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Spin squeezing of a dipolar Bose gas in a double-well potential
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The spin-squeezing dynamics of a quasi-one-dimensional dipolar Bose gas trapped in a double-well potential
is studied by employing the method of the multiconfigurational time-dependent Hartree for bosons. We find that
optimal squeezing generated by the dipolar interaction can be improved over the one-axis twisting limit, and
this squeezing is much stronger than that obtained by the contact interaction. Moreover, natural orbital-related
squeezing can be controlled by the direction of the dipole moment, which provides control for storing the optimal
spin squeezing. The origin of the squeezing as well as the relationship between spin squeezing and the two-order
correlation function are also discussed.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) trapped in an external
double-well potential have attracted much attention due to their
potential applications in quantum information and quantum
metrology [1–7]. This two-component BEC with the one-axis
twisting (OAT) interaction is a useful resource for preparing
spin-squeezed state [9–18]. Spin squeezing (SS) arising from
quantum correlation is widely used to study many-body
correlations and entanglement, as well as to improve the
precision of measurements [14]. The use of spin-squeezing
parameters as many-body entanglement witnesses has already
been discussed in Ref. [15]. Additionally, Kitagawa et al. [9]
and Wineland et al. [10] proposed using atomic squeezed states
in order to reduce quantum noise in interferometry to beat the
standard quantum limit.

Due to these applications, squeezed states in a double-
well BEC have been widely studied, both experimentally
[7,8] and theoretically [19–21]. However, in almost all the
theoretical works, bosons are assumed to reside in several
fixed orbitals, which captures the basic processes and physics
but ignores entirely the spatial evolution of the condensate
wave functions. It is well known that for weakly interacting
gases, the famous time-dependent Gross-Pitaevskii equation
(GPE) is a good description of the spatial evolution of
the condensate [18,22,23]. However, the mean-field theory
cannot describe the atom number fluctuation of the condensate
well. Thus, we cannot directly obtain the SS parameter
by using the GPE. Therefore, Cederbaum et al. developed
the multiconfigurational time-dependent Hartree for bosons
method (MCTDHB) [24,25], which allows us to describe both
the atom number and the spatial dynamics in a self-consistent
fashion. The MCTDHB(M) method describes the dynamics
of the many-body wave function by assuming that the bosons
can only occupy M orthonormal orbitals. Recently, according
to the MCTDHB theory, Grond et al. [4–6] successfully
developed and implemented an optimal quantum control
approach for BECs in a double-well potential. They simulated
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the splitting dynamics process [4,5] and they designed controls
for fast Mach-Zehnder interferometry operations [6] to obtain
the high parameter-estimation precision.

Up to now, studies of bosonic atoms trapped in a double-
well potential have focused mainly on s-wave contact interac-
tion. For ultracold, there also exists long-range dipole-dipole
interaction (DDI), which may have a significant effect on
the stability of the condensate [26] and generate a variety
of novel quantum phases [27–30] as well as translational
entanglement [31]. Furthermore, both the sign and the strength
of the effective dipolar interaction can be tuned via a fast
rotating orienting field [32–34]. A controllable interatomic
interaction beyond short-range isotropic character would
greatly enrich the available toolbox for quantum information
and quantum metrology. However, the powerful MCTDHB
theory, including the DDI, was seldom used in studying
the SS dynamics of bosonic atoms trapped in a double-well
potential.

In this paper, we apply the MCTDHB(2) to consider the
spatial dynamics in order to obtain a realistic description
of the SS dynamics induced by the two-body interaction.
In contrast with the usually considered two-mode model in
double-well BECs, here we eliminate the concept of left and
right orbitals. In addition, we demonstrate that the SS dynamics
between the atoms resided in the natural orbitals for the
system initially prepared in a coherent state. Essentially, this
squeezing is the macroscopic quantum correlation between
the ground and first excited states in the condensates. We
show that compared with the contact interaction, the dipolar
interaction can generate better squeezing. In addition, the
optimal values of this squeezing can be improved over
the OAT limit. Moreover, this enhanced squeezing can be
controlled by tuning the direction of the dipole moment, which
realizes the storage of the optimal squeezing. The significant
advantage of the DDI is this enhanced and controllable
squeezing.

The paper is organized as follows. In Sec. II, we give
the model of atoms trapped in a quasi-one-dimensional (1D)
double-well potential, and we briefly review the MCTDHB
theory as well as the spin-squeezing parameter. In Sec. III, we
investigate the SS dynamics due to the two-body interaction,
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and we compare the optimal squeezing generated by contact
interaction with the dipolar interaction. Finally, we discuss the
origin of the squeezing as well as the relationship between the
SS and the two-order correlation function.

II. FORMULATION

A. Model

We consider a system of N polarized (along the direction
d̂) bosonic dipoles trapped in a quasi-1D double-well poten-
tial. In second-quantized form, the many-body Hamiltonian
is

Ĥ =
∫

dx�̂†(x)ĥ�̂(x)

+ 1

2

∫
dx dx ′�̂†(x)�̂†(x ′)V (x − x ′)�̂(x ′)�̂(x), (1)

where �̂(x) is the field operator and ĥ = − �
2∂2

2m∂x2 + U (x) is
the single-particle Hamiltonian, with m being the mass of
the atom and U (x) being the trap. More specifically, we
assume that the trapping potential is a symmetric double well,
i.e.,

U (x) = 1
2mω2x2 + U0e

−x2/(2σ 2), (2)

where ω is the trap frequency, and U0 and σ are, respectively,
the height and width of the barrier. In three dimensions, the
two-body interaction is

V (3D)(r) = c0δ(r) + cd

1 − 3(d̂ · r̂)2

r3
, (3)

where the contact interaction strength is c0 = 4π�
2a0/m,

with a0 being the s-wave scattering length; the dipolar
interaction strength is cd = μ0d

2/(4π ), with μ0 being the
vacuum permeability and d the magnetic dipole moment; and
r̂ = r/r is a unit vector.

To obtain the effective 1D interaction potential, V (x − x ′),
in Hamiltonian (1), we assume that the transverse wave
function of all atoms is

φ⊥(y,z) = 1

q
√

π
e−(y2+z2)/(2q2), (4)

with q being the width of the Gaussian function. Without loss
of generality, we assume that the dipole moments lie on the xz

plane forming an angle α to the z axis, i.e.,

d̂ = (sin α,0, cos α). (5)

The effective 1D interaction potential can then be obtained by
integrating out the y and z variables as

V (x − x ′)

=
∫

dy dz dy ′dz′|φ⊥(y,z)|2V (3D)(r − r′)|φ⊥(y ′,z′)|2

= c0

2πq2
δ(x − x ′) + χαcd

q5

[
q|x − x ′|

−
√

π

2
(q2 + |x − x ′|2)e|x−x ′ |2/(2q2)erfc

( |x − x ′|√
2q

)]
,

(6)

where erfc(·) is the complementary error function and

χα = 1 − 3
2 sin2 α (7)

is an angle-dependent coefficient that makes the dipolar
interaction strength tunable. Clearly, the effective 1D dipolar
interaction vanishes at the magical angle αm � 54.7◦, and it is
repulsive (attractive) for α < αm (α > αm). Finally, we point
out that the contact interaction strength c0 is also tunable via
Feshbach resonance.

B. MCTDHB

To proceed, let us briefly outline the MCTDHB(2) ap-
proach. We assume that atoms can only reside in two orbitals,
{ψμ(x,t)}μ=1,2, which satisfy the orthonormal conditions∫

dx ψ∗
μ(x,t)ψν(x,t) = δμν . The field operator in Hamiltonian

(1) can then be expanded as �̂(x) = ∑
μ=1,2 bμ(t)ψμ(x,t),

where bμ(t) = ∫
dr ψ∗

μ(r,t)�̂(r) are the bosonic annihilation
operators. With this two-orbital assumption, the Hamiltonian
(1) can be written as

Ĥ =
∑

μ

hμμb†μbμ + 1

2

∑
μ,μ′,ν,ν ′

Vμμ′νν ′b†μb
†
μ′bνbν ′ , (8)

where hμμ = ∫
dx ψ∗

μ(x)ĥψμ(x), and

Vμμ′νν ′ =
∫

dx dx ′ψ∗
μ(x)ψ∗

μ′(x ′)V (x − x ′)ψν ′(x ′)ψν(x) (9)

is the interaction matrix elements.
Now, the wave function of the system takes the general

form

|�(t)〉 =
∑

n

Cn(t)|n,t〉, (10)

where Cn are the expansion coefficients and

|n〉 ≡ |n,N − n〉 = 1√
n!(N − n)!

(b†1)n(b†2)N−n|vac〉 (11)

are the basis states that preserve the total number of particles.
According to the MCTDHB theory, the expansion co-

efficients {Cn} and the orbitals {ψα} are determined self-
consistently through the variational principle [24,25]. Using
the Lagrangian formulation, it is found that the expansion
coefficients satisfy the equations

i�
∂Cn

∂t
=

∑
n′

〈n|Ĥ |n′〉Cn′ . (12)

The dynamic equations governing the orbitals are [24,25,30]

i�
∂ψ1

∂t
= [

ĥ + γ −1
11 W11(x) + γ −1

12 W21(x) − p11
]
ψ1

+ [
γ −1

11 W12(r) + γ −1
12 W22(x) − p12

]
ψ2, (13)

i�
∂ψ2

∂t
= [

ĥ + γ −1
21 W12(x) + γ −1

22 W22(x) − p22
]
ψ2

+ [
γ −1

21 W11(x) + γ −1
22 W21(x) − p21

]
ψ1, (14)

013606-2



SPIN SQUEEZING OF A DIPOLAR BOSE GAS IN A . . . PHYSICAL REVIEW A 93, 013606 (2016)

where

γαβ = 〈�|b̂†αb̂β |�〉 (15)

is the one-body density matrix, with γ −1 being the inverse of
γ ,

Wαβ(x) =
∑
α′β ′

�αα′ββ ′

∫
dx ′ψ∗

α′ (x ′)V (x − x ′)ψβ ′ (x ′), (16)

with

�αα′ββ ′ = 〈�|b̂†αb̂
†
α′ b̂β b̂β ′ |�〉 (17)

being the two-body density matrix, and

pσζ = hσζ +
∑
α,β

γ −1
σα

∫
dx ′ψ∗

ζ (x ′)Wαβ(x − x ′)ψβ(x). (18)

Then, the dynamical behavior of the system is completely
determined by the coupled Eqs. (12)–(14).

C. Spin-squeezing parameter

Similar to the two-mode system with fixed mode functions,
we define the pseudo-spin-operator J ≡ (Jx,Jy,Jz) based on
the time-dependent natural orbitals as Ĵi = 1

2

∑
αβ b̂†ασ

(i)
αβ b̂β ,

where σ (i) are the Pauli matrices. Now, a state is regarded
as squeezed if the variance of one spin component normal to
the mean spin vector 〈J〉 = 〈�(t)|J |�(t)〉 is lower than the
Heisenberg limited value. Mathematically, the SS parameter
is [9]

ξ 2 = 4(�Jn̂⊥ )2
min

N
, (19)

where (�Jn̂⊥ )min represents the minimal variance of the spin
component perpendicular to the mean spin direction n̂0 ≡
〈J〉/|〈J〉|. A state is spin-squeezed and entangled if ξ 2 < 1.
In addition, the smaller ξ 2 is, the stronger is the squeezing.

The squeezing parameter Eq. (19) can be evaluated explic-
itly [14]. Toward that end, we assume, without loss of gen-
erality, that n̂0 = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ), where ϑ =
tan−1 (

√〈Jx〉2 + 〈Jy〉2/〈Jz〉) and ϕ = tan−1 (〈Jy〉/〈Jx〉) are
polar and azimuthal angles, respectively. We then define two
mutually perpendicular unit vectors n̂1 = (− sin ϕ, cos ϕ,0)
and n̂2 = (cos ϑ cos ϕ, cos ϑ sin ϕ, − sin ϑ). Clearly, both n̂1

and n̂2 are perpendicular to n̂0 such that (n̂1,n̂2,n̂0) form
a right-hand frame. Now, the squeezing parameter can be
expressed as [14]

ξ 2 = 2

N

[〈
J 2

n̂1
+ J 2

n̂2

〉 −
√(〈

J 2
n̂1

− J 2
n̂2

〉)2 + (〈[
Jn̂1 ,Jn̂2

]
+
〉)2]

,

(20)

where [A,B]+ = AB + BA represents the anticommutator.
Moreover, for our model, it can be shown that

〈
J 2

n̂1

〉 = − 1
2

[
�

(r)
1122 cos(2ϕ) + �

(i)
1122 sin(2ϕ)

]
+ 1

4 (2�1212 + γ11 + γ22), (21)

〈
J 2

n̂2

〉 = 1
4

(
2�

(r)
1122 + 2�1212 + γ11 + γ22

)
sin2 ϑ cos2 ϕ

− 1
4

(
2�

(r)
1122 − 2�1212 − γ11 − γ22

)
cos2 ϑ sin2 ϕ

+ 1
4

(
�1111 + �2222 − 2�1212 + γ11 + γ22

)
sin2 ϑ

− 1
2

[
�

(r)
1112 + �

(i)
1112 − �

(r)
1222 − �

(i)
1222

]
sin(2ϑ) cos ϕ

+ 1
2�

(i)
1122 cos2 ϑ sin(2ϕ) (22)

and

〈[
Jn̂1 ,Jn̂2

]
+
〉 = −�

(r)
1122 sin(2ϕ) cos ϑ + �

(i)
1122 cos(2ϕ) cos ϑ

+ (
�

(r)
1112 − �

(r)
1222

)
sin ϕ sin ϑ

− (
�

(i)
1112 − �

(i)
1222

)
cos ϕ sin ϑ, (23)

where �
(r)
αα′ββ ′ and �

(i)
αα′ββ ′ represent, respectively, the real and

imaginary parts of �αα′ββ ′ .

III. SPIN SQUEEZING GENERATED BY
THE DIPOLE-DIPOLE INTERACTION

In this section, we study the dynamical generation of SS
in dipolar condensates trapped in a double-well potential. As
a concrete example, we consider a BEC of 162Dy atoms, for
which we have d = 9.9μB and a0 = 112aB , with μB and aB

the Bohr magneton and Bohr radius, respectively [35]. Numer-
ically, it is convenient to introduce the following dimensionless
units: �ω for energy, ω−1 for time, and � = [�/(mω)]1/2 for
length. To reduce the number of free parameters, we assume
that ω = (2π )10 Hz, q/� = 0.1, and σ/� = 2 throughout the
paper. Consequently, the system is completely characterized by
the following parameters: the particle number N , the scattering
length a0, the dipole moment of atoms d, and the direction of
the dipole moment α.

To see how the SS is generated by the interactions, the
initial state is prepared as the ground state of the double-well
potential with U0 = 15�ω in the absence of any interactions.
Namely, at t = 0 all the atoms condense into the symmetric
orbital ψ1 [see Fig. 1(a)], and the expansion coefficient CN is
unit.
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FIG. 1. Natural orbitals ψ1 and ψ2 at ωt = 0, 0.05, and 0.1 after
the contact interaction is turned on at t = 0. The red solid lines and
the blue dashed lines are, respectively, the real and imaginary parts of
ψ1 and ψ2. Other parameters are N = 500, α = 0◦, and U0 = 20�ω.
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ωt

ξ2

N−2/3

FIG. 2. Comparison of dynamical behaviors of the SS parameter
ξ 2 obtained with fixed orbits (blue solid line) and the MCT-
DHB(2) method (black empty circles). Here N = 500, α = 0◦, and
U0 = 20�ω.

A. Spin squeezing generated by the contact interaction

First we briefly review the SS dynamics of the generic
two-mode model, in which the time evolutions of the mode
functions are ignored. For initial symmetry and antisymmetry
orbitals [see Figs. 1(a) and 1(b)], we have V1111 = V2222 =
V1122 = V1212 = V1221 = κ and V1112 = V2221 = 0. Therefore,
Hamiltonian (8) is reduced to H = δ0Jz + 2κJ 2

x with δ0 =
h11 − h22 [2]. This corresponds to the widely studied OAT
interaction, for which the optimal squeezing value for this
mode is ∼N−2/3. However, in fact, as shown in Fig. 1, with
time increasing the orbitals have spatial evolution and can also
acquire additional phases. Therefore, assuming a priori fixed
orbitals is not a realistic description of the condensates. So we
should reexamine the SS induced by contact interaction in a
double-well potential with the MCTDHB method.

In Fig. 2, we compare the dynamical behaviors of the
squeezing parameter ξ 2 obtained by the generic two-mode
model with the MCTDHB(2) theory. As is shown, the
dynamical behaviors of ξ 2 obtained by these two methods do
not coincide with each other, either in the optimal squeezing
value or at the maximal-squeezing time. When performing
the MCTDHB(2), the value of the optimal squeezing is not
able to reach the OAT limit ∼N−2/3 as that obtained from the
generic two-mode model because of the spatial evolution of
the condensate wave functions.

Therefore, the widely studied OAT mode, which is derived
from fixed spatial wave functions, cannot exactly describe
the SS behaviors of the Bose gas trapped in a double-well
potential. In addition, the OAT squeezing limit cannot be
obtained by the contact interaction. To obtain high SS, we
should consider the long-range interaction.

B. Spin squeezing generated by the dipolar interaction

We now investigate the SS generated by the long-range
dipolar interaction and compare it with the contact interaction
using the MCTDHB(2) method. To give a visual comparison,
we first illustrate the squeezing process by calculating the
Husimi Q function [14],

Q(θ,φ) = |〈θ,φ|�(t)〉|2, (24)

FIG. 3. Husimi Q function of spin-squeezed states generated by
contact interaction (the top panel) and dipolar interaction (the bottom
panel) for various times: ωt = 0, 0.1, 0.2, and 0.4. At the beginning,
t = 0, the state is a CSS and thus the Q function is a circle. The
optimal squeezing angle rotates around the z axis with time. Here
α = 0◦, N = 100, and U0 = 20�ω.

which represents the quasiprobability distribution of �(t), and
|θ,φ〉 is the coherent spin state (CSS), with θ and φ the
polar and azimuthal angles. In Fig. 3, we show the Husimi
Q function of spin-squeezed states generated by the two-body
interaction on the Bloch sphere. The top and bottom panels,
respectively, correspond to the SS generated by the contact
and the dipolar interaction. As we can see, at t = 0 the initial
CSS is a circle given by the Husimi function, and, during
the evolution, the Husimi Q function becomes squeezed and
elliptical while the squeezing angle rotates. Comparing the two
panels in Fig. 3, we can see that the distribution corresponding
to the DDI is more elongated and narrower than that of the
contact interaction. This indicates that the long-range DDI can
generate better squeezing.

The dynamical evolution of the SS parameter ξ 2 for differ-
ent angle α is plotted in Fig. 4(a). It is shown that the optimal
squeezing generated by the dipolar interaction can be improved
over the OAT limit, which scales as ∼N−2/3. In addition, the
optimal squeezing points change with α. When α approaches
the magical angle αm, the maximal-squeezing time t∗ becomes
larger and larger. As considered in [32,33], if α = αm � 54.7◦,
the dipolar interaction averages to zero, and then at this angle
there is no dipolar interaction to induce SS. This means that the
angle-dependent squeezing provides the possibility to store the
optimal squeezing by making α = αm at maximal-squeezing
time t∗. Therefore, the enhanced and controllable squeezing
induced by DDI has significant advantages when compared
with that induced by contact interaction.

To check if the advantages of DDI remain valid for large
atom numbers N , we study the SS quantities with respect to
N in Fig. 4(b). It is clear that with the increase in the atom
number N , the optimal SS generated by the DDI will tend to a
steady value, which is worse than the OAT limit. However, the
optimal squeezing values are still better than that generated by
the contact interaction.

Next, we shall investigate the origin of the sub-shot-noise
limit SS. We first decompose the interaction Hamiltonian
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FIG. 4. (a) Dynamical evolution of the spin-squeezing parameter
ξ 2 for different angle α: α = 0◦ (blue dashed curve), α = 30◦ (black
solid curve), and α = 90◦ (red dashed-dotted curve). Compared with
the contact interaction (empty circles), the squeezing for the dipolar
interaction is much stronger. Here N = 300 and U0 = 20�ω. (b)
Optimal squeezing parameter as a function of atom number N , where
the black solid circles and the empty circles, respectively, present the
SS generated by the DDI and the contact interaction.

(8) into

H = H1 + H2 + H3, (25)

H1 = δJz + χJ 2
z , (26)

H2 = 1
2 (βJ+ + β∗J−), (27)

H3 = 1
2 (V1122J

2
+ + V ∗

1122J
2
−). (28)

Here H1 is the generalized OAT Hamiltonian with δ = h11 −
h22 + (V1111 − V2222)(N̂ − 1)/2 and χ = [V1111 + V2222 −
2(V1212 + V1221)]/2. This type of Hamiltonian has been widely
used to generate squeezing for the two-mode model, however
for our initial state (all atoms condensed into the first orbital
ψ1) it will not contribute squeezing for a short time. In addition,
H2 describes one-particle exchanges between the orbitals,
where β = (V1112 + V1222)N̂ + (V1112 − V1222)Jz with N̂ =
b
†
1b1 + b

†
2b2. The dynamic behaviors of V1122 and V1222 for

DDI and contact interaction are, respectively, displayed in
Figs. 5(c) and 5(d). As is shown in Fig. 6, the Hamiltonian
H2 also cannot directly induce squeezing for our initial state.

Therefore, the squeezing is mainly due to H3, which
is analogous to the two-axis twisting Hamiltonian [9] for
exchanging two particles between the two natural orbitals.
It is well known that the two-axis twisting scheme can provide
stronger squeezing than OAT. This can be used to explain the
enhanced squeezing illustrated in Fig. 4.

To demonstrate the effects of H3 on squeezing for both
the long-range DDI and short-range contact interaction, we
compare in Figs. 5(a) and 5(b) the values of the two-particle
exchange parameter V1122 for dipolar and contact interaction
with respect to time ωt . These figures show that both the
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FIG. 5. Parts (a) and (b), respectively, plot the two-particle
exchange parameter V1122 for dipolar and contact interaction as a
function of ωt . Parts (c) and (d), respectively, show the parameters
V1112 and V1222 for dipolar and contact interaction as a function of ωt .
In (a) and (b), the black solid (red dashed) curves represent the real
(imaginary) parts of V1122. In (c) and (d), the black solid (red dashed)
curves represent the real (imaginary) parts of V1122, and the blue
dot-dashed (green dotted) curves represent the real (imaginary) parts
of V1222. Other parameters are α = 0◦, N = 300, and U0 = 20�ω.

real and imaginary parts of V1122 oscillate with time. During
the time scale of maximal-squeezing time t∗, the value of
V1122 for dipolar interaction gradually changes. However, the
case for contact interaction [see Fig. 5(b)] illustrates periodic
oscillation, which results in the SS, ξ 2

H3
, generated by H3 being

worse than that obtained by DDI. In Fig. 6(b), we can see
that for DDI the optimal squeezing value of ξ 2

H3
is improved

over the OAT limit. Figure 6 also shows that the squeezing
values of both the contact interaction and DDI are mainly from
Hamiltonian H3, especially for a short time. However, as the
time increases, H1 and H2 will modify the optimal squeezing
values and maximal-squeezing time. For DDI, the effect of H1

and H2 will slightly increase the squeezing generated by H3,
but the case is completely different for contact interaction.
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FIG. 6. Dynamical behaviors of the SS parameter obtained by the
Hamiltonian H2, the Hamiltonian H3, and the total Hamiltonian H .
Parts (a) and (b), respectively, correspond to the SS generated by the
contact interaction and DDI. Here N = 300, α = 0◦, and U0 = 20�ω.
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FIG. 7. The second-order correlation function g(2) vs time ωt for
different angles. Parameters are the same as for Fig. 4(a).

C. Spin-squeezing and second-order correlation function

Notice that, in general, the squeezing obtained by the
MCTDHB approach has no direct correspondence with that
obtained by the usual two-mode model. This is because
MCTDHB, which relies on time-dependent orbitals, may also
capture a large class of excitations not included in a two-mode
model [5]. Therefore, it may be difficult to detect the squeezing
exactly through the widely used time-of-flight measurement.
However, there is a close relationship between the SS and the
second-order correlation function in our model.

Now we consider the second-order correlations between the
two atomic modes [36],

g(2) ≡ 〈b†1b1b
†
2b2〉

〈b†1b1〉〈b†2b2〉
= �1212

γ11γ22
, (29)

which describe the probability of detecting a particle in the
first excited state ψ2 with a given particle in the ground state
ψ1.

In Fig. 7, we plot the second-order correlation function g(2)

as a function of time ωt . Compared with Fig. 4(a), we can find
that g(2) and ξ 2 have almost the same changing trend, except
that the minimal values of g(2) have a little time delay. This
gives us a way to detect the SS indirectly.

IV. CONCLUSION

In summary, we have investigated the dynamical generation
of SS between the atoms in two natural orbitals by using
the MCTDHB(2) method. Compared with the usual two-
mode model, which ignores entirely the spatial evolution of
the condensate wave functions, the calculation based on the
MCTDHB is more reliable. We have shown that the squeezing
generated by the dipolar interaction can be better than the
OAT limit, and also much stronger than that obtained by the
contact interaction. In particular, we found that the enhanced
squeezing can be stored by adjusting the direction of the dipole
moment. To explain the enhanced squeezing, we investigated
the origin of the squeezing. It is found that enhanced squeezing
is mainly due to the two-particle exchanging interaction,
which is analogous to the two-axis twisting scheme and has
advantages for generating SS. Finally, we demonstrated the
close relationship between the squeezing and the second-order
correlation function, which may provide an indirect way to
detect the squeezing.
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[20] B. Juliá-Dı́az, T. Zibold, M. K. Oberthaler, M. Melé-Messeguer,
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