make the following ansatz in the solitonic regime:

ρ(k) =
{

1 k ∈ [−b,b]
ρ̃(k) k ∈ [−a, − b) ∪ (b,a]. (11)

Inserting into (8) then produces an integral equation for ρ̃, the
solution of which is [17,25]

ρ̃(k) = 2

πa|k|
√

(a2 − k2)(k2 − b2) �1

(
b2

k2
,
b2

a2

)
(12)

and the parameters a and b are determined from the following
conditions:

4K(x)[2E(x) − (1 − x)K(x)] = g,

ag = 4K(x), and x = b2/a2,
(13)

where E(x) and K(x) are the elliptic functions of the first and
second kind, and �1(x,y) is the elliptic function of the third

kind [26], defined as [27]

�1(x,y) =
∫ 1

0

1

(1 − xu2)
√

1 − yu2

du√
1 − u2

. (14)

Note that for g → π2, we have b → 0 and ρ̃(π2) becomes a
semicircle; thus the root distribution changes continuously at
the phase transition.

In Fig. 1 we show the continuum limit root distribution for
several values of the effective coupling. The numerical results
for N = 400, obtained directly from (3), are superimposed on
the graphs and match very well.

IV. GROUND-STATE ENERGY AND PHASE TRANSITION

In the large-N limit, the energy per particle becomes

ε = − 1

N

∑
i

k2
i = −g2

∫
k2ρ(k) dk . (15)

For the weak-coupling solution (10) this expression is
simple to evaluate. On the strong-coupling side (12), the
integral representation of �1 and contour integration can be
used to calculate the energy. After simplifying with (13), we
get

− ε =
{

g for g � π2

1
48g2(8(a2 + b2) + g(a2 − b2)2) for g > π2.

(16)

By inverting (13) and expanding a, b, and finally ε as a power
series in the effective coupling g around π2, we find

−ε = g + 2

π2
(g − π2)2 + O[(g − π2)3],for g > π2.

We observe that ε(g) and ε′(g) are continuous at π2, whereas
the second derivative is discontinuous, confirming that it is
indeed a second-order phase transition.

As a nontrivial check, we can compare (16) with the
expression obtained in [10] using mean-field theory, since in
the large-N limit we expect the mean field to produce the
correct ground-state energy (Fig. 2) [28]. In our conventions,
the mean-field ground-state energy is, for g > π2,

−εmf = 4

3

K(m)2

E(m)
[(2 − m)E(m) + (1 − m)K(m)], (17)

with m determined from

4E(m)K(m) = g. (18)

The parameter m that describes the physical width of the
soliton in the mean-field analysis can be mapped to x from
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FIG. 2. Ground-state energy per particle. Numerical results for
400 particles are shown in brown. In green is the mean-field result in
the strong-coupling phase. The dashed line shows the thermodynamic
limit [23].

Eq. (13) through the substitution [29]

x = (1 − √
1 − m)2

(1 − √
1 − m)2

. (19)

Using this relation it is possible to show the equivalence
between the mean-field ground-state energy and Ref. (16).

V. EQUIVALENCE TO YANG-MILLS THEORY
ON A TWO-SPHERE

We will briefly recap the large-N limit of the U(N ) Yang-
Mills partition function in two dimensions as derived in [17]. It
will then be obvious how our ground state of the Lieb-Liniger
model maps directly to the saddle point of this theory quantized
on a sphere.

The partition function of pure Yang-Mills theory on a two-
dimensional manifold of genus G and area A can be expressed
as a sum over representations R of the gauge group [30],

ZG(A) =
∑
R

(dim R)2−2Ge−Aλ2C2(R)/2N, (20)

where λ is the ’t Hooft coupling.
For the gauge group U(N ), the sum over representations

can be expressed as a sum over Young tableaux characterized
by a set of decreasing integers {n1,n2,...,nN }, the components
of the highest weight.

In the ’t Hooft large-N limit the representations may be
characterized by a continuous function h:

N h(i/N) ≡ −ni + i − N/2, (21)

and the partition function becomes

ZG=0(A) =
∫

Dh(x) exp(−N2Seff[h]),

Seff[h] = −
∫ 1

0

∫ 1

0
ln |h(x) − h(y)| dx dy

+ Aλ2

2

∫ 1

0
h(x)2 dx − Aλ2

24
. (22)

Since the ni are monotonic, it is clear that h(x) obeys the
inequality h(x) − h(y) � x − y, so h′(x) � 1.

The large-N saddle-point approximation of (22) yields an
integral equation for the density ρ(h) = dx/dh:

Aλ2h = 2 P
∫

ρ(s)

h − s
ds. (23)

Clearly this integral equation with constraint is identical to
Eq. (8) that governs the Bethe root distribution in the ground
state of the Lieb-Liniger model. The correspondence directly
maps the density of Young tableaux boxes h to the density of
Bethe roots k and the ’t Hooft coupling λ2 to the effective LL
coupling g.

The phase transition at g = π2 in the Lieb-Liniger model
appears as the confinement-deconfinement phase transition in
the gauge theory. It is not yet clear, but an interesting open
question is whether physical observables of both systems can
be related to each other.

Note that this is not the first time a correspondence between
Bethe equations of an integrable one-dimensional system
and Yang-Mills theory has been found [31]. In the known
examples, the system was mapped into the moduli space of
a supersymmetric gauge theory. And the Bethe roots played
the role of the eigenvalues of the complex scalar in the vector
multiplet.

In our case, however, we map the Bethe roots to the
components of highest weight of the representation of U(N )
that dominates the saddle point of the partition function.

VI. NUMERICAL CHECKS

We have performed numerical checks to validate our
continuum results. To this end, we have solved the Bethe
equations (3) at various values of N and g, using the
Levenberg-Marquardt solver provided by MATHEMATICA [32].
In order to probe the convergence of the finite N root
distribution to the analytic large-N expression, we compute
the mean-square deviation

	(N,g) = 1

N

N∑
i=1

[
ki(g) − gk̄

(
i

N
,g

)]2

, (24)

where k̄(x,g) is defined by numerically integrating Eqs. (12)
and (10).

The results are displayed in Fig. 3, where we show 	(N,g)
as a function of N for different values of g. We observe that
	(N,g) behaves like A(g)N−B(g). The best-fit parameters
B(g) are shown in Fig. 4. Based on these numbers, we
conjecture that B = 2 at large N , and we notice that subleading
(in N ) effects seem to be stronger around the phase transition
g = π2.

FIG. 3. Asymptotic behavior of 	(N ).
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FIG. 4. Best-fit parameters B for different couplings.

VII. CONCLUSIONS

In this article we have studied the attractive Lieb-Liniger
model in the large-N scaling limit. We have derived an integral
equation (8) that provides the continuum form of the Bethe
equations. Together with a bound on the root density, this has
allowed us to calculate the limiting form of the Bethe root
distribution (10,12).

The phase transition from the homogenous weak coupling
to the bright soliton phase manifests itself in a change in
the functional form of the root distribution. The ground-state
energy (16) coincides with the mean-field result—involving
an identity of elliptic integrals—and confirms the order of the
phase transition (second order).

We do not know, however, whether the equivalence between
the large-N saddle point of U(N ) Yang-Mills theory on
a sphere with the scaling limit of the LL model has a
deeper physical origin or whether it is purely a mathematical
coincidence. Nevertheless, it seems like a promising avenue
for future investigations, especially considering that various
relations between (supersymmetric) Yang-Mills theory and
integrable systems have already been uncovered [31].

Another interesting direction is how to compute the lowest-
lying excitations in the large-N limit. While the results

presented here do not have immediate experimental conse-
quences, knowledge of the root density for the first excitations
would allow us to probe the time evolution of observables at
arbitrary couplings.
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APPENDIX

For some ε > 0 the near contribution to the sum (3) from
indices |j − i| � εN can be written in the following form:

εN∑
δ=1

ln

(
1 + 2

N

ki−δ + ki+δ − 2ki

(ki+δ − ki + g

N
)(ki − ki−δ − g

N
)

)
.

We switch to continuum variables (6), with x = i/N and
assume that k′(x) > 1 and k′′(x) �= 0. Defining k′2

min =
min k′(y)2 for y ∈ [x − ε,x + ε], the above sum can be
bounded by

εN∑
δ=1

ln

(
1 + 2

N

c|k′′(x)|
k′2

min − 1

)
� ε

c|k′′(x)|
k′2

min − 1

for some c > 1. Now it is obvious that this near contribution
vanishes in the limit limε→0 limN→∞.
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