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Specific heat and effects of pairing fluctuations in the BCS-BEC-crossover regime of an ultracold
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We investigate the specific heat at constant volume CV in the Bardeen-Cooper-Schrieffer–Bose-Einstein-
condensate (BCS-BEC)-crossover regime of an ultracold Fermi gas above the superfluid phase transition
temperature Tc. Within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink,
we show that this thermodynamic quantity is sensitive to the stability of preformed Cooper pairs. That is, while
CV (T � Tc) in the unitary regime is remarkably enhanced by metastable preformed Cooper pairs or pairing
fluctuations, it is well described by that of an ideal Bose gas of long-lived stable molecules in the strong-coupling
BEC regime. Using these results, we identify the region where the system may be viewed as an almost ideal Bose
gas of stable pairs, as well as the pseudogap regime where the system is dominated by metastable preformed
Cooper pairs, in the phase diagram of an ultracold Fermi gas with respect to the strength of a pairing interaction
and the temperature. We also show that the calculated specific heat agrees with the recent experiment on a 6Li
unitary Fermi gas. Since the formation of preformed Cooper pairs is a crucial key in the BCS-BEC-crossover
phenomenon, our results would be helpful in considering how fluctuating preformed Cooper pairs appear in a
Fermi gas to eventually become stable as one passes through the BCS-BEC-crossover region.
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I. INTRODUCTION

The formation of preformed Cooper pairs is a crucial
key in considering the Bardeen-Cooper-Schrieffer–Bose-
Einstein-condensate (BCS-BEC)-crossover phenomenon
[1–11], where the character of a Fermi superfluid continuously
changes from the weak-coupling BCS type to the BEC of
tightly bound molecules with increasing of the strength of
a pairing interaction. Since the realization of this crossover
phenomenon in 40K [12] and 6Li [13–15] Fermi gases by
using a Feshbach resonance [16–18], it has extensively been
discussed both theoretically [19–29] and experimentally
[30–42] how metastable preformed Cooper pairs (that are
also referred to in the literature as pairing fluctuations) appear
in a Fermi gas to eventually become long-lived stable pairs
as one passes through the BCS-BEC-crossover region above
the superfluid phase transition temperature Tc. Since the
BCS-BEC-crossover is also considered as a crucial key in
the fields of high-Tc cuprates [10,43], as well as iron based
superconductors [44], elucidating strong-coupling properties
of an ultracold Fermi gas in this regime would also contribute
to the understanding of these strongly correlated electron
systems.

Although there is no clear phase boundary between the
weak-coupling BCS regime and the strong-coupling BEC
regime, it is still an interesting problem to physically identify
the region where preformed Cooper pairs dominate over
system properties. In this regard, we note that when pre-
formed Cooper pairs appear in a normal Fermi gas, single-
particle Fermi excitations are expected to have a gaplike
structure, reflecting their finite dissociation energy. This so-
called preformed pair scenario has been discussed in high-Tc

cuprates [45] as a possible mechanism of the pseudogapped
density of states observed in the underdoped regime of this
strongly correlated electron system [46–49]. In this field, the
temperature T ∗ below which the pseudogap appears in the
density of states ρ(ω) is called the pseudogap temperature.

Although T ∗ is not accompanied by any phase transition, it is
a useful characteristic temperature to distinguish between the
normal Fermi liquid regime and the pseudogap regime in the
phase diagram of high-Tc cuprates.

In high-Tc cuprates, the validity of the preformed pair
scenario is still in debate [45,50–52] due to the complexity
of this system. In contrast, since an ultracold Fermi gas
in the BCS-BEC-crossover region is simply dominated by
strong pairing fluctuations, the preformed pair scenario is
validated. Indeed, it has been pointed out [26,36] that the back-
bending curve of the single-particle dispersion observed by a
recent photoemission-type experiment on a 40K unitary Fermi
gas [34] may be a signature of the pseudogap phenomenon. It
has also been shown [27,29] that the anomalous suppression
of the uniform spin susceptibility χs observed in a 6Li
Fermi gas above Tc [40] can be explained as an effect of
fluctuating spin-singlet preformed pairs. At present, although
the pseudogap temperature T ∗ has not experimentally been
determined in an ultracold Fermi gas, the existence of this
characteristic temperature has theoretically been predicted
from the calculated density of states ρ(ω) [24]. As in the
case of high-Tc cuprates, T ∗ in an ultracold Fermi gas is not
accompanied by any phase transition. However, it physically
gives the boundary between a normal Fermi gas regime and the
pseudogap regime, being dominated by fluctuating preformed
Cooper pairs, in the phase diagram of an ultracold Fermi gas
above Tc.

A similar characteristic temperature Ts, called the spin-gap
temperature, has also been predicted [29]. Ts is determined
as the temperature below which the spin susceptibility χs in
the normal state is anomalously suppressed by spin-singlet
preformed Cooper pairs. Although Ts is not exactly the same
as the pseudogap temperature T ∗, they have essentially the
same background physics, and thus Ts also has the meaning
of the boundary between the normal Fermi gas regime and
the preformed-pair regime. We briefly note that this so-called
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spin-gap phenomenon [53] has also been discussed in high-Tc

cuprates [54,55].
Although T ∗ and Ts conveniently give the boundary around

which metastable preformed Cooper pairs start to dominate
over the system in the BCS-BEC-crossover region, they
do not have any information about where these fluctuating
preformed pairs become stable in the strong-coupling BEC
regime. In determining this second boundary, however, the
low-energy density of states ρ(ω ∼ 0) (which gives the
pseudogap temperature T ∗), as well as the spin susceptibility
χs (which gives the spin gap temperature Ts), are not useful,
because both quantities almost vanish deep inside the BEC
regime where most Fermi atoms form spin-singlet bound
molecules with a large binding energy.

In this regard, the specific heat at constant volume CV

is promising, because it is finite in the whole BCS-BEC-
crossover region. In addition, CV is sensitive to the quantum
statistics of particles in the system in the sense that, while
CV exhibits a linear-temperature dependence in a Fermi gas,
it increases with decreasing of the temperature in an ideal
Bose gas. Furthermore, the specific heat has recently become
accessible in cold Fermi gas physics [41]. Thus, the above-
mentioned second boundary may be determined by using this
thermodynamic quantity.

The purpose of this paper is to theoretically confirm this
expectation, to distinguish between the pseudogap regime,
which is dominated by metastable preformed Cooper pairs or
pairing fluctuations, and the region that can be viewed as a gas
of long-lived stable pairs in the phase diagram of an ultracold
Fermi gas. Including pairing fluctuations above Tc within
the framework of the strong-coupling theory developed by
Nozières and Schmitt-Rink [3], we show that the temperature
dependence of the specific heat is very different in between
the BCS-BEC-crossover region and the strong-coupling BEC
regime. Using this difference, we determine a characteristic
temperature T̃ which conveniently gives the boundary between
the pseudogap regime and the region of stable pairs. In
addition, the specific heat is also shown to be able to determine
the boundary between the normal Fermi gas regime and the
pseudogap regime. The characteristic temperature T̄ giving
the latter boundary is found to be consistent with the previous
pseudogap temperature T ∗, as well as the spin-gap temperature
Ts, that are, respectively, obtained from the density of states
ρ(ω) and the spin susceptibility χs. We also show that our result
on CV agrees with the recent experiment on a 6Li unitary
Fermi gas [41]. We briefly note that the specific heat in a
unitary Fermi gas has also been discussed within a T -matrix
approximation [39], as well as within the combined NSR
theory with local density approximation [20].

This paper is organized as follows. In Sec. II, we explain
our strong coupling formalism used to calculate the specific
heat at constant volume CV in the BCS-BEC-crossover region
above Tc. In Sec. III, we show our numerical results on CV

over the entire BCS-BEC-crossover region. Here, we explain
how to determine T̃ and T̄ from the temperature dependence
of CV . Using these characteristic temperatures, we identify
the region where the system is dominated by fluctuating
metastable preformed Cooper pairs, as well as the region where
the system is dominated by long-lived stable molecules, in
the phase diagram of an ultracold Fermi gas with respect to

the interaction strength and the temperature. Throughout this
paper, we set � = kB = 1, and the system volume V is taken
to be unity for simplicity.

II. FORMULATION

We consider a two-component uniform Fermi gas in the
normal state, described by the BCS Hamiltonian,

H =
∑
p,σ

ξ pc
†
p,σ c p,σ

−U
∑

p, p′,q

c
†
p+q/2,↑c

†
− p+q/2,↓c− p′+q/2,↓c p′+q/2,↑, (1)

where c p,σ is the annihilation operator of a Fermi atom with
pseudospin σ = ↑,↓, describing two atomic hyperfine states.
ξ p = ε p − μ = p2/(2m) − μ is the kinetic energy, measured
from the Fermi chemical potential μ (where m is an atomic
mass). −U is an s-wave pairing interaction, which we treat
as a tunable parameter. As usual, we measure the interaction
strength in terms of the s-wave scattering length as , which is
related to the pairing interaction −U as

4πas

m
= − U

1 − U
∑pc

p
1

2ε p

, (2)

where pc is a momentum cutoff.
We include pairing fluctuations within the ordinary NSR

theory [3]. In this BCS-BEC-crossover theory, the thermody-
namic potential 	 = 	0 + 	NSR consists of the noninteracting
part,

	0 = −2T
∑

p

ln[1 + e−ξ p/T ], (3)

and the fluctuation correction 	NSR, the latter of which is
diagrammatically given in Fig. 1. The summation of these
diagrams gives

	NSR = −T
∑
q,iνn

ln �(q,iνn), (4)

where νn is the boson Matsubara frequency, and

�(q,iνn) = 1
m

4πas
+

[
�(q,iνn) − ∑

p
1

2ε p

] (5)

ΩNSR  = + + +  ...

-U

↑

↓
G0

FIG. 1. Feynman diagrams describing the correction term 	NSR

to the thermodynamic potential 	 in the strong-coupling NSR
theory [3]. The solid line is the bare single-particle thermal Green’s
function G−1

0 ( p,iωn) = iωn − ξ p (where ωn is the fermion Matsubara
frequency), and the dashed line is the attractive pairing interaction
−U .
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is the NSR particle-particle scattering matrix. Here,

�(q,iνn) = −
∑

p

1 − f (ξ p+q/2) − f (ξ− p+q/2)

iνn − ξ p+q/2 − ξ− p+q/2
(6)

is the lowest-order pair-correlation function, describing fluc-
tuations in the Cooper channel [where f (x) is the Fermi
distribution function].

We calculate the specific heat at constant volume CV from
the formula

CV =
(

∂E

∂T

)
V,N

. (7)

Here, the internal energy E is obtained from 	 = 	0 + 	NSR

via the Legendre transformation,

E = 	 − T

(
∂	

∂T

)
μ

− μ

(
∂	

∂μ

)
T

= 2
∑

p

ε pf (ξ p) − T
∑
q,iνn

�(q,iνn)

×
[
T

∂

∂T
�( p,iνn) + μ

∂

∂μ
�(q,iνn)

]
. (8)

The Fermi chemical potential μ in Eq. (8) is determined from
the equation for the total number N of Fermi atoms, given by

N = −
(

∂	

∂μ

)
T

= 2
∑

p

f (ξ p) − T
∑
q,iνn

�(q,iνn)
∂

∂μ
�(q,iνn)

= N0
F + NNSR, (9)

where N0
F and NNSR represent the noninteracting part and the

NSR strong-coupling corrections, respectively. In this paper,
we numerically evaluate Eq. (7) from the internal energies
E(T ) and E(T + δT ).

In the NSR theory [3–6], the equation for the superfluid
phase transition temperature Tc is conveniently obtained
from the Thouless criterion [56], stating that the superfluid
instability occurs when the particle-particle scattering matrix
�(q,iνn) in Eq. (5) has a pole at q = νn = 0. The resulting
Tc equation has the same form as the mean-field BCS gap
equation at Tc, as

1 = −4πas

m

∑
p

[
1

ξ p
tanh

ξ p

2T
− 1

2ε p

]
. (10)

Following the standard NSR approach [3–6], we numerically
solve the Tc equation (10), together with the number equa-
tion (9), to self-consistently determine Tc and μ(Tc) in the
BCS-BEC-crossover region. Above Tc, we only deal with
the number equation (9) to determine μ(T ), which is used
to evaluate the specific heat CV .

III. SPECIFIC HEAT IN THE BCS-BEC-CROSSOVER
REGION ABOVE Tc

Figure 2(a) shows the specific heat at constant volume CV

in the BCS-BEC-crossover regime of an ultracold Fermi gas
at T = Tc. As expected, CV in the weak-coupling BCS regime

CV
CV
CV

F
B

0

0

1

2

3

C
V

/N

(a)

(b)1

0.5

0 1-1 22-
(kFas)-1

2NB
Nsc

T=Tc

µ(
T c

)/ε
F

2N
B

/N
, N

sc
/N

T=Tc

0

(c)

µ(Tc)
-Ebind/2

-2

-4

FIG. 2. (a) Calculated specific heat CV at Tc, as a function of the
interaction strength measured in terms of the inverse scattering length
(kFas)−1, normalized by the Fermi momentum kF. We also plot the
specific heat CF

V (T = Tc) in a free Fermi gas, as well as the specific
heat CB

V in Eq. (12). (b) The number of stable molecules NB at Tc.
Nsc is the contribution from scattering states at Tc. (c) Fermi chemical
potential μ(T = Tc), normalized by the Fermi energy εF. The dashed
line shows −E2b

bind/2, where Ebind = 1/(ma2
s ) is the binding energy

of a two-body bound molecule.

[(kFas)−1 � −1, where kF is the Fermi momentum], as well
as that in the strong-coupling BEC regime ((kFas)−1 � 1) are,
respectively, well described by the specific heat in a free Fermi
gas [57],

CF
V (T � TF) = π2

2

(
T

TF

)
N (11)

(where TF is the Fermi temperature), and the specific heat in an
ideal Bose gas with N/2 molecules at the BEC phase transition
temperature TBEC = 0.218TF [3–5,58],

CB
V (T = TBEC) = 15

4
NB

ζ (5/2)

ζ (3/2)
= 0.963N, (12)

where ζ (3/2) = 2.612 and ζ (5/2) = 1.341 are zeta functions.
Although CV continuously changes from CF

V to CB
V in the

BCS-BEC crossover, it experiences anomalous enhancement
in the unitary regime [(kFas)−1 ∼ 0], as seen in Fig. 2(a).

This remarkable enhancement of CV originates from the
suppression of the entropy S = ln W by the appearance of
preformed Cooper pairs near Tc. Since the number of possible
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1.5
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T =Tc

T >Tc

(kFas)-1

Tc

FIG. 3. Calculated specific heat CV , as a function of the temper-
ature in the BCS-BEC-crossover regime of an ultracold Fermi gas
above Tc. The dashed line shows the result at Tc.

microstates W in a gas of bound molecules with nearly zero
center of mass momentum is smaller than W in a simple un-
bound Fermi gas, the gradual formation of preformed Cooper
pairs with decreasing temperature nearing Tc suppresses the
entropy S. When this suppression is more remarkable at lower
temperatures, the thermodynamic formula,

CV = T

(
∂S

∂T

)
V,N

, (13)

immediately gives the enhancement of CV . In the unitary
regime, such preformed-pair formation occurs near Tc, so that
the amplification of CV is also restricted to the region near Tc,
as shown in Fig. 3.

To see whether these preformed Cooper pairs are stable
or fluctuating, it is convenient to divide the NSR correction
term NNSR in the number equation (9) into the sum of
twice the number NB of stable molecules and the so-called
scattering part Nsc [3] involving a contribution from fluctuating
metastable preformed pairs [6,59]. The resulting expression
for the total number N of Fermi atoms has the form

N = N0
F + 2NB + Nsc. (14)

(For detailed expressions for NB and Nsc, see the Appendix.)
Then we find in Fig. 2(b) that there are no stable preformed
pairs (NB = 0) in the unitary regime where CV is remarkably
amplified [60], which means that this enhancement is due to
the increase of metastable preformed Cooper pairs or pairing
fluctuations.

Figure 2(b) also indicates that the strong-coupling BEC
regime [(kFas)−1 � 0.3] is dominated by long-lived stable
molecules (NB � N/2). This naturally explains why CV (T =
Tc) in this regime is well described by CB

V in Eq. (12). As shown
in Fig. 2(c), this result is also consistent with the well-known
result for the Fermi chemical potential μ in that it becomes
negative in the BEC regime, and the magnitude |μ| approaches
half the binding energy E2b

bind = 1/(ma2
s ) of a two-body bound

state in the strong-coupling limit [3–6,59].
As seen in Fig. 3, the amplification of CV in the unitary

regime near Tc disappears as one moves to the BEC side
[(kFas)−1 � 0]. To see this more clearly, we summarize in
Fig. 4 the temperature dependence of CV slightly in the BEC
side. Noting that long-lived stable molecules appear when
(kFas)−1 � 0.3 [see Fig. 2(b)], we expect that the thermal

(kFas)-1 = 0.2
 0.3
0.4
0.5
0.6

C
V 

/N

0

1

2

2.5

1.5

0.5

20 1.510.5
T/TF

FIG. 4. Specific heat CV in the BEC side, 0.2 � (kFas)−1 � 0.6.

dissociation of these molecules (with a relatively small binding
energy Ebind) is responsible for the temperature dependence of
CV near Tc in this regime. Indeed, simply taking into account
this effect by dealing with a two-level system with energy
ω = 0 and ω = Ebind, one has

CV =
(

Ebind

2T

)2

sech2

(
Ebind

2T

)
, (15)

which monotonically increases with increasing of the tem-
perature when T � Ebind/2. This is just the behavior of
CV (T � Tc) shown in Fig. 4 when (kFas)−1 � 0.3, indicating
that the increase of CV with increasing of the temperature near
Tc in this region originates from the thermal dissociation of
stable molecules.

We note that the key to understanding the reason why
the temperature dependence of CV near Tc slightly in the
BEC regime is qualitatively different from that in the unitary
regime is the stability of preformed pairs. In the former
BEC case where long-lived stable molecules (NB � N/2)
with a finite binding energy Ebind dominate over the system,
thermal dissociation of molecules leads to exponential-like
temperature dependence of various thermodynamic quantities.
Because of this, the entropy S becomes a concave function of
temperature, so that the specific heat CV given by Eq. (13)
becomes an increasing function of the temperature. On the
other hand, in the case of unitary regime with no stable
molecule (NB = 0), because metastable preformed Cooper
pairs are actually pairing fluctuations where formation and
dissociation of preformed pairs repeatedly and frequently
occur, the binding energy of such a fluctuating quasimolecule is
somehow ambiguous, especially when the molecular lifetime
is very short. As a result, fluctuating metastable preformed
pairs would not give an exponential temperature dependence
of S. However, as mentioned previously, the growth of low-
energy pairing fluctuations or metastable preformed pairs with
nearly zero center of mass momentum near Tc decreases the
entropy S. In addition, because this growth is more remarkable
at lower temperatures near Tc, the entropy S becomes a convex
function of temperature, so that Eq. (13) gives the quite
opposite temperature dependence of CV to the case slightly
in the BEC regime [(kFas)−1 � 0.3] near Tc.
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FIG. 5. (a1)–(c1) Specific heat CV (T � Tc) in the strong-coupling BEC regime [(kFas)−1 � 1]. CB
V is the specific heat in an ideal gas

of N/2 bosons with a molecular mass M = 2m. (a2)–(c2) The number NB of stable pairs. The characteristic temperature T̃ is given as the
temperature at which CV takes a minimal value in the BEC regime.

The above-mentioned difference can also be understood for
the viewpoint of the internal energy E. In the unitary regime,
while the molecular picture is ambiguous, pairing fluctuations
are known to induce particle-hole coupling [26], leading to a
pseudogap structure around the Fermi level. This phenomenon
would lower the internal energy E (as in the case of the
ordinary BCS state), which would become more remarkable
at lower temperature near Tc because of the enhancement
of pairing fluctuations. As a result, E becomes a convex
function of temperature, so that Eq. (7) gives the anomalous
amplification of CV in the unitary regime near Tc. On the other
hand, slightly in the BEC regime where low-energy single-
particle Fermi excitations near Tc are dominated by thermal
dissociation of long-lived stable molecules, the internal energy
would have an exponential-like temperature dependence, so
that Eq. (7) gives the increase of CV with increasing of the
temperature near Tc.

Deep inside the BEC regime [(kFas)−1 � 0.7], we see in
Figs. 5(a1)–5(c1) that the enhancement of CV is revived near
Tc, although it is not so remarkable as the case of unitary
regime. In the temperature region where CV increases with
decreasing of the temperature, Figs. 5(a2)–5(c2) show that the
system is dominated by long-lived stable pairs (NB � N/2).
In addition, CV in this temperature region is well described by
the specific heat CB

V of an ideal Bose gas with N/2 molecules,
as shown in Figs. 5(a1)–5(c1). Thus, when one conveniently
introduces the characteristic temperature T̃ as the temperature
at which CV (T ) takes a minimum value, the region Tc � T �
T̃ may be regarded as an almost ideal Bose gas of long-lived
stable molecules.

We briefly note that such a Bose gas behavior of CV can also
be confirmed analytically. In the strong coupling BEC regime,
the particle-particle scattering matrix �(q,iνn) in Eq. (5) is
reduced to [39]

�(q,iνn) = 8π

m2as

1

iνn − q2

4m
+ μB

, (16)

where μB = 2μ + E2b
bind. In obtaining Eq. (16), we have used

the well-known result in the BEC regime, μ � −E2b
bind/2 =

−1/(2mass2) � −εF [3–5]. Substituting Eq. (16) into the
internal energy in Eq. (8), one has

E =
∑

q

q2

4m
nB

(
q2

4m
− μB

)
− Ebind

N

2
. (17)

Here, we have assumed that all the Fermi atoms form tightly
bound molecules, for simplicity. Since the specific heat CV =
(∂E/∂T )V,N is simply obtained from the first term in Eq. (17),
it is just the same as the specific heat in an ideal gas with N/2
two-body bound molecules.

With increasing temperature above T̃ , the gradual decrease
of the number NB of stable pairs from N/2, as shown
in Figs. 5(a2)–5(c2), indicates the thermal dissociation of
molecules. As shown in Eq. (15), this phenomenon natu-
rally increases CV , giving the deviation from CB

V seen in
Figs. 5(a1)–5(c1).

Plotting T̃ in the phase diagram of an ultracold Fermi
gas in terms of the interaction strength and the temperature,
we obtain Fig. 6. As discussed above, this line physically
gives the boundary between the region (NB) of an almost
ideal Bose gas with N/2 noncondensed long-lived stable pairs
and the so-called pseudogap regime (PG), where metastable
preformed pairs dominate over the system. Particularly at Tc,
this boundary is at (kFas)−1 � 0.8. We briefly point out that
this value is consistent with the previous result (kFas)−1 �
0.75 [39], which was determined from the analyses of Fermi
single-particle excitations.

We note that the boundary between the pseudogap regime
(PG) and the normal Bose gas regime (NB) has previously been
given by T ′ = 2|μ| (where μ < 0) [24,26]. The background
idea for this characteristic temperature is that 2|μ| eventually
coincides with the binding energy E2b

bind = 1/(ma2
s ) of a two-

body bound molecule in the BEC limit, so that stable molecules
are expected to appear below T ′ ∼ E2b

bind, overwhelming
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T
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T *
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SF

T/
T F

0

0.2

0.4

0.6

0.8

1

0 1 21--2
(kFas)-1

FIG. 6. Phase diagram of an ultracold Fermi gas with respect to
the interaction strength (kFas)−1 and the temperature T , scaled by
the Fermi temperature TF. The characteristic temperature T̃ gives
the boundary between the region (NB) of an almost ideal Bose gas
with N/2 noncondensed long-lived stable pairs and the pseudogap
regime (PG), where the system is dominated by metastable preformed
Cooper pairs or pairing fluctuations. T̄ physically gives the boundary
between the normal Fermi gas regime (NF) and PG. The region below
Tc is in the superfluid state. For comparison, we also plot the previous
pseudogap temperature T ∗ [24] obtained from the density of states
ρ(ω), as well as the spin-gap temperature Ts [29] determined from
the spin susceptibility χs. We note that Tc is only the phase transition
temperature. T̃ , T̄ , and T ∗, as well as Ts, are all characteristic
temperatures without being accompanied by any phase transition.

thermal dissociation. However, comparing T ′ with T̃ , one finds
that they are actually very different, as T ′ 	 T̃ (although we do
not explicitly show this comparison here). This indicates that,
although stable pairs would start to appear around T ′ ∼ E2b

bind,
it does not immediately mean the realization of a molecular
Bose gas. To obtain a gas of long-lived stable pairs, we need
to further decrease the temperature down to T̃ , at least for
the viewpoint of the specific heat CV . In this sense, the
region between T ′ and T̃ may be regarded as the crossover
region between a gas of metastable quasimolecules and that of
long-lived stable molecules.

We note that the physical meaning of T̃ is different from
the previous pseudogap temperature T ∗ [24] and the spin-gap
temperature Ts [27,29], because the latter two physically give
the boundary between the normal Fermi gas regime (NF) and
PG. In this regard, we point out that the specific heat CV can
also give the other characteristic temperature, which we denote
T̄ , corresponding to T ∗ and Ts. As seen in Fig. 7, when one
moves to the weak-coupling BCS side [(kFas)−1 � 0] from
the unitary regime, the enhancement of CV near Tc (which is
caused by metastable preformed pairs) gradually disappears,
and the temperature dependence of CV is reduced to that in a
free Fermi gas, given by

CF
V = 2

∑
p

ε p
∂f (ξ p)

∂T
. (18)

Equation (18) is proportional to T when T � TF [see Eq. (11)].
It approaches the classical Dulong-Petit law Ccl

V = 3N/2 [57]
in the high temperature region. Thus, the temperature (≡ T̄ ) at
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FIG. 7. Calculated specific heat CV in the BCS side [(kFas)−1 �
0] as a function of temperature T , scaled by the Fermi temperature
TF. CF

V is the specific heat in a free Fermi gas in Eq. (18). The
characteristic temperature T̄ is determined as the temperature at
which CV becomes minimal.

which CV takes a minimal value in Fig. 7 may be reasonably
interpreted as the boundary between the normal Fermi gas
regime (NF) and the pseudogap gap regime (PG) dominated by
fluctuating metastable preformed Cooper pairs. Indeed, when
we plot this characteristic temperature T̄ in Fig. 6, it is found
to be consistent with T ∗ and Ts, as expected.

Finally, we compare our result with the recent experiment
on a 6Li unitary Fermi gas [41]. Figure 8 shows that our
result well explains the observed amplification of CV near
Tc, indicating that the observed anomaly is due to metastable
preformed Cooper pairs. However, Fig. 8 also shows that
our result overestimates this enhancement near Tc. In this
regard, we recall that a finite spacial resolution inherent
in this experiment in a trapped geometry could lead to a
possible suppression of the specific heat near Tc [41]. We
also point out that, since we deal with pairing fluctuations
within the simplest NSR level, inclusion of higher-order
strong-coupling corrections beyond this approximation may
also be important to correctly describe the behavior of
the specific heat CV , especially near Tc. Thus, we need
further analyses to quantitatively explain this experimental
result.
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V is the specific heat in a free Fermi gas.

IV. SUMMARY

To summarize, we have discussed the specific heat at
constant volume CV in the BCS-BEC-crossover regime of
an ultracold Fermi gas. Including pairing fluctuations within
the framework of the strong-coupling theory developed by
Nozières and Schmitt-Rink, we clarified the temperature
dependence of this thermodynamic quantity over the entire
BCS-BEC-crossover region above Tc. In the unitary regime,
we found that the specific heat is anomalously amplified near
Tc, which is due to the appearance of fluctuating metastable
preformed Cooper pairs. Although this anomaly disappears
as soon as one goes to the BEC side, CV was found to
be again enhanced near Tc with further increasing of the
interaction strength. We showed that this regime is dominated
by long-lived stable pairs, and the enhancement of CV in this
region agrees well with the case of an ideal molecular Bose
gas.

Using these results, we determined the characteristic tem-
perature T̃ , which physically distinguishes between the pseu-
dogap regime where the system is dominated by metastable
preformed Cooper pairs (or pairing fluctuations) and the region
of an almost ideal Bose gas with N/2 noncondensed stable
pairs. From the temperature dependence of the specific heat
in the BCS side, we also determined the other characteristic
temperature T̄ , which physically distinguishes between the
normal Fermi gas regime and the pseudogap regime. Using T̃

and T̄ , as well as the superfluid phase transition temperature
Tc, we obtained the phase diagram of an ultracold Fermi
gas in terms of the interaction strength and the temperature,
consisting of (1) the normal Fermi gas regime, (2) the
pseudogap regime dominated by metastable preformed Cooper
pairs or pairing fluctuations, (3) the region of an almost ideal
Bose gas with N/2 noncondensed long-lived stable pairs, and
(4) the superfluid phase below Tc. Although T̃ and T̄ are
not accompanied by any phase transition, they are still useful
in considering the strong-coupling properties of an ultracold
Fermi gas in the BCS-BEC-crossover region.

We note that, although the background physics of T̄ is
similar to that of the previous pseudogap temperature T ∗,
which is determined from the density of states ρ(ω), as well
as that of the spin-gap temperature Ts, which is determined
from the spin susceptibility χs, it is difficult to obtain the
characteristic temperature corresponding to T̃ from ρ(ω) and
χs. This is because they almost vanish in the strong-coupling
BEC regime, due to the formation of tightly bound spin-singlet
pairs with a large binding energy. In contrast, the specific heat
is not suppressed in the BEC regime, so that we can safely
determine T̃ to identify the region consisting of stable pairs
below T̃ . In addition, the specific heat is known to exhibit
singularity at Tc. These advantages indicate that the specific
heat is a useful quantity in constructing the phase diagram of
an ultracold Fermi gas in the BCS-BEC-crossover region.

We note that we have included strong-coupling corrections
within the simplest NSR theory in this paper. In this regard,
while the NSR theory can describe the BCS-BEC-crossover
behavior of Tc, this strong-coupling theory is known to
overestimate the pseudogap phenomenon associated with
pairing fluctuations [24,27]. Since the NSR specific heat at
the unitarity overestimates the observed enhancement of CV

near Tc in a 6Li Fermi gas (see Fig. 8), a more sophisticated
treatment of pairing fluctuations beyond the NSR theory would
be necessary in order to quantitatively explain this experiment.
In addition, since the NSR theory completely ignores an
effective interaction between molecular bosons [61,62], it is
also a crucial issue to clarify to what extent this molecular
interaction affects the characteristic temperature T̃ (which
physically gives the boundary between the region of (long-
lived) stable molecules and the region of metastable preformed
pairs). For this problem, the so-called self-consistent T -matrix
approximation [21] would be useful.

We also note that we have only dealt with the normal
state above Tc in this paper. Thus, extension of the present
theory to the superfluid phase below Tc is also an interesting
challenge. In addition, we have ignored effects of a harmonic
trap in this paper. Although these effects should in principle
be unimportant regarding the fact that the recent experimental
result shown in Fig. 8 represents that of a uniform Fermi gas,
it has been pointed by the authors of this experiment [41]
that the trap geometry may induce an error in the temperature
measurement. To quantitatively compare our result with the
experiment data, we need to theoretically include this point.
Although the pseudogap phenomenon associated with pairing
fluctuations has recently attracted much attention in cold Fermi
gas physics, the pseudogap temperature between the normal
Fermi gas regime and the pseudogap regime has so far been
mainly discussed. Thus, our results would contribute to the
further understanding of BCS-BEC-crossover physics in an
ultracold Fermi gas on the viewpoint of the preformed pairs.
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APPENDIX: EXPRESSION FOR THE NUMBER NB

OF STABLE MOLECULES

To extract the contribution of stable molecules from the
NSR term NNSR in Eq. (9), it is convenient to write it in the
spectral representation as

NNSR = 2
∫ ∞

−∞
dωnB(ω)ρB(ω). (A1)

Here, ρB(ω) = ∑
q AB(q,ω) may be viewed as the molecular

density of states, and the factor two means that each molecule
consists of two Fermi atoms. The molecular spectral weight
AB(ω) in ρB(ω) has the form

AB(q,ω) = − 1

π
Im

[
�(q,ω+)

∂

∂(2μ)
�(q,ω+)

]
. (A2)

In Eq. (A2), we have used the simplified notations,
�(q,ω+) = �(q,iνn → ω + iδ) and �(q,ω+) = �(q,iνn →
ω + iδ), where δ is an infinitesimally small positive number.

When the analytic continued particle-particle scattering matrix
�(q,ω+) has a real pole at ω = ωq , it can be approximated to

�(q,ω+) = 1
m

4πas

+ �(q,ω+) −
∑

p

1

2ε p

� 1

[ω+ − ωq] ∂
∂ωq

�(q,ωq)
. (A3)

The contribution of the pole at ω = ωq to the number equation
is evaluated by substituting Eq. (A3) into Eq. (A2). Since the
real pole ωq physically describes the dispersion of a stable
molecule,

NB =
∑

q:pole

nB(ωq)
∂

∂(2μ)�(q,ωq)
∂

∂ωq
�(q,ωq)

(A4)

has the meaning of the number of stable pairs, where the
summation is taken over real poles of �(q,ω+).

The contribution Nsc of scattering states to the number N

of Fermi atoms is then given by

Nsc = NNSR − 2NB. (A5)
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