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Dipolar bilayer with antiparallel polarization: A self-bound liquid
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Dipolar bilayers with antiparallel polarization, i.e., opposite polarization in the two layers, exhibit liquidlike
rather than gaslike behavior. In particular, even without external pressure, a self-bound liquid droplet of constant
density will form. We investigate the symmetric case of two identical layers, corresponding to a two-component
Bose system with equal partial densities. The zero-temperature equation of state E(ρ)/N , where ρ is the total
density, has a minimum, with an equilibrium density that can be adjusted by the distance d between the layers
(decreasing with increasing d). The attraction necessary for a self-bound liquid comes from the interlayer
dipole-dipole interaction that leads to a mediated intralayer attraction. We investigate the regime of negative
pressure towards the spinodal instability, where the bilayer is unstable against infinitesimal fluctuations of the
total density, confirmed by calculations of the speed of sound of total density fluctuations.
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I. INTRODUCTION

Experiments with Bose gases of atoms with large magnetic
moments ( 52Cr [1,2], 164Dy [3], 168Er [4]) are fueling the
interest to understand the effects of the dipole-dipole in-
teraction (DDI) on the stability, shape, and dynamics of
dipolar Bose condensates (reviewed in Refs. [5–7]). The
strength of the DDI is commonly characterized by the dipole
length rD = mD2/(4πε0�

2), where m is the mass of the di-
polar atom or molecule and D is its dipole moment. The value
of rD can be compared with the average interparticle spacing,
rs ∼ ρ−1/m, where ρ is the number density of the condensate
and m is the dimensionality. For rD � rs , the DDI is weak;
in general, other contributions to the interaction, such as the
s-wave scattering length a, will dominate (except if a is tuned
to a sufficiently small value [2]). For rD � rs , the DDI will
be the dominant interaction. The magnetic DDI is usually
negligible; only for the handful of atoms mentioned above
has its effect been observed, as it is difficult to increase the
density such that rD � rs . Compared with the magnetic dipole
moment of atoms, the electric dipole moment of heteronuclear
molecules can be orders of magnitude larger, leading to large
values for rD (e.g., rD = 5 × 105 Å for a fully polarized NaCs).
Association of two atoms using a Feshbach resonance and
transfer to the rovibrational ground state has been achieved, for
example, for 7Li 133Cs [8], 40K 87Rb [9], 41K 87Rb [10], and
85Rb 133Cs [11,12]. But it is quite a challenge to produce a
degenerate quantum gas of dipolar molecules.

The anisotropy of the DDI leads to a measurable anisotropy
of the speed of sound [13], but an anisotropic superfluid
response [14] has also been predicted. The attractive part of
the DDI can give rise to roton or rotonlike excitations in a
dipolar Bose gas layer [15–19]. An anisotropic 2D quantum
gas can be realized by tilting the polarization dipoles in a
deep one-dimensional (1D) trap, and a stripe phase can form
spontaneously [20,21]. For rD � rs , dipoles will crystallize
without imposing an optical lattice [22–25]. Fermionic dipoles
in 1D, polarized along the length of the system, can be

*Corresponding author: robert.zillich@jku.at

self-bound, as has been shown using mean-field theory [26].
A bilayered dipolar Bose gas can dimerize if the polarization
direction in the two layers is the same [27]. Also, glassy
behavior has been studied for antiparallel polarization in two
layers, i.e., when dipoles are perpendicular to the layer, but
the orientation of the dipoles in one layer is opposite to
that in the other layer [28]. Like the DDI corresponding to
parallel dipoles, the DDI corresponding to antiparallel dipoles
can be realized by static electric and/or microwave fields.
For example, one can apply a static electric field E and
excite the molecules in one layer to rotational states (J,M) =
(1,±1), which have an effective polarization parallel to E.
The molecules in the other layer, preferably a different species
with a different rotational constant, can be excited to rotational
states (J,M) = (1,0), which are effectively polarized opposite
to E. Thus molecules in the same layer are subject to a repulsive
DDI at long range, and molecules in different layers are subject
to an attractive DDI. Details about the DDI in a static electric
field can be found in Ref. [29], where alternative approaches
using microwave fields are also worked out.

In this work we study such a bilayer of bosonic dipoles with
antiparallel polarization. The key result is that it is a self-bound
liquid: unlike a gas, which expands if there are no walls, or
a trap potential, which exerts external pressure, a liquid is
bound together by the interaction between its particles; hence
the interaction must be at least partially attractive. The DDI
is clearly partially attractive, depending on the orientations
of the dipoles relative to the distance vector between them.
However, this is not enough to ensure a self-bound liquid: as
mentioned above, dipolar bilayers with the same polarization
in both layers undergo dimerization below a certain layer
distance [27], yet the system as a whole is not self-bound. We
show that the liquid nature is a consequence of the particular
form of the interlayer DDI for opposite polarization, which
is attractive for finite separation [the two-dimensional (2D)
separation projected on the bilayer planes]. This leads to
cohesion due to “dipole bridges” that effectively act as a glue
to bind all particles together. As required for a liquid, the
densities in the bilayers adjust to an equilibrium density ρeq

in the absence of external pressure. ρeq can be adjusted over a
very wide range by the distance d between the layers.
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For our calculations we use a variational many-body theory,
the hypernetted-chain Euler-Lagrange method (HNC-EL),
which includes optimized pair correlations. The HNC-EL
method has been demonstrated to give accurate results even
for such dense and strongly correlated quantum liquids as
superfluid 4He. For comparison and validation, we use path-
integral Monte Carlo (PIMC) simulations.

II. METHODOLOGY

A 1D optical lattice slices a Bose-Einstein condensate
(BEC) into quasi-2D layers separated by a distance d. Since
the dipole length rD can easily exceed the typical d value of
about 500 nm, the DDI interaction between dipoles in different
layers can lead to appreciable coupling. We consider here two
translationally invariant layers A and B, approximate each
layer as two-dimensional, and assume no tunneling occurs.
With these simplifications we get two coupled 2D systems,
i.e., a binary Bose mixture. For simplicity we assume the
particles in the two layers have the same mass and dipole
moment. As is common in this field, we use dimensionless
quantities, where length is given in units of the dipole length
rD and energy is in units of the dipole energy ED = �

2/(mr2
D).

Other dimensionless quantities follow from rD and ED; for
example, the number density is given in units of r−2

D , etc. The
Hamiltonian in dipole units is

H = −1

2

∑
α,i

∇2
i,α + 1

2

∑
α,β

∑′

i,j

vα,β (|ri,α − rj,β |) ,

where α and β index the layer, α,β ∈ {A,B}, and i and j index
the particles within a layer. The primed sum indicates that for
α = β we only sum over i �= j . Note that all coordinates ri,α

are 2D projections on the layer plane; the z coordinate is either
zero or d in layer A or B, and this d dependence is integrated
into the interaction vα,β . vα,β(|ri,α − rj,β |) is the DDI, in units
of ED , between dipole i at ri,α in layer α and dipole j at rj,β in
layer β. We neglect short-range interactions compared to the
DDI. The intralayer interaction (α = β) is purely repulsive,
vα,α(r) = 1/r3. The interlayer interaction, α �= β, is vAB(r) =
(2d2 − r2)/(d2 + r2)5/2, which is repulsive for small r but
attractive for large r and has a minimum at rmin = 2d. We
show vAA(r) = vBB(r) in Fig. 1 with a solid line and, for
layer distances d = 0.1, . . . ,0.5, vAB(r) with dashed lines.
Although longer ranged, vAB(r) looks qualitatively similar
to the interaction between two neutral atoms: an attractive
well, followed by repulsion for small r . Note that since
the average interlayer interaction vanishes,

∫
d2r vAB(r) =

0, the coupling between layers in the ground state would
vanish in a mean-field approximation and the ground-state
energy would just be the sum of the energies of each
layer.

For the many-body ground state we use the variational
Jastrow-Feenberg ansatz [30] consisting of a product of pair-
correlation functions for a multicomponent Bose system,

�0 = exp

⎡
⎣1

4

∑
α,β

∑′

i,j

uα,β (|ri,α − rj,β |)
⎤
⎦. (1)
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FIG. 1. Intralayer interaction vAA(r) = vBB (r) (solid line) and
interlayer interaction vAB (r) (dashed lines) for d = 0.1, . . . ,0.5, as
a function of the parallel distance, i.e., the distance projected on the
layer planes.

Higher-order correlations uα,β,γ (ri,α,rj,β ,rk,γ ) could be in-
cluded, as is routinely done for single-component calculations.
Past experience has shown that triplet correlations improve the
ground-state energy, leading to results very close to exact QMC
simulations, but they do not change the qualitative picture.
We therefore restrict ourselves to pair correlations but check
the results against PIMC simulations (details about the PIMC
simulations are given in the Appendix). The expression for the
expectation value of the energy, E ≡ 〈�0|H |�0〉/〈�0|�0〉,
contains not only uα,β (r) but also the pair distribution function
gα,β (r), defined as

gα,β(|rα − rβ |) = Nα(Nβ − δαβ)

ραρβ

∫
dτα,β |�0|2,

where the integral is over all particles except one in layer α

and one in layer β and ρα = Nα/V is the partial density of
component α. uα,β (r) and gα,β(r) are, of course, related, via
the exact hypernetted-chain equations [31],

gα,β(r) = euα,β (r)+Nα,β (r)+Eα,β (r) .

The sum of all so-called nodal diagrams Nα,β (r) is itself
related to gα,β (r) via the multicomponent generalization of
the Ornstein-Zernicke relation [31], which would provide
closure to the equations were it not for the sum of all “ele-
mentary diagrams” Eα,β (r). The latter can only be computed
approximately, e.g., by truncating the sum. Here, we simply
neglect them completely; what we said about neglecting triplet
correlations also applies to neglecting elementary diagrams.

The pair distributions gα,β(r) (and thus the energy and
other quantities of interest) are determined from Ritz’s
variational principle, i.e., from the Euler-Lagrange equations,
δE/δgα,β (r) = 0. These coupled, nonlinear equations are
generically called hypernetted-chain Euler-Lagrange equa-
tions and are called HNC-EL/0 if the elementary diagrams are
neglected as in the present work. Details about the HNC-EL
method can be found in reviews [32,33]. Particularly for Bose
mixtures, the HNC-EL/0 equations for an arbitrary number of
components can be cast into the following form (bold capital
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letters denote matrices; see Refs. [34–37]):

W(k) = −1

2
[S(k)T(k) + T(k)S(k) − 3T(k)

+ S−1(k)T(k)S−1(k)],

V
ph

α,β (r) = gα,β(r)vα,β(r) + �
2

2mα,β

|∇√
gα,β (r)|2

+ (gα,β (r) − 1)Wα,β (r),

Vph(k) = S−1(k)T(k)S−1(k) − T(k),

where mα,β is the reduced mass (for the symmetric bilayer,
�

2/2mα = �
2/2mβ = 1/2 in dipole units). Sα,β (k) is the static

structure function

Sα,β (k) = δαβ + √
ραρβ FT[gα,β − 1],

where FT denotes Fourier transformation. The kinetic-energy
matrix, Tα,β(k) = δαβ(�2k2/4mα,β ), becomes Tα,β(k) = δαβ

k2

2
in our case. The HNC-EL/0 equations can be solved iteratively.
Usually, the convergence is stable and fast, but close to an
instability like the spinodal point discussed below, we use
linear mixing between iterations to ensure convergence.

III. RESULTS

We calculated the ground-state energy per particle E(ρ)/N
as a function of total density ρ = ρA + ρB for different layer
distances d. The interlayer DDI scales with d−3; therefore
the energy per particle E/N varies over a wide range, as can
be seen in the top panel of Fig. 2, which shows E(ρ)/N for
four values of d. A key result is that E(ρ)/N has a minimum
at a certain equilibrium density ρeq(d), where the pressure
p vanishes: without an externally applied pressure provided,
e.g., by a radial trap potential, the total density of the bilayer
system will adjust itself to ρeq(d). Rather than expanding like
a gas, a dipolar bilayer system with antiparallel polarization
is a self-bound liquid. Despite the purely repulsive intralayer
interaction, the partly attractive interlayer interaction provides
the “glue” that binds the system to a liquid. The phenomenon
of an effective intralayer attraction, mediated by particles in
the other layer, is discussed in more detail below.

During the iterative numerical optimization, convergence
becomes very sensitive as the density ρ or the distance
d between layers A and B is decreased, until the HNC-
EL/0 equations eventually fail to converge. Past experience
with HNC-EL/0 is that a numerical instability usually has
a physical reason. Indeed, as we will show below, there
is a spinodal point at a d-dependent critical density ρsp

where the homogeneous phase assumed in our calculation
becomes unstable against phase separation by nucleation of
two-dimensional droplets (“puddles”). Thus the equation of
state E(ρ)/N for a homogeneous phase can be calculated only
for densities ρ > ρsp. This can be seen in the top panel of
Fig. 2, where each curve for E(ρ)/N has an end point. The
end point is close to the critical density ρsp (reaching ρ = ρsp

is impossible since already an infinitesimal fluctuation can
nucleate a finite density wave, creating, e.g., a bubble).

Also shown in the top panel of Fig. 2 are the energies
obtained with PIMC simulations (see the Appendix). The
temperature for the PIMC simulations is set to T = 0.5
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FIG. 2. Top: Ground-state energy per particle E/N versus the
total density ρ for several layer distances d . The results from HNC-
EL/0 are shown as lines (small circles indicate the equilibrium density
ρeq); the open symbols are from corresponding PIMC simulations.
The solid symbol indicates E/N and ρeq estimated from a PIMC
simulation of a self-bound two-dimensional droplet of 50 dipoles
in each layer; see the Appendix. Bottom: Equilibrium density ρeq

versus d .

(T = 0.25 for the smallest ρ), which is low enough that
the thermal effect on E/N is smaller than the symbol size.
The open triangles are bulk simulations of NA = NB = 50
dipoles with periodic boundary conditions. The HNC-EL/0
results are upper bounds on E/N , consistent with a variational
approach. The overall dependence of E/N on ρ and d is
reproduced quite well with the HNC-EL/0 method, which
is orders of magnitude faster than PIMC simulations. The
black triangle shows the energy from a PIMC simulation of
NA = NB = 50 dipoles and layer separation d = 0.1 without
periodic boundary conditions. Due to the liquid nature of the
bilayer, the dipoles in the simulation indeed coalesce into a
droplet of finite density, given by ρeq(d) apart from corrections
due to the surface line tension. The density corresponding to
the solid triangle is obtained from the radial density profile
ρ(r) at r = 0 (see Fig. 7 in the Appendix), where r is
defined relative to the center of mass of the droplet. Thermal
evaporation, which can occur in the absence of periodic
boundary conditions, was suppressed by choosing a much
lower temperature of T = 0.0625. Although this simulation
of a finite cluster is not equivalent to bulk PIMC or HNC-EL/0
calculations, the central density of the droplet is indeed close
to ρeq(d) from HNC-EL/0.

The equilibrium density ρeq as a function of d is shown
in the bottom panel of Fig. 2. ρeq(d) decreases rapidly with
increasing d. For smaller d, the decrease is approximately
ρeq ∼ d−3, and for larger d it is closer to ρeq ∼ d−4. Based
purely on the interlayer DDI vAB(r), one would expect a
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Δ

Δ

FIG. 3. Top: Intralayer pair distributions gAA(r) at density
ρA = ρB = 0.5 for progressively smaller layer distance d . Mid-
dle: Corresponding interlayer pair distributions gAB (r), with circle
indicating the maxima of gAB (r). Bottom: Incremental intralayer
pair distributions �gAA(r) = gAA(r) − g∞

AA(r), i.e., the change from
uncoupled layers. The inset in the middle panel shows the positions
of the maxima of gAA(r) and gAB (r) as a function of d . The inset
in the bottom panel sketches the attractive forces between dipoles in
different layers.

scaling of ρeq with the inverse square of rmin = 2d, leading
to a scaling d−2. The deviation from d−2 is due to the kinetic
energy. Only for very small d [very deep vAB(r)] can this
simple picture be expected to be valid, and indeed, the ρeq curve
becomes less steep for smaller d in the double-logarithmic
representation in Fig. 2. We note that in the regime of very
small d, and thus of extremely strong interlayer correlations,
the HNC-EL method would not be reliable anymore.

In Fig. 3 we show the intralayer and interlayer pair
distributions, gAA(r) and gAB(r), in the top and middle panels
for progressively smaller layer distance d up to the smallest
numerically stable value d = 0.063 for ρ = 1. The growth of
a strong-correlation peak in gAB(r) as d is decreased is a direct
consequence of the increasingly deep attractive well of vAB(r)
around rmin = 2d (see Fig. 1). The peak in gAB (r) is located at a
distance rm which is somewhat larger than 2d due to zero-point
motion. But gAA(r) also develops additional correlations, seen
as a shoulder in the top panel. The additional correlations are
best seen in the difference between gAA(r) and the uncoupled
(d → ∞) limit g∞

AA(r), �gAA(r) = gAA(r) − g∞
AA(r), shown

in the bottom panel. The additional positive correlation
between dipoles in the same layer is mediated by dipoles in
the other layer: the attraction between a dipole in layer A and a
dipole in layer B, which leads to a peak at distance rm, induces

an effective attraction between the dipole in A and another
dipole in A, leading to a peak at about twice the distance, 2rm.
The inset in the middle panel shows the positions of the peaks
of gAB(r) and �gAA(r) [indicated by circles in the plots of
gAB(r) and �gAA(r)] as a function of distance d. Indeed, the
peaks of �gAA(r) are located at about twice the distance of the
peaks of gAB(r). This effective intralayer attraction, induced
by the real interlayer attraction, is illustrated by a simple 1D
sketch in the inset in the bottom panel, which also illustrates
a preference for a certain interparticle spacing, i.e., density,
where “dipole bridges” (blue lines in the sketch) can form.
The present 2D situation is more complicated than the simple
1D sketch, but our results for the pair correlations demonstrate
this picture is approximately valid.

The identification of the low-density instability with a spin-
odal point can be proven by calculating the long-wavelength
modes. For two coupled layers, there are two excitation modes
ε1,2 for any given wave number k, a density mode and a
concentration mode. In the density oscillations, the dipoles
in different layers move in phase, and in a concentration
oscillation they move out of phase. In the long-wavelength
limit, k → 0, each mode can be characterized by the speed of
a density or concentration fluctuation, c1 and c2, respectively.
At the spinodal point, the speed of sound c1 vanishes, which
means that the system becomes unstable against infinitesimal
k → 0 fluctuations of the total density, triggering the spinodal
decomposition: the system spatially separates into a high-
density phase and a low-density phase, such as droplets
surrounded by vacuum (at T = 0). The easiest way to calculate
c1 and c2 is the Bijl-Feynman approximation (BFA) for the
excitation energies εi(k). In the case of a single component,
the BFA excitation energy ε(k) follows from k2

2 = ε(k)S(k),
which is of course trivial to solve; we get the well-known
Bijl-Feynman approximation ε(k) = k2

2S(k) [38]. In the case of a
multicomponent Bose system we need to solve the generalized
eigenvalue problem k2

2
�φ = εi(k)S(k) �φ, where S(k) is the static

structure matrix introduced above. For strong correlations, the
BFA gives only a rough idea of the true excitation structure;
for example, the BFA for the roton energy of superfluid 4He is
off by a factor of 2. However, it describes the low-momentum
limit of the dispersion relation very well, which is what we
need for ci . For a symmetric bilayer, the eigenvalues are

ε1,2(k) = k2

2
[SAA(k) ± SAB(k)]−1,

with the associated eigenvectors �φ1 ∼ (1,1) and �φ2 ∼ (1, − 1).
�φ1 describes fluctuations of the total density, where particles in
different layers move in phase, and �φ2 describes concentration
fluctuations, where particles in different layers move out
of phase and the total density is constant. For small k,
ε1(k) < ε2(k), i.e., the density mode has lower energy than
the concentration mode. For k → 0 we get

c1,2 = 1
2 (S ′

AA ± S ′
AB)−1, (2)

with S ′
α,β = dSα,β (k)/dk|k=0. For single-component Bose

systems, it is known that the long-wavelength limit of S(k)
obtained with HNC-EL is biased by the approximation made
for elementary diagrams (omitted here altogether). This leads
to an inconsistency between the speed of sound c obtained from
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densities, ρ = 0.1,1,10 (top, middle, and bottom panels). Solid lines
show the Bijl-Feynman approximation, Eq. (2), and symbols are the
thermodynamic estimates, Eq. (3).

the HNC-EL approximation for S(k) and the thermodynamic
relation between c and the energy, c2 = ∂

∂ρ
ρ2 ∂

∂ρ
E
N

(in dipole
units). Therefore we need to assess the reliability of our results
for c1 and c2 in the present case of a multicomponent Bose
system. We compare the BFA values obtained from Sα,β (k),
Eq. (2), with the generalization of the thermodynamic relation
between c1,2 and the energy to binary systems:

c1,2 =
√

ρ

2
(eAA ∓ eAB), (3)

where eαβ is the second derivative of E/N with respect to ρα

and ρβ [39].
In Fig. 4 the results for c1 and c2 obtained with Eqs. (2)

and (3), respectively, are shown as a function of layer distance
d for densities ρ = 0.1,1,10. As the coupling between layers
is increased by reducing d, c1 and c2 behave differently. The
speed of concentration fluctuations c2 increases (without actu-
ally diverging), while the quantity of main interest, the speed
of density fluctuations c1, decreases to zero, in agreement
with the interpretation of the instability as a spinodal point.
The critical distance where c1 vanishes is lower for higher ρ.
Thus increasing the density for a given d makes the system
more stable. The BFAs for c1,2 and their thermodynamic
estimates agree qualitatively but differ especially for the
interesting regime near the spinodal point where c1 → 0.
The Bijl-Feynman values for c1 appear to go to zero linearly
and at slightly smaller d, while the thermodynamic estimates
approach zero more steeply, possibly in a nonanalytic fashion.
Unfortunately, these uncertainties preclude a meaningful
analysis of critical exponents for c1(d) or c1(ρ). Monte
Carlo simulations, including a finite-size scaling analysis, may
shed more light on this question but would certainly require

very large simulations, which is beyond the scope of PIMC
simulations performed for this paper.

IV. CONCLUSION

We have shown that a dipolar bilayer with antiparallel
polarization in the two layers constitutes a self-bound liquid,
evidenced by a minimum of E(ρ)/N at a finite density ρeq.
This means the dipoles in the two layers relax to a stable
equilibrium density and require no external pressure provided
by a radial trapping potential. This makes it possible to study
homogeneous quantum phases because, apart from a narrow
surface region, the density is essentially constant and given
by ρeq. The value of ρeq can be controlled by the distance
d between the layers (measured in dipolar units), where ρeq

decreases with increasing d. The intra- and interlayer pair
distribution functions, gAA(r) and gAB(r), exhibit distinct
peaks that show that the liquid can be understood as being
held together by a network of “dipole bridges”: the attraction
between dipoles in different layers mediates an effective
attraction between dipoles in the same layer that overcomes
the repulsion of the intralayer dipole-dipole interaction. Such
situations where an interspecies attraction wins against an
intraspecies repulsion are common for self-bound systems.
For example, in an ionic crystal the arrangement of having op-
positely charged ions as close as possible (nearest neighbors)
and equally charged ions farther away (next-nearest neighbors)
leads, of course, to stable crystals.

For comparison and validation of our HNC-EL/0 results we
performed exact PIMC simulations and found good agreement
with our HNC-EL/0 results. Furthermore, and as expected
for a liquid, the equation of state E(ρ)/N ends at a critical
density ρsp (spinodal point) below which the bilayer becomes
unstable against infinitesimal long-wavelength perturbations
and breaks into droplets. This is evidenced by a vanishing
speed c1 of total density fluctuations, which we determined
from our HNC-EL/0 results using two independent methods,
which agree quite well and only deviated from each other
very close to the spinodal point. Finite-size PIMC simulations
confirm that the system indeed coalesces into a droplet with a
flat density profile given by the equilibrium density.
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APPENDIX: PIMC SIMULATIONS

An important question is how accurate our ground-state
results obtained with the variational HNC-EL/0 method, where
we neglect elementary diagrams and higher than two-body
correlations in the ansatz for the wave function [Eq. (1)], are.
We performed path-integral Monte Carlo (PIMC) simulations
to assess the quality of our HNC-EL/0 results and found good
agreement between HNC-EL/0 energies and PIMC energies
at low temperature. In this appendix we present additional
comparisons of the static structure matrix, as well as results for
finite systems, where self-bound “puddles,” i.e., 2D droplets,
are formed because of the spinodal instability. All simulations
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FIG. 5. Static structure functions SAA(k) (top) and SAB (k) (bot-
tom) obtained with HNC-EL/0 (lines) for a total density ρ = 1 and
progressively smaller layer distances d as indicated in the top panel.
The symbols show SAA(k) and SAB (k) obtained by PIMC simulations
at T = 0.5 for distances down to d = 0.1.

were done with 50 particles per layer; bulk simulations used
quadratic simulation boxes with periodic boundary conditions
with a box size adjusted to achieve a given density. For
antiparallel bilayers, cutoff corrections to the dipole-dipole
interaction cancel each other and therefore are not needed.

For predicting the spinodal instability and also for calcu-
lating excitation properties, an important quantity is the static
structure matrix Sαβ(k). In Fig. 5 we compare SAA(k) and
SAB(k) obtained with HNC-EL/0 (lines) and PIMC (symbols)
at a total density of ρ = 1. The temperature in the PIMC
simulation was T = 0.5, which was low enough that Sαβ(k)
did not change upon lowering the temperature further. We see
that the HNC-EL/0 approximation works well, considering
that intralayer correlations are quite strong. For d = 0.3 and
d = 0.15 PIMC simulations predict slightly more pronounced
peaks and troughs, but HNC-EL/0 calculations are faster by
several orders of magnitude. For d = 0.1, the agreement is
also very good, except for the smallest k value possible in a
simulation box of side length 10, k = 2π/10 ≈ 0.63. In the
PIMC results, both SAA(k) and SAB(k) turn up sharply for this
smallest k value. When we reduce d even more, this apparent
peak at k = 0 grows very large. This peak has a very simple
reason: as we approach the spinodal point by reducing d, we
enter the metastable regime of the phase diagram, where E/N

as a function of total density has a negative slope. In this regime
a finite perturbation can lead to a collapse, and the system
phase separates. Since PIMC has no trial wave function that
could prevent phase separation, this collapse indeed happens
as we go further below the equilibrium density. In fact, Monte
Carlo snapshots such as in Fig. 6 show density fluctuations
already for d = 0.1 that resemble small “bubbles,” i.e., voids
in the liquid dipolar bilayer. In Fig. 6 red (light gray) and
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FIG. 6. PIMC simulations snapshot for ρ = 1 and d = 0.1 (T =
0.5). Red (light gray) and blue (dark gray) chains are the dipoles in
layers A and B.

blue (dark gray) dots, connected by lines, are the beads of the
discretized imaginary-time paths sampled in PIMC; each bead
is a particle at a discrete time step. For even lower d or lower
total densities we observe a clear decomposition into a droplet
and a low-density gas, as discussed in the next paragraph. A
large peak at k = 0 can therefore be seen as a zero-momentum
Bragg peak due to phase separation.

As final confirmation of the liquid nature of dipolar bilayers
with antiparallel polarization, we show the results of a PIMC
simulation without periodic boundary conditions. Since there
is no radial trapping potential, a two-dimensional gas would,
of course, spread out indefinitely. A liquid, on the other hand,
will coalesce into a droplet of finite density. For a droplet that is
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FIG. 7. Density profile ρ(r) for a self-bound droplet of 50 dipoles
in each layer. Inside the droplet the density is approximately constant,
with a value close to the equilibrium density ρeq of a bulk system at
zero pressure. The distance is d = 0.1, and the temperature was set to
T = 0.0625, which is low enough to prevent evaporation. The inset
shows a snapshot of the simulation, with red (light gray) and blue
(dark gray) indicating the dipoles in layers A and B, respectively, at
the imaginary time steps of the paths of PIMC.
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large enough that effects of surface line tension are negligible,
the density inside the droplet is given by the equilibrium
density ρeq, i.e., the density of a bulk system at zero pressure. In
Fig. 7 we show the radial density profile ρ(r) for 50 dipoles in
each layer separated by d = 0.1, where r is measured relative
to the center of mass. In order to prevent evaporation we set the

temperature to T = 0.0625. ρ(r) is approximately constant for
r � 4 and quickly falls to zero for larger r . This is the behavior
expected for the density profile of a self-bound liquid and very
different from the density profile of a quantum gas in a trap. As
discussed above and shown in Fig. 2, indeed, ρ(r = 0) ≈ ρeq

even for such a small droplet.
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A 76, 043604 (2007).
[30] E. Feenberg, Theory of Quantum Fluids (Academic, New York,

1969).
[31] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Academic, New York, 1976).
[32] E. Krotscheck, in Microscopic Quantum Many-Body Theories

and Their Applications, edited by J. Navarro and A. Polls,
Lecture Notes in Physics Vol. 510 (Springer, Berlin, 1998),
pp. 187–250.

[33] E. Krotscheck and M. Saarela, Phys. Rep. 232, 1 (1993).
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