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Fast control of topological vortex formation in Bose-Einstein condensates by counterdiabatic driving
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Fast creation of a single vortex in BEC of alkali-metal atoms at a prescribed position and time is still challenging,
even though various methods to create single and multiple vortices have been proposed and demonstrated.
Topological vortex formation is advantageous in this respect over other methods in that the position and time of
vortex formation is highly controllable. This method requires inversion of the bias magnetic field along the axis
of the condensate, which leads to unwanted atom loss due to nonadiabatic transitions when the bias field crosses
zero. It is the purpose of this paper to propose a scheme that enables a fast creation of a vortex in much shorter
time than needed for adiabatic control time by introducing the counterdiabatic field to avert the atom loss. We
further introduce a gauge transformation so that the required magnetic field is generated by manipulating the
current of the Ioffe bars, which makes our proposal experimentally feasible.
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I. INTRODUCTION

Demonstration of quantized vortices in a superfluid is
a manifestation of the nonvanishing order parameter. The
topological structure of vortices often reflects the manifold
of the order parameter space. It is, therefore, natural to
seek for the method to experimentally demonstrate formation
of vortices once the Bose-Einstein condensate (BEC) of
alkali-metal atoms has been realized. Topological methods
of vortex formation, which utilize the spinor structure of the
order parameter, have been proposed [1–7], and formations of
vortices in BEC [8–14], as well as other topological defects
such as a Skyrmion [15,16] and a monopole [17,18], have been
demonstrated by means of phase imprinting. Topologically
created vortices inevitably have a multiple winding number
that can be controlled by specifying the hyperfine spin of BEC.
This opened up a new research subject in BEC; instability of
a vortex with a high winding number into several vortices
with lower winding numbers [10,12–14,19–24]. Different
methods to create BEC vortices have been proposed, such
as the method with stirring of BEC by a laser beam [25],
oscillatory perturbation of trapping potential [26,27], and a
synthetic magnetic field [28]. Fast creation of a topological
vortex beyond the adiabatic limit is challenging because of
serious loss of atoms due to unwanted nonadiabatic transitions.
We propose a fast and precisely controlled formation of a single
vortex in BEC by driving the hyperfine spin using the magnetic
field designed to restrain unwanted nonadiabatic transitions.
This counterdiabatic vortex formation scheme manifests its
efficiency in a fast creation process with the manipulation time
far shorter than the adiabatic limit. The necessary magnetic
field can be generated by ordinary Ioffe bars, and no annular
trapping potential nor optical plug is required in the creation
process.

This paper is organized as follows. In Sec. II, we give a brief
review on topological vortex imprinting to establish notation
and convention. In Sec. III, we obtain the counterdiabatic

field (CDF) to flip the hyperfine spin with speed beyond the
adiabatic limit and introduce an approximation so that it is
physically feasible. In Sec. IV, we solve the Gross-Pitaevskii
equation with the magnetic field obtained in Sec. III to show
much more atoms are kept in the trap after the vortex formation
with very short inversion time compared to those without CDF.
In Sec. V, we introduce a gauge transformation acting on
the hyperfine spin so that the control magnetic field can be
implemented by a usual experiment setup without sacrificing
the efficiency. Section VI is devoted to summary.

II. TOPOLOGICAL VORTEX IMPRINTING

In the topological vortex formation process, hyperfine spin
of the condensate is manipulated so that the vortex phase is
imprinted as a Berry phase. Initially, a vortex-free condensate
in the weak field seeking state (WFSS) is trapped in a
quadrupole magnetic field in the x-y plane with a uniform
bias field Bz along the z axis and, subsequently, the bias field
is linearly reversed from Bz to −Bz adiabatically. Then a
vortex with the winding number 2F is formed, where F is
the quantum number of the hyperfine spin of the condensate.
We assume the translational invariance of the BEC along the
z axis by following the original scheme developed in Ref. [2].

Consider an atom with hyperfine spin F = (Fx,Fy,Fz) at
a position r at time t . When the atom is under an external
magnetic field B(r,t), the interaction Hamiltonian is given by

HB(r,t) = γ B(r,t) · F, (1)

where γ = μBgF , μB is the Bohr magneton, and gF is the
g factor of the hyperfine spin F . We take F = 1 in the fol-
lowing for definiteness, for which F is the three-dimensional
irreducible representation of su(2). For topological vortex
formation, we consider a special form of B, that is, B(r,t) =
B⊥(r) + Bz(t), where

B⊥(r) = B ′
⊥(x, − y,0) (2)
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is the static quadrupole field in the Ioffe-Pritchard trap, for
which B ′

⊥ = d|B⊥|/dr is approximately constant, while

Bz(t) = (0,0,Bz(t)), (3)

with

Bz(t) =
{

Bz

(
1 − 2t

T

)
, 0 � t � T

−Bz, t � T
. (4)

Namely, Bz(t) is linearly reversed during a time interval T and
kept fixed after t = T . We show below that a phase with the
winding number 2 is imprinted through this process.

For a given B(r,t), the Hamiltonian (1) has three normal-
ized eigenstates: the WFSS, the neutral state (NS) and the
strong field seeking state (SFSS) represented as,

|WFSS〉 = 1

2B

⎛
⎜⎝

(B − Bz)e2iφ

−√
2B⊥eiφ

B + Bz

⎞
⎟⎠,

|NS〉 = 1√
2B

⎛
⎜⎝

−B⊥e2iφ

√
2Bze

iφ

B⊥

⎞
⎟⎠, (5)

|SFSS〉 = 1

2B

⎛
⎜⎝

(B + Bz)e2iφ

√
2B⊥eiφ

B − Bz

⎞
⎟⎠,

where B = |B(r,t)| and φ is the azimuthal angle. The cor-
responding eigenvalues are |γ |B, 0, and −|γ |B, respectively,
where γ = −μB/2. The WFSS with the highest energy |γ |B
is the only state that can be magnetically trapped. Note that the
relative phase between components in Eq. (5) is completely
fixed by the condition that the condensate is initially a
vortex-free WFSS [3].

The bias field Bz(0) at t = 0 is taken much larger than the
quadrupole field in the domain of interest so that Bz(0) � |B⊥|
holds throughout the condensate. With this choice, we find

|WFSS(0)〉 �
⎛
⎝0

0
1

⎞
⎠, (6)

by putting B � Bz. If the condensate is entirely made of the
WFSS at t = 0, the configuration is vortex-free, as remarked
above. Subsequently, Bz is linearly reversed during the interval
T . At t = T/2, at which Bz(T/2) = 0, the WFSS takes the
form

|WFSS(T/2)〉 = 1

2

⎛
⎝ e2iφ

−√
2eiφ

1

⎞
⎠, (7)

where we used the equality B = |B⊥| at t = T/2. Later at t =
T , the bias field is completely reversed so that Bz(T ) = −Bz,
and ignoring B⊥ we obtain

|WFSS(T )〉 �
⎛
⎝e2iφ

0
0

⎞
⎠. (8)

FIG. 1. Trajectories of B (red line) and 〈F〉W (red dashed curve)
of a hyperfine spin with φ = 0. The vertical axis is the z axis,
while the horizontal axis is the x axis. The quadrupole field is made
unphysically large compared to Bz(0) for purposes of illustration, see
text. Vectors at t = 0,T /2, and T are explicitly shown.

Observe that a vortex with the winding number 2 has been
formed at t = T .

Formation of a vortex in our scenario is understood
from a slightly different viewpoint. The expectation value of
the hyperfine spin vector 〈F(t)〉W ≡ 〈WFSS(t)|F|WFSS(t)〉
traverses a meridian of the Bloch sphere as t is changed from
0 to T , starting from the south pole and ending up with the
north pole. Which meridian the vector traverses depends on
the angle φ. It is easy to show

〈Fx(t)〉W = −B⊥ cos φ

B
, 〈Fy(t)〉W = B⊥ sin φ

B
,

(9)
〈Fz(t)〉W = −Bz

B
.

For example, a hyperfine spin with φ = 0 traverses a meridian
with φ = π , while one with φ = π/2 traverses a meridian with
φ = π/2. The solid angle subtended by these two meridians
is π , giving the relative phase difference of π between these
two hyperfine spins at t = T . This is regarded as the Berry
phase acquired by the adiabatic change of the magnetic field
[3,8]. In this way, as one circumnavigates around the z axis
along a circle in the x-y plane, one observes that the phase of
the order parameter changes by an amount 4π , resulting in a
vortex with the winding number 2 [3,8].

Figure 1 shows the trajectories of the combined magnetic
field B = B⊥ + Bz and 〈F〉W at φ = 0. For the parame-
ters used in our numerical solution in Sec. IV, we obtain
|B⊥(r)|/Bz(0) � 2.7 × 10−4 at r = aHO, the harmonic oscil-
lator length of the trap. For such a small ratio, the trajectory
of B completely overlaps with the vertical axis. For this
reason, the ratio is changed to 0.1 in the figure for purposes of
illustration. Observe that 〈F〉W is always antiparallel to B.
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A drawback of this scenario is that the gap among WFSS,
NS, and SFSS disappears at r = 0 when t = T/2. This means
that atoms at r � 0 flip to NS and SFSS (the Majorana flops)
when t ∼ T/2 and escape from the trap. In fact, the numerical
analysis made in [3] shows that there is an optimal T = Tmax

that gives the maximum number of atoms at t = T . If T <

Tmax, atoms are lost due to nonadiabatic transitions, while if
T > Tmax, the condensate spends a long time while the gap
is small and atoms are lost through slow passage of the small
gap region. It is the purpose of the next section to prevent
nonadiabatic transition by adding the counterdiabatic field and
achieve fast formation of a vortex.

III. COUNTERDIABATIC FIELD

It is certainly desirable to have more atoms left in the
trap after vortex formation. Control of atomic density in a
wide range is essential to study the decay pattern of a vortex
with a multiple winding number into several vortices with
lower winding numbers [10,12–14,19–23,29]. Keeping higher
atom density after vortex formation is also indispensable
to successful vortex pumping [5], which requires phase
imprinting several times. In addition, it should be noted
that higher atomic density implies (i) easier measurement
of physical quantities, (ii) fighting against atom loss due to
hyperfine spin changing collision, and (iii) smaller vortex core
size, which is advantageous for forming a vortex in an arbitrary
position in the condensate [30].

Motivated by the concept of shortcuts to adiabaticity [31],
we derive a control magnetic field for fast creation of a
single vortex using the counterdiabatic formalism (or quantum
transitionless driving) developed by Demirplak and Rice [32],
formulated by Berry [33,34], and demonstrated experimentally
in [35].

We briefly summarize the counterdiabatic approach to
nonadiabatic quantum control. Let H0(t) be a time-dependent
Hamiltonian and |n(t)〉 be an instantaneous eigenvector with
the eigenvalue En(t) such that H0(t)|n(t)〉 = En(t)|n(t)〉. In the
adiabatic approximation, the solution to the time-dependent
Schrödinger equation is |ψn(t)〉 = e−iγn(t)|n(t)〉, where

γn(t) = 1

�

∫ t

0
dt ′En(t ′) − i

∫ t

0
dt ′〈n(t ′)|∂t ′n(t ′)〉. (10)

Let U (t) = ∑
n |ψn(t)〉〈n(0)| be the time-evolution operator

such that U (t) : |n(0)〉 �→ |ψn(t)〉. The operator U (t) defines
a Hamiltonian H (t) = i�[∂tU (t)]U †(t) for an arbitrary time
evolution, not necessarily adiabatic, namely, |ψn(t)〉 is the
exact solution of

i�∂t |ψn(t)〉 = H (t)|ψn(t)〉, (11)

where |ψn(0)〉 = |n(0)〉 is satisfied by definition. If we
write H (t) = H0(t) + HCD(t), the counterdiabatic Hamilto-
nian HCD(t) is written as

HCD(t) = i�
∑

n

|∂tn(t)〉〈n(t)|, (12)

when the “parallel” condition, 〈n(t)|∂tn(t)〉 = 0, is satisfied.
Let us apply the counterdiabatic scheme to our hyperfine

spin system by taking H0 and |n〉 as H0(r,t) = HB(r,t) and the
instantaneous eigenstates in Eq. (5), respectively. Note that the

coordinate r here is just a parameter specifying the position
of the atom in the condensate, and the geometric phase in
Eq. (10) vanishes. By substituting Eq. (5) into Eq. (12), the
counterdiabatic Hamiltonian is obtained as

HCD = γ BCD · F, (13)

where

BCD(r,t) = 2�

γ T

Bz(0)B ′
⊥

B2(r,t)
(y,x,0) (14)

is the CDF. Note that BCD is always orthogonal to B⊥. An
important remark is in order here. When the counterdiabatic
scheme is applied to a quantum system, it produces a
counterdiabatic potential (γ BCD · F in our case) that prevents
the quantum system from escaping from an adiabatic time evo-
lution. There is no guarantee, however, that the counterdiabatic
potential will be physically feasible. In fact, BCD in Eq. (14)
does not satisfy div BCD = 0. This is not unexpected, since
we did not consider the Maxwell equation while we derived
BCD. The way out of this problem is to fix the coordinate
r to r0 in B2(r,t) in the denominator of BCD(r,t) so that
BCD(r,t) ∝ (y,x,0) and div BCD vanishes. We numerically
demonstrate below that the CDF in fact increases the number
of atoms left in the trap after the vortex formation in a wide
range of the inversion time T by using several values of r0. BCD

can be generated by four Ioffe bars that are obtained by rotating
the confining Ioffe bars by an angle π/4 around the z axis. We
denote the combined magnetic field as B̄ = B + BCD.

Before we close this section, we comment on the physical
interpretation of BCD. As Bz is reversed fast, atoms in |WFSS〉
in Eq. (5) “slip” to |NS〉 and |SFSS〉 by a nonadiabatic
transition if there is no CDF. BCD, in a sense, “catches” those
atoms so that their hyperfine spin state with respect to B̄
remains in |WFSS〉 of Eq. (5), defined with respect to B.
It will be shown later in Figs. 3 and 10 that the total magnetic
field with CDF bends asymmetrically from the meridian so
that atoms enjoy being in |WFSS〉 of Eq. (5) even with fast
inversion of Bz(t). This is confirmed numerically in Sec. IV.

IV. TOPOLOGICAL VORTEX FORMATION
WITH COUNTERDIABATIC FIELD

We numerically solve the Gross-Pitaevskii equation (GPE)
with the designed magnetic field B̄:

i�∂t�m(r,t) =
{

hmn + gnδmn

∑
p

|�p|2

+gs

∑
α

∑
l,p

(
�l(Fα)lp�p

)
(Fα)mn

⎫⎬
⎭�n, (15)

where l,m,n,p ∈ {−1,0,1}, α ∈ {x,y,z},

hmn =
(

−�
2∇2

2M
− μ

)
δmn + Bmn, B = γ B̄ · F, (16)

with the mass of the atom M , and the chemical potential μ (the
eigenvalue of the GPE at t = 0). Here gn is the density-density
coupling strength while gs is the spin-spin coupling strength.
To begin with, we need to find the initial condition to solve
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0

 4.5

Ttime0

B
C

D
B

FIG. 2. Time dependence of the ratio |BCD|/|B⊥|, which is
independent of r and depends only on t . Parameters are log10(T/τ ) =
1.4 and r0/aHO = 2. For the parameters in the text, they amount to
T ∼ 36 μs and r0 ∼ 1.83 μm.

the GPE (15). Assuming that the initial hyperfine state is in
the WFSS, |�(0)〉 = f (r)|WFSS(0)〉, the order parameter is
obtained by solving the stationary GPE,

− �
2

2M

[
1

r

d

dr

(
r

d

dr

)
− β ′2

2
− 1

4r2
(7 − 8 cos β + cos 2β)

]
f (r)

+ γ B̄(r)f (r) + gf 3(r) = μf (r), (17)

where g = gn + gs , B̄(r) = |B̄(r,0)|,

β = tan−1

[ |B⊥(r) + BCD(r,0)|
|Bz(0)|

]
, (18)

and β ′ = dβ/dr . Here we note that f (r) and |B⊥(r) +
BCD(r,0)| are in fact functions of r only.

The time-dependent GPE is solved numerically, and we
summarize the results below. Throughout our calculation, we
have taken the parameters of 23Na atoms [3]. The parameter set
used is M = 3.81 × 10−26 kg, gn = 0.037 8a3

HO�ω, gs = 0,
Bz(0) = 1 G, and B ′

⊥ = 300 G/cm, where ω = �/(Ma2
HO)

and �ω ∼ 3.49 × 10−24 erg. The harmonic oscillator length
is aHO ∼ 9.14 × 10−1μm. The time scale τ = 2π/ωL ∼
1.43 μs is a reasonable measure of adiabaticity, where ωL =
γ |B̄(0,0)|/� ∼ 4.40 × 106 rad/s is the Larmor frequency at
r = 0,t = 0. The chemical potential measured with respect
to the Zeemen energy is found to be μ − �ωL ∼ 3.66 �ω.
The number of atoms N (0) = ∫∫ ∞

−∞ |�|2dxdy per unit length
in the z direction at t = 0 is approximately 1.3 × 103μm−1,
where |�|2 = ∑

p |�p|2. It turns out that BCD is negligibly
small at t = 0 and it can be ignored safely in solving Eq. (17).
Figure 2 shows the time dependence of the ratio |BCD|/|B⊥|
for log10(T/τ ) = 1.4 and r0/aHO = 2, which is independent
of r and depends only on t . Figure 3 shows the schematics of
B⊥ and BCD in the x-y plane. αB is the angle between B⊥ and
B⊥ + BCD as defined in Sec. V.

We calculate the number of atoms left in the trap after
the vortex formation takes place. To incorporate atom loss in
the numerical simulation, we multiply the order parameter
by h(r) = 0.5{1 − tanh[(r − r1)/λ]} with r1 = 30aHO and
λ = 2aHO at each time step of the numerical simulation with
the GPE (15) [3]. Figure 4 shows the fraction N (t)/N(0) of
atoms left in the trap at t � T . Most of the atoms left in the
trap at t are in WFSS, since t is large enough so that the SFSS

x

y

FIG. 3. (a) Schematics of B⊥ (red arrow) and BCD (green arrow)
in the x-y plane. (b) B⊥, BCD and B⊥ + BCD (blue arrow) for x > 0
and y = 0. B̃⊥ (light blue arrow) is obtained by rotating B⊥ + BCD

by an angle αB so that it is parallel to B⊥ (see Sec. V). Figures are
conceptual and coordinates and magnetic fields are in arbitrary units.

and NS components are wiped out from the domain of interest
by the action of h(r). Since we replaced an unphysical BCD

with a physical BCD satisfying divBCD = 0, the result depends
on the parameter r0 in the denominator of Eq. (14). Observe
the prominent improvement in the ratio N (t)/N (0) for small
T . This is more clearly seen by plotting N (t) in the control
with the CDF normalized by N (t) in the control without the
CDF. Figure 5 shows the ratios with the same r0 as that in Fig.
4. The ratio reaches almost 20 for T = 10τ and r0 = 0.5aHO.

Next, we show the CDF really suppresses the transitions
WFSS → NS and WFSS → SFSS by looking at the projected
atom numbers. For this purpose, we define the projection
operators �W = |WFSS〉〈WFSS|,�N = |NS〉〈NS|, and �S =
|SFSS〉〈SFSS| and evaluate the amplitude of the order param-
eter (the number density) of the respective hyperfine state,

|�I|2 = 〈�|�I|�〉, (19)

0.5
1

1.5

2
1 4log10(T/τ)

0

 0.7

r0 aHON
(t

)
N

(0
)

FIG. 4. Fraction N (t)/N (0) of atoms left in the trap a long time
after a vortex is formed. Since t � T , the condensate is in the pure
WFSS. ◦ shows the fraction without BCD, while other symbols show
the fractions with BCD for different r0. Here τ ∼ 1.43 μs.
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N
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t)
 w

ith
ou

t C
D

F

FIG. 5. Ratio of N (t) with the CDF to that without the CDF for
t � T . The unit of time is τ ∼ 1.43 μs.

where I = {W,N,S}, and the number of atoms per unit length
of these states

NI =
∫∫

dxdy|�I|2. (20)

In the left (right) panel of Fig. 6 the snapshots of the amplitude
|�W|2 are displayed for the control without (with) the CDF for
the same parameter set as in Fig. 2. The amplitude |�W|2 is
plotted sequentially, with an equal time interval for T/2 − ε �
t � T/2 + ε where ε = T/80. The dashed blue curves and the
thick red curves are |�W|2 at t = 0 and T , respectively. The
inset shows the bound state order parameter f (r) obtained
by solving Eq. (17) for 23Na. The vanishing order parameter
at r = 0 and t = T is a manifestation of the formation of a
vortex in the WFSS. The results clearly show that more atoms
are kept in the trap at t = T with the CDF compared to the
case without the CDF. It is also found that the amplitude in the
region r > 2 μm does not change very much in the presence
of CDF, while considerable diminution takes place in the case

 130

0
0

3.7 0

0

 11

0  4.6

3.7

FIG. 6. Snapshots of the amplitude of the order parameter |�W|2
are displayed in the left (right) panel for the control without (with)
the CDF with the same parameter set as in Fig. 2. The thin purple
curves are |�W|2 plotted sequentially at the same time interval for
T/2 − ε � t � T/2 + ε with ε = T/80. The blue dashed curves and
the red thick curves are |�W|2 at t = 0 and T , respectively. The inset
is the profile of the condensate f at t = 0, which is obtained by
solving Eq. (17) numerically. In the inset the units of r and f are μm
and μm−3/2, respectively.

0

1

T0

R
at

io with CDF

without CDF

WFSS
NS
SFSS

WFSS

time

FIG. 7. Instantaneous fraction of atoms NW(t)/N (0) (red solid
curve), NN(t)/N (0) (green dashed curve), and NS(t)/N (0) (blue
dotted curve) with the CDF during the vortex formation for
log10(T/τ ) = 1.4 and r0 = 2aHO. The dashed black curve shows
NW(t)/N (0) without the CDF. Here T ∼ 36 μs as before.

without CDF. Observe that outstanding change in |�W|2 occurs
only in the vicinity of t = T/2 at which Bz changes the sign.
It turns out that the number of atoms in the WFSS state is
essentially constant for t � T in both cases. Figure 7 shows
the time dependence of NW(t)/N (0) in the controls without
CDF (dashed black curve) and with CDF (solid red curve)

 0.1

 0.9

1 3log10(T/τ)

N
(t

)
N

(0 )

1
2
2.5
3

r0 aHO

1 3log10(T/τ)

1
2
2.5
3

r0 aHO

 0.5

4

(a)

(b)

N
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t )
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 C

D
F

N
 (

t)
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ou
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F

FIG. 8. (a) Fraction N (t)/N (0) of atoms left in the trap a long
time after a vortex is formed for f (0) = 20 a

−3/2
HO corresponding to∫∫ ∞

−∞ |�|2dxdy ∼ 2.1 × 104 μm−1. Since t � T , the condensate is
in the pure WFSS. ◦ shows the fraction without BCD, while the other
symbols show the fractions with BCD for different r0. (b) Ratio of
N (t � T ) with the CDF to that without the CDF.
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along with the ratios of other components. It is evident from
this figure that transitions among states take place only at
around t = T/2 and that the nonadiabatic transition of WFSS
at t ∼ T/2 is greatly suppressed by CDF. This means that our
approximation introduced in the denominator of (14) breaks
down at t ∼ T/2, when the original BCD in Eq. (14) diverges at
r = 0. Otherwise, our simple approximation works reasonably
well.

We repeat our analysis for a BEC with a larger number of
atoms. Figure 8 shows the results for f (0) = 20 a

−3/2
HO corre-

sponding to the density
∫∫ ∞

−∞ |�|2dxdy ∼ 2.1 × 104 μm−1 at
t = 0. Figure 8(a) shows the fraction N (t)/N(0) of atoms left
in the trap at t � T for various r0. The black open circles are
for the control without CDF. The fraction of the lost atoms
without CDF is less than that for f (0) = 10 a

−3/2
HO shown in

Fig. 4, since the initial wave function at around r = 0 for
f (0) = 20 a

−3/2
HO is flatter than that for f (0) = 10 a

−3/2
HO due to

the positive coupling strength g. The CDF with r0 = 2.5aHO

and 3aHO keeps more atoms, forming a vortex, especially for
small T . Figure 8(b) shows the ratios of N (t � T ) with the
CDF to that without the CDF. Prominent improvement in the
ratio is seen for small T .

V. MORE EXPERIMENTALLY FEASIBLE CONTROL

Now an important observation is in order. In our proposal
in Sec. IV, we need to prepare two sets of Ioffe bars, one to
produce the confining quadrupole field and the other to produce
the CDF. Clearly this is demanding for experimentalists.

-0.6

 0.6

timeT 4 3T 4

0

 4.5

timeT 4 3T 4

(a)

(b)

0

1

T 2

T 2

FIG. 9. (a) |B̃⊥(r,t)|/|B⊥(r)| and (b) B̃z(t)/Bz(0) (solid red
curve) and Bz(t)/Bz(0) (dashed black line) for the same parameters
as those used in Fig. 7 with T ∼ 36 μs. Deviations from the original
fields B⊥ and Bz(t) are prominent only when t ∼ T/2.

All topological vortex formation experiments so far were
conducted with a single confining magnetic field. Even if
one could build a trap with two sets of Ioffe bars, aligning
their centers exactly at the same place would be practically
impossible. To circumvent this problem, we introduce time-
dependent gauge transformation so that the combined field
B⊥ + BCD is rotated and the resulting field is parallel to the
confining B⊥. Let

αB = tan−1 |BCD|
|B⊥| (21)

x

FIG. 10. (a) Trajectory of B̃(r,t) for φ = 0 is shown in a solid red
curve. The trajectory is in the x-z plane. (b) Trajectories of B̃(r,t) (the
solid red curve), B̄(r,t) (the solid blue curve), 〈F(t)〉W after the gauge
transformation (broken red curve) and 〈F(t)〉W before the gauge
transformation (broken blue curve). |B⊥(0)| is taken unphysically
large, as in Fig. 1, for purposes of illustration. The vertical black line
is the axis of the sphere and is given as a guide.
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be the angle between B⊥ + BCD and B⊥ (see Fig. 3). If
B⊥ + BCD is rotated by αB , it becomes parallel to B⊥ and
hence it can be generated by a single set of Ioffe bars by
controlling the current. This rotation is implemented by the
unitary transformation

U (αB) = e−iαBFz . (22)

Now the Zeeman term of the Hamiltonian is transformed as

U (αB)γ B̄ · FU †(αB) = γ (B̃⊥ + Bz) · F, (23)

where B̃⊥ = U (αB)(B⊥ + BCD)U (αB)† ∝ (x, − y,0). Of
course, this is not the whole story and there is a price we
need to pay. The Hamiltonian in the rotating frame acquires a
gauge term

−iU∂tU
† = α̇BFz. (24)

This term, proportional to Fz, works as a magnetic field in
the z direction and the bias field Bz(t) = Bz(0)(1 − 2t/T ) is
replaced by

B̃z(t) = Bz(0)

(
1 − 2t

T

)
+ α̇B�

γ
. (25)

We denote the combined field as

B̃(r,t) = B̃⊥(r,t) + B̃z(t), (26)

where B̃z(t) = (0,0,B̃z(t)). Note that αB depends on time but
not on space coordinates. Numerical calculation shows that the
number of atoms in WFSS at t > T in the control with B̃(r,t)
is exactly the same as that with B̄(r,t) generated by two sets
of Ioffe bars. Figure 9 shows |B̃⊥(t)|/|B⊥| and B̃z(t)/Bz(0)
for 23Na with the parameters used in Fig. 7.

Figure 10 shows the schematic picture of the control
magnetic field B̃ obtained in this section. For φ = 0, the
modified magnetic field is always in the x-z plane, whose
trajectory is shown in Figs. 10(a) and 10(b) in the solid red
curve. Figure 10(b) also shows the trajectory of the control
magnetic field B̄ obtained in Sec. IV and the trajectories of
〈F(t)〉W in both cases.

VI. SUMMARY

We have proposed a method to suppress nonadiabatic
transitions while topological vortex formation takes place in

the BEC of alkali-metal atoms. The counterdiabatic field is
generated by a set of Ioffe bars. The field is obtained by rotating
the confining Ioffe bars, producing the confining quadrupole
field, by π/4. Our numerical calculation demonstrates that
nonadiabatic transitions are suppressed for any inversion time
T and, in particular, suppression is most impressive for a small
T . We can further improve this scheme by applying a gauge
transformation to a rotating frame so that the combined field
B̃⊥ is parallel to B⊥. Then, the control magnetic field can
be generated with ordinary Ioffe bars by simply controlling
the current. This also requires modulation of Bz(t) from linear
time dependence. We believe our proposal is experimentally
feasible by simple modifications of the existing setup.

Application of this work to vortex pumping [5] is in progress
and will be reported elsewhere.
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V. S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009).

[27] E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhães, and
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