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Atom-molecule conversion in a periodically driven spin-boson model
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We have investigated the dynamics of atom-molecule conversion using a periodically driven spin-boson model
both quantum mechanically and semiclassically. The semiclassical dynamics is fully chaotic for small driving
frequencies, so that the regular atom-molecule conversion gradually vanishes. In quantum mechanics, however,
the periodic conversion takes place at small frequencies since the quantum adiabatic condition is fulfilled.
Moreover, it survives for rather larger frequencies that breaks the adiabatic condition, which is understood by
considering the so-called dynamical localization. It implies that the periodic atom-molecule conversion is more
robust than we expect from the semiclassical approximation. We also show that for much larger frequencies
delocalization takes place so that the dynamics becomes diffusive.
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I. INTRODUCTION

Feshbach resonance is an essential ingredient to control
effective interaction between atoms by varying an external
parameter such as magnetic field [1]. It appears when the
energies of two incoming atoms match that of the molecular
bound state formed by them. In magnetic Feshbach resonance,
energy detuning between a bound molecule and atoms can
be controlled via magnetic field since they have different
magnetic moments [2,3]. As the detuning, the energy of the
molecular bound state minus that of atoms, varies from large
positive, where atoms dominate, to large negative values,
atoms are transformed into molecules. One of the important
issues is how a large fraction of atoms is smoothly transformed
into molecules when the detuning varies slowly enough. It has
been found that the conversion of atoms to molecules is not
perfect during the adiabatic passage across the Feshbach res-
onance [4–11]. The amount of remaining atoms is not simply
explained by the Landau-Zener formula, which leads us to take
the many-body effect into account. Note that there has been
special interest in the breakdown of adiabaticity in many-body
systems [12,13]. The so-called spin-boson model [8–11,14]
has been extensively investigated to understand nonadiabatic
dynamics of the molecular production of many-body systems
in the semiclassical limit.

So far the main interest has been in varying detuning
linearly in time, called a linear sweep. However, there
are several reasons to consider periodic sweepings. It has
been theoretically proposed to measure the equilibrium gap
of the fermionic superfluid using a sinusoidal modulation
of s-wave scattering length [15]. Production of ultracold
bosonic molecules with a periodic magnetic modulation has
also been observed experimentally [16] and discussed theo-
retically [17,18]. Moreover, nonequilibrium quantum phase
transitions were investigated in various systems by using a
periodic sinusoidal modulation [19]. In Ref. [20] the exactly
same Hamiltonian that we consider here was analytically
studied in the context of the Bethe ansatz.

In this paper we investigate the atom-molecule conver-
sion when the detuning varies periodically in time both

*swkim0412@pusan.ac.kr

semiclassically and quantum mechanically. We have found
four dynamically distinct regimes exist depending on the
driving frequencies. Namely adiabatic, localized, diffusive,
and high-frequency regimes sequentially appear as the driving
frequency increases. In the adiabatic regime with tiny fre-
quencies the regular periodic conversion between atoms and
molecules are observed in quantum mechanics so that it can be
regarded as the adiabatic regime, while extremely slow chaotic
diffusion in the molecular fraction occurs in semiclassical
dynamics due to the so-called separatrix crossing [21–25].
In the localized regime the periodic conversion continues to
take place like the adiabatic regime in quantum mechanics
due to the so-called dynamical localization [26–28], while the
diffusion in the semiclassical limit occurs faster than the adia-
batic case, so the regular atom-molecule conversion disappears
relatively soon. In the diffusive regime, both semiclassical
and quantum mechanics exhibit diffusive dynamics in the
molecular fraction such that periodic conversion immediately
dies. As the frequency becomes bigger and bigger, the system
in the semiclassical limit evolves through complicated motions
of the so-called mixed phase space, where regular and chaotic
motions coexist, finally to predominantly regular motions.

This paper is organized as follows. In Sec. II we describe the
model that we investigate, namely the periodically driven spin-
boson model both semiclassically and quantum mechanically.
In Sec. III we present the main results of this paper; the
dynamics of the driven spin-boson model is categorized into
four regimes, namely adiabatic, localized, diffusive, and high-
frequency regimes. We also briefly discuss the possibility that
our theoretical findings are experimentally justifiable. Finally
we summarize our results in Sec. IV.

II. PERIODICALLY DRIVEN SPIN-BOSON MODEL

We introduce a Hamiltonian describing atom-molecule
conversion across the Feshbach resonance [10,11],

Ĥ = δ(t)

2
b̂†b̂ − δ(t)

2

1

2

N∑
i=1

(â†
i↑âi↑ + â

†
i↓âi↓)

+ g√
N

N∑
i=1

(b̂â
†
i↑â

†
i↓ + b̂†âi↓âi↑), (1)
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where âiσ with σ = ↑,↓ and b̂ are annihilation operators of a
fermionic atom and a bosonic molecule, respectively. They
satisfy the conservation relation

∑
iσ â

†
iσ âiσ + 2b̂†b̂ = 2N .

The first and the second term of the Hamiltonian (1) represent
the ground-state energy of the bosonic molecules and the
fermionic atoms, respectively. δ(t) and g denote a (time-
dependent) detuning and a coupling strength, respectively.
The signs of the first and the second term of (1) are opposite
so that when |δ(t)| is large enough, the system prefers to be
2N fermions as a ground state for δ(t) > 0 while N bosonic
molecules for δ(t) < 0. In order to describe the conversion
from atoms to molecules and vice versa, δ(t) should vary from
large positive to negative values. The third term describes the
conversion process between the atoms and the molecules.

By using the so-called Anderson pseudospin operators,
Ŝ+ = ∑N

i=1 â
†
i↑â

†
i↓, Ŝ− = Ŝ

†
+, and Ŝz = (1/2)

∑N
i=1(f̂i↑ +

f̂i↓ − 1) with f̂iσ = â
†
iσ âiσ (σ = ↑,↓), the Hamiltonian (1)

is rewritten as a more compact form [9,10,29],

ĤSB = δ(t)b̂†b̂ + g√
N

(b̂†Ŝ− + b̂Ŝ+). (2)

This is called as spin-boson model. The bases of Hamil-
tonian (2) are chosen as |nb〉b|Sz〉S , where the former and
the latter represent the bosonic state with its number nb

and the spin state with z-component Sz, respectively. The
conservation relation is now expressed as b̂†b̂ + Ŝz = N/2
so that the bases are labeled simply by nb according to
|nb〉 = |nb〉b|N/2 − nb〉S . For convenience we scale energies
and time with g: ĤSB/g → ĤSB, gt → t , and δ/g → δ.

In the semiclassical limit N � 1, the quantum mechanical
operators can be replaced by the corresponding complex
numbers, e.g., b̂ → b = e−iϕ√

nb and Ŝ+ → S+ = S sin θeiξ .
By considering the number conservation relation,

nb + (N/2) cos θ = N/2, (3)

the semiclassical Hamiltonian is obtained as

HSB = δ(t)nb − 2nb

√
1 − nb

N
cos φ, (4)

with φ = ϕ − ξ − π (−π � φ � π ). With scaling nb/N = n

(0 � n � 1) and HSB/N = hSB, we end up with the Hamilto-
nian,

hSB = δ(t)n − 2n
√

1 − n cos φ. (5)

Here n and φ satisfy {φ,n} = 1, where {} denotes the Poisson
bracket. In the limit |δ(t)| � 1, the Hamiltonian (5) is approx-
imated to hSB � δ(t)n. Thus φ becomes cyclic so that n is
conserved since the equations of motion are ṅ = −∂φhSB � 0
and φ̇ = ∂nhSB � δ1.

In this paper we consider a sinusoidal modulation of the
detuning:

δ(t) = δ1 cos(ωt + φd ). (6)

Note that δ1 and ω are also scaled as δ1/g → δ1 and ω/g → ω.
In order to focus on how the dynamics depends on ω, we set
δ1 = 10 and φd = 0 such that δ(t = 0) = δ1, which implies the
initial ground state of (2) is atom-dominated, namely nb ∼ 0.

To compare quantum analysis with the semiclassical one
on the equal footing, we need the corresponding semiclassical

distribution of the initial quantum state, namely the ground
state of ĤSB at t = 0. We use the Husimi distribution function,
which can be obtained from smoothing the Wigner function
with coherent states [30]. Here we exploit the coherent spin
state [31] defined as [32]

|θ,φ〉 =
N∑

m=0

√
N !

m!(N − m)!
cosN−m

(
θ

2

)
sinm

(
θ

2

)

× e−i(2m−N)(φ+π)/2|m〉. (7)

By using sin(θ/2) = √
n and cos(θ/2) = √

1 − n derived from
Eq. (3), the coherent spin state is rewritten as

|n,φ〉 =
N∑

m=0

√
N !

m!(N − m)!
(1 − n)

N−m
2 n

m
2

×e−i(2m−N)(φ+π)/2|m〉. (8)

Then the Husimi distribution function is |〈n,φ|ψ〉|2 for a
quantum state |ψ〉. In this paper the initial state is chosen
as the ground state of ĤSB at t = 0, which is nearly close
to |n = 0〉. It means that the system is prepared with only
fermionic atoms rather than molecules in quantum mechanics.
The corresponding semiclassical density in phase space is
described by the Husimi distribution function for the ground
state, as shown in Fig. 6(a).

The quantum dynamics is numerically calculated by solv-
ing the time-dependent Schrödinger equation. We calculate
the semiclassical dynamics using equations of motion in
Appendix. These calculations are performed based on the
fourth-order Runge-Kutta method.

III. RESULTS

A. Adiabatic regime

First, let us consider the adiabatic regime. It is nontrivial
to define the criterion of the adiabatic condition for a given
quantum dynamics [33]. We numerically found that when
ω � 1/(Nδ1), the quantum dynamics is adiabatic in which
the system follows the ground state of the Hamiltonian (2).
Atoms are converted to molecules periodically and vice
versa without any noticeable decay. Thus, the frequency
�a = 1/(Nδ1) provides the border between the adiabatic
and localized regime. Here we use N = 80 and δ1 = 10, so
�a = 1.25 × 10−3. We note that the border �a is still less than
the frequency obtained by the well-known adiabatic condition,

ω � (E1(u) − E0(u))2

|〈ϕ1(u)| ∂ĤSB
∂u

|ϕ0(u)〉|
, (9)

where {Ek(u)} and {|ϕk(u)〉} are the instantaneous eigenvalues
and eigenstates of ĤSB(u) at u = ωt , respectively [34,35].
Using the same N and δ1, the right side of (9) is close to
7 × 10−3, which is about five times larger than �a . Thus
the criterion ω � �a = 1/(Nδ1) already satisfies the quantum
adiabatic condition.

Figure 1 presents 〈n〉 (〈.〉 denotes quantum mechanical
average) of the quantum dynamics of the spin-boson model
as function of t/T , where T represents the period of the
driving T = 2π/ω, with ω = 1.25 × 10−4(=0.1�a) implying
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FIG. 1. Evolution of 〈n〉 with ω = 1.25 × 10−4(=�a/10) for
the quantum (solid red line) and the semiclassical (blue dashed
line) dynamics for (a) 0 � t/T � 3, (b) 45000 � t/T � 45003, (c)
97000 � t/T � 97003.

it satisfies the adiabatic condition. This clearly shows the atom-
molecule conversion periodically occurs for a considerably
long time scale. However, the corresponding semiclassical
dynamics behaves quite differently; it exhibits damped os-
cillation approaching n = 0.5, similar to Figs. 3(a)–3(c),
extremely slowly (not shown) due to the so-called separatrix
crossing [21–25].

A typical Hamiltonian to describe the separatrix crossing is

H (t) = J 2

2
+ A sin ωt cos φ. (10)

Without time dependence this corresponds to a trivial pen-
dulum Hamiltonian [36]. Usually Hamiltonian chaos has been
studied in the mechanical pendulum perturbed by an additional
time-dependent term, i.e., J 2/2 + A sin φ + Bφ cos ωt . As B

increases, chaotic motion forms near separatrices. Note that the
chaotic region is localized near the separatrices unless B is not
large enough. In Eq. (10), however, the size of the separatrices
themselves oscillate in time according to A sin ωt . As far as
the Liouville theorem, requiring that the area in phase space
should be conserved, is concerned, phase points enclosed by
the separatrices should cross them so as to form homoclonic
tangles, a signature of chaos. Therefore, the area enclosed by
the separatrix of the Hamiltonian (10) becomes chaotic no
matter how small ω is.

The phase space portraits of Hamiltonian (5) are presented
in Fig. 2 at several δ’s [11,14,37,38]. It clearly shows that
a separatrix forms around n = 0 and grows to cover the
whole n, [0,1], as δ goes from δ = 2 to 0. Then it decreases
and shrinks to disappear as δ goes from δ = 0 to −2. As δ

varies from δ = 2 to δ = −2, the separatrix sweeps the whole
phase space so that the semiclassical dynamics becomes fully
chaotic no matter how small ω is. Thus when the detuning
slowly changes periodically as δ = δ1 cos(ωt) with a large
δ1, the semiclassical dynamics is always diffusive or chaotic.
The oscillation of the atom-molecule conversion gradually
vanishes and it saturates to n = 0.5. In this regime, however,
we find that the quantum dynamics exhibits adiabatic behavior,
i.e., the regular oscillation of n or periodic atom-molecule
conversion when δ varies slowly satisfying ω � �a .

A remark is in order. The inevitable breakdown of the
adiabatic condition for the slow dynamics in many-body
systems has been an issue [12,13]. It has been confirmed using
the spin-boson Hamiltonian (2) with semiclassical approxima-
tion [10]. Interestingly the adiabatic behavior survives if the
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FIG. 2. Phase space portraits of the Hamiltonian (5) for several
δ with ω = 0, where we ignore time dependence. The thick black
curves represent the separatrices.

spin-boson model is quantum mechanically treated, implying
that experiments done with rather smaller particles (not in the
semiclassical regime) may exhibit adiabatic behavior rather
than its breakdown.

B. Localized regime

For ω � �a(=1.25 × 10−3) the quantum state deviates
from the instantaneous ground state of the Hamiltonian (2),
and the quantum dynamics becomes nonadiabatic. One thus
expects the atom-molecule conversion no longer periodically
occurs. However, Figs. 3(a)–3(c) shows 〈n〉 of quantum me-
chanics with ω = 1.25 × 10−2(=10�a) still exhibits a pretty
good periodic oscillation although it is not perfect compared
with the adiabatic case, while the oscillation rather quickly
dies in the semiclassical approximation. The survival of the

0

 0.5

1

0 1 2 3 4 5

(a)
QM
SC

0

 0.5

1

 35  36  37  38  39  40

(b)

<
n>

QM
SC

0

 0.5

1

 495  496  497  498  499  500

(c)

t/T

QM
SC

0

 0.02

 0.04

 0.06

 0.08

0  100  200  300  400  500

Δn
2

t/T

(d)

QM
SC

1/12

FIG. 3. Evolution of 〈n〉 in the quantum (red solid lines) and semi-
classical limit (blue dashed lines) with ω = 1.25 × 10−2(= 10�a)
for (a) 0 � t/T � 5, (b) 35 � t/T � 40, and (c) 495 � t/T � 500.
(d) The evolution of the variance n2 for the quantum (red solid
line) and the semiclassical case (blue dashed line) at multiples of the
period. The dotted horizontal line n2 ∼ 0.083 (∼1/12) represents
the classical ergodic limit.
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FIG. 4. Log-log plot for the time scales and the variance as

a function of ω. (a) τE (red circle dots) and τH (blue square
dots). The dashed black line is the fitting curve of τE , which is
given by τE ∼ ω−2.1. (b) Quantum variances at saturation. It is
normalized by the classical ergodic limit. Three distinct regimes are
visible: (I) adiabatic (ω � �a), (II) localized (�a � ω � �l), and
(III) diffusive regime (ω � �l).

oscillation in quantum mechanics in the nonadiabatic regime
can be understood by considering the so-called dynamical
localization [26–28].

A fully chaotic system in classical mechanics exhibits
diffusive behavior so that it spontaneously evolves to the
so-called ergodic state [26,39–41], where the whole available
phase space is uniformly covered whatever initial distribution
it starts from. This is nothing but relaxation to equilibrium.
There is a time scale tE , called the ergodic time [26,39,41],
on how long it takes to reach the ergodic state. In quantum
mechanics, another new time scale, the so-called Heisenberg
time tH [26,39–41] defined as 1/ε, where ε denotes the
mean level spacing of the quasienergy, comes into play.
Roughly speaking, when the Heisenberg time is reached,
the system starts to see the discreteness of energy levels
due to Heisenberg’s uncertain principle so that the chaotic
diffusion stops. If tH < tE , the diffusion stops in quantum
mechanics while it continues in the corresponding classical
mechanics. Such quantum prohibition of diffusion gives rise to
the localization, which is the dynamical localization. It is well
known that the dynamical localization of the quantum kicked
rotor is mathematically equivalent to the Anderson localization
of disordered lattices [26,39–41].

We emphasize that the dynamical localization in this paper
is considered only at multiples of the period, t = kT ,k =
0,1, . . .[42]. Figure 3(d) shows the variance of n, n2 defined
as 〈n2〉 − 〈n〉2, as a function of k both in the quantum and
in the semiclassical case at ω = 10�a . The semiclassical
variance is saturated around τE = tE/T , while the quantum
variance stops increasing around τH = tH /T (<τE) where the
quantum localization takes place. In the semiclassical case, for
the whole available phase space 0 � φ < 2π and 0 � n < 1,
〈n2〉 is given as 1/12 if the state is fully ergodic, or uniformly
distributed over the whole phase space. The bigger ω the faster
the chaotic diffusion. Thus, the ergodic time decreases when ω

increases as τE ∼ ω−2.1 [Fig. 4(a)]. However, the Heisenberg
time τH increases as ω increases as shown in Fig. 4(a), which
is discussed in the next paragraph. It causes the transition from
τH < τE to τH > τE , i.e., from localization to delocalization,
to occur around ω ∼ 0.02 as shown in Fig. 4(b). It gives the
border between the localized and the diffusive regime, denoted
as �l(∼0.02).
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FIG. 5. Evolution of the variance 〈n2〉 for the quantum (the
red solid curve) and the semiclassical case (the blue dashed curve)
with ω = 0.125 at multiples of the time period. The dotted horizontal
line 〈n2〉 ∼ 1/12 represents the classical ergodic limit. The inset
presents the evolution of 〈n〉 for 0 � t/T � 30.

Now we qualitatively explain why τH increases as ω

increases. Since the Hamiltonian considered here is time
periodic, i.e., ĤSB(t) = ĤSB(t + T ), according to the so-called
Floquet theory [40,41] any state can be expanded as

|ψ(kT )〉 =
∑

α

exp(−iεαkT )〈να|ψ(0)〉|να〉. (11)

Here the quasienergy εα (0 � εα < ω) and the Floquet state
|να〉 satisfy

Û |να〉 = e−iεαT |να〉, (12)

with a unitary operator Û = T̂ e−i
∫ T

0 ĤSB(t)dt , where T̂ repre-
sents the operator of time ordering. The mean level spacing of
quasienergies ε is not straightforwardly defined so we can
roughly define it as ω/Nc, where Nc denotes the number of
the operational Floquet states covering the initial state. More
precisely

∑Nc−1
α=1 |〈να|ψ(0)〉|2 � r and

∑Nc
α=1 |〈να|ψ(0)〉|2 >

r , where |〈να|ψ(0)〉|2 are arranged in descending order. Here
we set r = 0.99 [41,43,44]. We then find the Heisenberg time
tH/T ∼ 2π/(〈ε〉T ) ∼ Nc. In the adiabatic limit we have
Nc ∼ 1 since the dynamics is governed by a single state.
We expect Nc might increase as ω increases since the bigger
ω the more interlevel transition occurs in the sense of the
Landau-Zener transition.

C. Diffusive regime

Figure 5 shows that both the quantum and classical variance
quickly approach the classical ergodic limit. 〈n〉 is also relaxed
and it does not exhibit periodic atom-molecule conversion
with ω = 0.125(>�l). The Husimi plot of the quantum state
exhibits complicated mixtures of atoms and molecule as shown
in Fig. 6(d). For comparison we also present the Husimi plot
for the localized regime in Fig. 6(c).

Figure 4(b) shows the saturated value of the quantum
variance 〈n2〉 [44]. It is normalized by the classical ergodic
limit, namely 1/12. Here the transition from the localized to
the delocalized regime is clearly visible around �l(∼0.02).
Note that the adiabatic border lies at �a = 1.25 × 10−3. The
periodic atom-molecule conversion of the spin-boson model
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FIG. 6. Probability distributions of the quantum states: (a) initial
state, (b) adiabatic regime, (c) of the localized regime (ω = 1.25 ×
10−2) at t = 500T , and (d) of the diffusive regime (ω = 1.25 × 10−1)
t = 15T , at which the variances are saturated to the classical ergodic
limit. The insets show the corresponding Husimi plots.

survives for �a � ω � �l , which is unexpected from consid-
ering only the adiabatic condition. For �l � ω the variance
reaches the classical limit implying dynamical localization
no longer occurs. Even in quantum mechanics the dynamics
is then predominantly chaotic or diffusive so that reliable
atom-molecule conversion no longer exists.

D. High-frequency regime

Roughly speaking the energy difference between the atoms
and the molecules is given as δ1 at ω = 0 and it is the
highest natural frequency of the nondriven case. If ω is larger
than or equal to δ1, the direct quantum transition between
atoms and molecules can take place. It leads to make the
conversion dynamics more complex. Thus for ω � δ1 the
periodic conversion with frequency ω cannot be guaranteed. It
is known that the dynamics of a system for the high-frequency
regime can be described by effective time-independent Hamil-
tonians [45–49]. In this paper we are interested in controllable
atom-molecule conversion using periodic driving. Thus we
limit our consideration to ω � δ1(=10). For completeness,
however, we briefly summarize the dynamics of the atom-
molecule conversion below.

Beyond the diffusive regime, ω > �d (∼1.07), the quantum
〈n〉 starts to oscillate again even though the corresponding
semiclassical 〈n〉 does not as shown in Fig. 7(a). In this case
the dynamics undergoes transition from complete chaos of the
diffusive regime to dynamics with mixed phase space as shown
in the inset of Fig. 7(a). For much higher ω, namely ∼10,
the dynamics eventually becomes regular. For intermediate
frequencies the evolutions of 〈n〉 exhibits various behaviors
as shown in Figs. 7(b) and 7(c). If a stability island appears
near n ∼ 0 as shown in the inset of Fig. 7(b), 〈n〉 stays
at 0. This is similar to the so-called self-trapping of two
weakly coupled Bose-Einstein condensates driven by periodic
modulation [50]. In Fig. 7(c) 〈n〉 slowly oscillates both in
the quantum and semiclassical cases. The behaviors observed
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FIG. 7. Evolution of 〈n〉 for the quantum (the red solid curves) and
semiclassical dynamics (the blue dashed curves) with (a) ω = 1.32,
(b) ω = 4.05, (c) ω = 4.40, and (d) ω = δ1 = 10. The x axis is the
time divided by the period T . The black long dashed curve in (d)
is calculated by using the Hamiltonian (13). The insets show the
corresponding classical Poincaré surface of sections. Here the x axis
is n and the y axis is φ.

here depend on the characteristics of the motions near n ∼ 0
of phase space at which the initial condition is posed.

It has been shown that for ω � 1, the Hamiltonian (2) can
be approximated to the following form [51–53]:

Ĥ R
SB = J0(δ1/ω)√

N
(b̂Ŝ+ + b̂†Ŝ−), (13)

where J0(.) is the zeroth order of the Bessel function. This
effective Hamiltonian well describes the quantum dynamics
in the high-frequency regime as shown in Fig. 7(d).

E. Discussion

Here we discuss the possibility that our theoretical finding
is experimentally justifiable. Through this paper we assume
single-mode, zero-temperature, and uniform condensate for
our system. However, long-lasting strong external driving may
induce heating to make the above mentioned assumptions
broken. To determine whether such heating influences our
results we need to know several important time scales.
Unfortunately, it is not easy to accurately estimate them
since we consider a somewhat unusual situation with a rather
small number of particles, namely 80 bosoinc (fermionic)
molecules (atomic pairs). Compared with 105 to 107 atoms
in typical experiments [6,54,55], a small number of particles
with N = 80 was considered in this paper. The reason is that
our main concern lies at observing the quantum effect which
vanishes in the semiclassical limit, N → ∞.

We assume that the mean density nd = 1018 m−3, geometric
frequency of a harmonic trap ω̄ = 3.14 kHz, and temperature
of fermions �/�F = 0.05, where the Fermi temperature is
denoted as �F = 187 nK [2]. The border between the adiabatic
and localized regime is given as Ta = 0.7 ms with 2π/�a .
Here we have �a = 1.25 × 10−3g

√
nd/� without scaling and

the coupling strength g = √
4π�2abgμB/ml , where we

use abg = 1405a0 with the Bohr radius a0, μ = 2μB with the
Bohr magneton μB , B = 300 G, and the mass of 6Li. We also
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find the relaxation time TR � �EF /(kB�)2 ∼ 16 ms [55,56]
and the period of harmonic motion in the trap Tt ∼ 2 ms.

For the adiabatic regime shown in Fig. 1, where we have
T = 10Ta = 7 ms, it is unlikely to observe the oscillation of
〈n〉 for quite a long time, namely 100 000T . Only after two
periods (∼14 ms), the heating becomes considerable due to
relaxation with TR ∼ 16 ms. Moreover the motion itself of the
particles in the trap cannot be ignored due to T > Tt . For the
localized regime shown in Fig. 3, where we have T = 0.1Ta ∼
0.07 ms � TR and Tt/T ∼ 28, one might observe the coherent
oscillation of 〈n〉 supported by the dynamical localization.
Note that the oscillation should be maintained for 20 ∼ 30
periods in order to observe the localization. However it is
not completely clear whether such direct substitution of N =
80, which is extremely small, into the formula developed in
the typical experimental condition with large N [1,2]. Even
if all the above conditions are satisfied, the nonuniformity
still makes additional problems. For example, assumptions of
the single mode is guaranteed when g

√
n � kB� [17,57] is

satisfied. Since the density is low near the tail of the trap,
atomic clouds near the surface of the trap might violate the
single-mode assumption.

IV. SUMMARY

We have studied the dynamics of the atom-molecule conver-
sion using the spin-boson model driven periodically. We have
found four distinct regimes as the driving frequency increases;
adiabatic, localized, diffusive, and high-frequency regimes. In
the adiabatic regime, the regular periodic conversion occurs
in quantum dynamics while slow chaotic diffusion due to
separatrix crossing takes place in the semiclassical one. In
the localized regime the regular conversion still survives in
quantum dynamics even if the quantum adiabatic condition is
broken. This is explained by the dynamical localization. There-
fore, we can say that the periodic atom-molecule conversion is
more robust than one expects from semiclassical consideration.
Once the dynamical localization no longer works, the chaotic
diffusion occurs even in quantum dynamics so as for the
periodic conversion to die. This is the diffusive regime. For
higher frequencies the semiclassical dynamics finally becomes
regular via complicated dynamics with mixed phase space.
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APPENDIX: EQUATIONS OF MOTION IN THE
SEMICLASSICAL LIMIT

We derive the Hamiltonian equations of motion for
the semiclassical dynamics [14]. We introduce Q and P

satisfying

b = 1√
2

(Q + iP ), (A1)

with {Q,P } = 1. We normalize Q, P , and spins using N :

Q =
√

Nq, P =
√

Np, Si = N

2
si, (i = x,y,z). (A2)

Then the semiclassical Hamiltonian hSB is rewritten as

hSB = δ

2
(q2 + p2) + 1

2
√

2N
((q − ip)s− + (q + ip)s+).

(A3)

Poisson bracket relations are modified as the following:

{q,p} = 1

N
, {sx,s±} = ±2i

N
sz,

{sy,s±} = − 2

N
sz, {sz,s±} = ∓2i

N
s±. (A4)

The equations of motion for the Hamiltonian (A3) are

dq

dt
= N{q,hSB} = δp − sy√

2
, (A5)

dp

dt
= N{p,hSB} = −δq − sx√

2
, (A6)

dsx

dt
= N{sx,hSB} = −

√
2psz, (A7)

dsy

dt
= N{sy,hSB} = −

√
2qsz, (A8)

dsz

dt
= N{sz,hSB} =

√
2(qsy + psx). (A9)

These equations are exploited for the numerical calculation of
the semiclassical dynamics. The molecular fraction n and φ are
obtained by n = 1

2 (1 − sz) and φ=Arg[(q−ip)(sx − isy)] − π .
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[15] R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Phys.

Rev. A 86, 053604 (2012).
[16] S. T. Thompson, E. Hodby, and C. E. Wieman, Phys. Rev. Lett.

95, 190404 (2005).
[17] B. Liu, L.-B. Fu, and J. Liu, Phys. Rev. A 81, 013602 (2010).
[18] V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, Phys. Rev.

Lett. 108, 043003 (2012).
[19] S.-C. Li and L.-C. Zhao, J. Opt. Soc. Am. B 31, 642 (2014).
[20] P. Barmettler, D. Fioretto, and V. Gritsev, EPL (Europhys. Lett.)

104, 10004 (2013).
[21] A. I. Neishtadt, Sov. J. Plasma Phys. 12, 568 (1986).
[22] J. R. Cary, D. F. Escande, and J. L. Tennyson, Phys. Rev. A 34,

4256 (1986).
[23] D. Bruhwiler and J. R. Cary, Physica D 40, 265 (1989).
[24] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical

Aspect of Classical and Celestial Mechanics, 3rd ed. (Springer-
Verlag, New York, 2006).

[25] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic
Dynamics, 2nd ed. (Springer-Verlag, New York, 1992).

[26] G. Casati and B. Chirikov (eds.), in Quantum Chaos: Between
Order and Disorder (Cambridge University Press, Cambridge,
1995), pp. 1–38.

[27] D. L. Shepelyansky, Phys. Rev. Lett. 56, 677 (1986).
[28] D. L. Shepelyansky, Physica D 28, 103 (1987).
[29] V. Gurarie, Phys. Rev. A 80, 023626 (2009).
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