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Superballistic center-of-mass motion in one-dimensional attractive Bose gases:
Decoherence-induced Gaussian random walks in velocity space
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We show that the spreading of the center-of-mass density of ultracold attractively interacting bosons can
become superballistic in the presence of decoherence, via one-, two-, and/or three-body losses. In the limit of
weak decoherence, we analytically solve the numerical model introduced in Weiss et al. [Phys. Rev. A 91, 063616
(2015)]. The analytical predictions allow us to identify experimentally accessible parameter regimes for which
we predict superballistic spreading of the center-of-mass density. Ultracold attractive Bose gases form weakly
bound molecules, quantum matter-wave bright solitons. Our computer simulations combine ideas from classical
field methods (“truncated Wigner”) and piecewise deterministic stochastic processes. While the truncated Wigner
approach to use an average over classical paths as a substitute for a quantum superposition is often an uncontrolled
approximation, here it predicts the exact root-mean-square width when modeling an expanding Gaussian wave
packet. In the superballistic regime, the leading order of the spreading of the center-of-mass density can thus be
modeled as a quantum superposition of classical Gaussian random walks in velocity space.
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I. INTRODUCTION

Superballistic motion (motion with increasing velocities)
has been investigated in the context of random walks with
random velocities [1], driven magnetic turbulence [2], atom-
photon interactions in cavity QED [3], and nonergodic
noise [4]. In quantum systems, time-dependent random po-
tentials have been demonstrated to cause superballistic trans-
port [5]. Superballistic transport was predicted theoretically
in the dynamics of wave-packet spreading in a tight-binding
lattice junction [6,7] and observed experimentally in a hybrid
photonic lattice setup [8]. For a relativistic kicked-rotor
system, superballistic transport occurs in both the classical
and the quantum regime [9].

The present paper provides an analytical solution of the
numerical model for the spreading of the center-of-mass
density of a quantum bright soliton under the influence of
decoherence via particle losses introduced in Ref. [10]. The
analytic approach presented here is valid in the limit that
few particles (compared to the total number of particles) are
lost. We use this approach to identify experimentally realistic
parameters for which we predict that superballistic spreading
of the center-of-mass density can be observed experimentally.

Bright solitons can be experimentally generated from
attractively interacting ultracold atomic gases [11–19]; on
the mean-field level, via the Gross-Pitaevskii equation (GPE),
these matter-wave bright solitons are nonspreading solutions
of a nonlinear equation [20–29]. Many-particle quantum
descriptions of solitons can be found in Refs. [30–41].

Beyond enabling us to predict parameters of superballistic
spreading of the center-of-mass density, the analytical solution
presented in the present paper of our numerical model [10]
also allows us to quantitatively predict the time scale on which
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the transition from short-time diffusive to long-time ballistic
behavior observed numerically in Ref. [10] takes place.1 This
behavior is the opposite of free Brownian motion [43–46]
(cf. [47,48]), which exhibits the generic short-time-scale
ballistic and long-time-scale diffusive behavior; for anomalous
Brownian motion, see [49]. Our model is complementary to
previous research both on quantum Brownian motion [43,50]
and anomalous diffusion [51] as well as quantum random
walks with or without decoherence [52–54].

The paper is organized as follows. Section II introduces
models to describe the spreading of the center-of-mass density
of bright solitons in attractively interacting Bose gases in the
absence of decoherence. In Sec. III we extend the model for
decoherence-induced spreading of the center-of-mass density
of Ref. [10] to include one- and two-particle losses in addition
to the dominant three-particle losses. The agreement between
analytical and numerical calculations is demonstrated in
Sec. IV. For experimentally accessible parameters (for both
7Li and 85Rb) we predict superballistic spreading of the
center-of-mass density analytically and observe it numerically.
The paper ends with conclusions and outlook in Sec. V.

II. MODELING SPREADING OF THE CENTER-OF-MASS
DENSITY IN THE ABSENCE OF DECOHERENCE

A. Overview of Sec. II

As in Ref. [10], we consider the physical situation that the
ultracold attractively interacting Bose gas moves in a quasi-
one-dimensional waveguide. An initial weak harmonic trap in
the direction of the waveguide is switched off at t = 0. For the
definition of “weak” we start with the mean-field description

1Models that behave either ballistically or diffusively depending on
the choice of parameters can be found in Ref. [42].
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of matter-wave bright solitons (Sec. II B). While the center-
of-mass wave function of a quantum bright soliton spreads
(Sec. II C), this does not affect the particle density measured
in a single measurement (Sec. II D). The truncated Wigner
approximation is particularly suitable to model the spreading
of a Gaussian wave packet as it agrees with the exact result
(Sec. II E).

B. Mean-field approach via the Gross-Pitaevskii equation

Often, important aspects of bright solitons can be under-
stood by the one-dimensional GPE [20]

i�
∂

∂t
ϕ = − �

2

2m

∂2

∂x2
ϕ + mω2x2

2
ϕ + g1D(N − 1)|ϕ|2ϕ, (1)

where m is the mass of the particles and ω the angular
frequency of the harmonic trap. The (attractive) interaction

g1D = 2�ω⊥a < 0 (2)

is proportional to the s-wave scattering length a and the
perpendicular angular trapping-frequency, ω⊥ [55].

For attractive interactions (g1D < 0) and weak harmonic
trapping, Eq. (1) has bright-soliton solutions with single-
particle densities � ≡ |ϕ|2 [20],

�(x) = 1

4ξN {cosh[x/(2ξN )]}2
, (3)

where the soliton length is given by2

ξN ≡ �
2

m|g1D|(N − 1)
. (4)

If we open a sufficiently weak, that is ξN � √
�/(mω),

initial harmonic trap at t = 0, this does not lead to excited
atoms as long as the length scale of the trap is large compared
to the soliton length. This has been shown on the mean-field
level in Ref. [59] (for a many-particle version; cf. Ref. [60]).
On the GPE level, opening a sufficiently weak trap does not
lead to any dynamics at all, not even for the center of mass.

C. Spreading of the center-of-mass density
of quantum bright solitons

Without a trapping potential in the x direction, the direction
of the waveguide, physically realistic N -particle models are
translationally invariant in the x direction (y and z directions
are harmonically trapped). In such models, the center-of-mass
eigenfunctions in the direction of the waveguide are plane
waves and the center-of-mass dynamics resembles that of a
heavy single particle. Thus, the center-of-mass dynamics are
described by the Hamiltonian

Ĥ = − �
2

2Nm

∂2

∂X2
, (5)

2This result coincides [56,57] with the soliton size derived from the
Lieb-Liniger model [58] with attractive interactions, Appendix A.

where the center-of-mass coordinate is given by the average
of the positions of all N particles,

X = 1

N

N∑
j=1

xj . (6)

Even in the presence of a harmonic potential, the dynamics of
the center of mass of an interacting gas are independent of the
interactions, giving rise to the so-called “Kohn mode” [61].

If we now open the sufficiently weak initial trap described
at the end of the previous section [10], this does not affect the
internal degrees of freedom of our many-particle bright soliton.
The initial center-of-mass wave function is independent of
both the interactions and the approximate modeling of these
interactions; its time dependence is given by [62]

�(X,t) ∝
(

1 + i
�t

2M�X2
0

)−1/2

× exp

{
−X2 − i2�X2

0MV0[X − V0t]/�

4�X2
0

[
1 + i�t/

(
2M�X2

0

)] }
,

(7)

where X is the center-of-mass coordinate (6), M = Nm, and
V0 is the initial velocity. This leads to a root-mean-square (rms)
width of [62]

�X = �X0

√
1 +

(
�t

2M�X2
0

)2

. (8)

D. Single-particle density in the absence of decoherence

Although the center-of-mass wave function (7) spreads
according to Eq. (8), a single measurement of the atomic
density via scattering light off the soliton (cf. [11]) still yields
the density profile of the soliton (3), expected both on the
mean-field (GPE) level and on the N -particle quantum level for
vanishing width of the center-of-mass wave function [56,57].
Taking into account harmonic trapping perpendicular to the x

axis, one obtains the density [11]

�(x,y,z) = N

4ξN {cosh[x/(2ξN )]}2

1

λ2
⊥π

exp

(
−y2 + z2

λ2
⊥

)
,

(9)
where

λ⊥ ≡
√

�

mω⊥
(10)

is the perpendicular harmonic oscillator length; the soliton
length ξN is given by Eq. (4).

E. Truncated Wigner approximation for the spreading
of the center-of-mass density

Between loss events, the quantum dynamics is known
analytically [Eq. (7)]. Instead of solving the Schrödinger
equation, we use a classical field approach [10]: the truncated
Wigner approximation (TWA)3 for the center of mass, which

3The truncated-Wigner approximation [63] describes quantum
systems by averaging over realizations of an appropriate classical
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has been used in Ref. [37] to qualitatively emulate quantum
behavior on the mean-field level by introducing classical noise
mimicking the quantum uncertainties in both position and
momentum of the center of mass. For an expanding Gaussian
wave packet, the agreement of TWA for the center of mass
with full quantum predictions is even quantitative [10]. Both
the mean position and the variance calculated via the TWA
for the center of mass are identical to the quantum mechanical
result. In order to make both results identical, Gaussian noise
has to be added independently to both position X0 → X =
X0 + δX0 and velocity V0 → V = V0 + δV0, with 〈δX0〉 = 0
and 〈δV0〉 = 0 and rms fluctuations σX = �X0. The rms for
the velocity is given by the minimal uncertainty relation

σV = �

2MσX

. (11)

The mean position x(t) = X0 + V0t is thus identical to
the quantum mechanical result; the rms fluctuations �x =√

(�X0)2 + (�V0)2t2 coincide with the quantum mechanical
equation (8). Thus, in the absence of both the trap in the axial
direction and the scattering processes investigated in Ref. [37],
the TWA for the center of mass gives exact results for both the
position of the center of mass and the rms fluctuations of the
center of mass for a quantum bright soliton.

To summarize this section: As long as there are no quantum
interferences, the treatment gives the exact rms fluctuations of
the center-of-mass position [10].

III. DECOHERENCE VIA ONE-, TWO-, AND
THREE-PARTICLE LOSSES

A. Overview of Sec. III

We numerically model atom losses (Sec. III B) via
a stochastic approach using piecewise deterministic pro-
cesses [65]. For a stochastic implementation of such an
approach to decoherence, see [66–68]; for recent modeling
of open quantum systems in the field of cold atoms, see, for
example, Ref. [69] and references therein. Surprisingly [10],
a classical approach (Sec. III C) can be used to describe the
quantum mechanical spreading of the center-of-mass wave
function (cf. Sec. II E).

B. Particle losses

In order to model n-particle losses we use density-
dependent rate equations [70]

dN

dt
= −Kn

∫
d3r�n(x,y,z), (12)

where Kn is determined empirically and �n(x,y,z) is given by
Eq. (9).

For three-particle losses, n = 3, we have

dN

dt
= − 1

90π2
K3

N3

ξ 2
Nλ4

⊥
= − 1

t3
(N − 1)2N3, (13)

field equation (in this case, the GPE) with initial noise appropriate to
either finite [64] or zero temperatures [10,24,37].

with

t3 ≡ 90π2
�

4λ4
⊥

m2g2
1DK3

; (14)

we find, for large N [10]

N (t) 
 N0

(
1 + 4N4

0
t

t3

)−1/4

. (15)

For two-particle losses, n = 2, we have

dN

dt
= − 1

12π
K2

N2

ξNλ2 = − 1

t2
(N − 1)N2, (16)

with

t2 ≡ 12π�
2λ2

⊥
m|g1D|K2

, (17)

for which we obtain [71]

N (t) 
 N0

(
1 + 2N2

0
t

t2

)−1/2

. (18)

For one-particle losses, n = 1, we have

dN

dt
= −N

t1
, (19)

with t1 = 1/K1 and, thus,

N (t) = N0 exp

(
− t

t1

)
. (20)

Combining all three loss-mechanisms together in one
analytical formula is also possible. However, it is of the form
“time as a function of N , t = t(N ),” rather than the more usual
other way around,

dt 
 − dN

N
t1

+ N3

t2
+ N5

t3

, (21)

and, thus [71],

t(N ) ≡F (N ) − F (N0); (22)

F (N ) 
 − t1 ln(N ) + 1

4
t1 ln(N4t1 t2 + N2t1 t3 + t3 t2)

+
1
2 t3 t1

2 arctan
(

2 N2t1 t2+t1 t3√
−t12t32+4 t3 t22t1

)
√

−t12t32 + 4 t3 t22t1
. (23)

A very important time scale is the time in which, on average,
one loss event takes place. This time scale,

〈δt〉 =
(

N

t1
+ N3

2t2
+ N5

3t3

)−1

, (24)

plays an important role in the analytical treatment in Sec. IV B.

C. Classical master equation approach

Our stochastic model for the description of the spreading
of the center-of-mass density under the influence of n-particle
losses (n = 1,2,3) can be formulated in terms of a classical
master equation for the time-dependent probability distribution
P (X,V,N,t), representing the probability density to find at
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time t the center-of-mass coordinate X, the corresponding
velocity V , and the particle number N . Assuming that the
various loss events are independent and that the stochastic
process (X,V,N ) is Markovian, one obtains the following
master equation

∂

∂t
P (X,V,N,t)

= −V
∂

∂X
P (X,V,N,t) +

3∑
n=1

∫
dX′

×
∫

dV ′[W (n)
N+n(X,V |X′,V ′)P (X′,V ′,N + n,t)

− W
(n)
N (X′,V ′|X,V )P (X,V,N,t)

]
. (25)

This is a Markovian master equation for a piecewise deter-
ministic process [68]. The first term on the right-hand side
represents the deterministic evolution periods of the center
of mass X with velocity V . The deterministic motion is
interrupted by random and instantaneous jumps describing
n-particles losses, which is described by the second term on
the right-hand side. The transition rate (probability per unit of
time) for a jump X → X′, V → V ′, N → N − n is explicitly
given by the expression

W
(n)
N (X′,V ′|X,V ) = 


(n)
N

√
1

2πσ 2
X(N )

e
− (X−X′)2

2σ2
X

(N)

×
√

1

2πσ 2
V (N )

e
− (V −V ′ )2

2σ2
V

(N) , (26)

where



(n)
N = N2n−1

ntn
, n = 1,2,3. (27)

As before [10], σV (N ) and σX(N ) are related via the
uncertainty relation

σV (N ) = �

2(N − n)mσX(N )
. (28)

While the precise value of σ 2
X(N ) remains a fit parameter for

future experiments (or a goal for modeling with a microscopic
model for particle losses), we again choose the rms width of a
mean-field soliton as the characteristic length scale [10]

σX(N ) ≡ πξN−n√
3

. (29)

IV. RESULTS

A. Overview of Sec. IV

In Sec. IV B the analytic solution of the model [10] we
use to describe the spreading of the center-of-mass density is
independent of which type of decoherence via particle losses
is implemented. The solution is valid as long as the particle
losses are small compared to the total number of particles.
Surprisingly, the leading order of the spreading of the center-
of-mass density is superballistic; that is, the rms fluctuations
of the center-of-mass density scale faster than the ballistic

prediction

�X ∝ t ; (30)

the superballistic spreading scales as

�X ∝ t3/2. (31)

In the following sections we show that the numerics agrees
with our analytical prediction and identify parameters for
which superballistic motion can be observed experimentally.

B. Analytical results, including characteristic time scales

In the limit of weak decoherence, the average time per
decoherence event remains roughly constant (rather than
increasing with the number of loss events). Solving the master
equation introduced in Sec. III C analytically (Appendix B)
yields

(�X)2(t) ≈ σ 2
X

〈δt〉 t + 1

3

σ 2
V

〈δt〉 t
3. (32)

Equation (32) predicts a superballistic spreading of the center-
of-mass density of a quantum bright soliton under the influence
of decoherence via particle losses, as long as not too many
particles have been lost. In the following sections, we show that
this prediction qualitatively describes the numerics in many
parameter regimes: We even find parameters for which the
superballistic spreading of the center-of-mass density could
be observed in state-of-the-art experiments already on short
time scales.

The point in time where two contributions in Eq. (32) are
equal defines a characteristic time scale. Together with the
definitions at the end of Sec. III C, it reads

t∗ ≡
√

2π2
�

3

√
3mg2

1DN
. (33)

Surprisingly, this time scale is independent of the time step
(strength of decoherence) as long as decoherence is weak and
is independent of how many particles are lost in one step.

Using Eq. (2), Eq. (33) can be rewritten to yield

t∗ =
√

6π2
�

12mω2
⊥Na2

. (34)

For 7Li and the experimental parameters of [11]4 we have

t∗Li 
 3.4

N/6000
s. (35)

4For 7Li, the set of parameters used is given in Ref. [11] for the
s-wave scattering length a = −0.21 × 10−9 m, ω⊥ = 2π × 710 Hz.
For this s-wave scattering length we furthermore divide the calculated
value [72] for the thermal K3 of 3.6 × 10−41 m6/s by the factor 3! = 6
for Bose-Einstein condensates and (thus also bright solitons). As we
are dealing with ground-state atoms, K2 = 0 here.
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For 85Rb and the experimental parameters of [14]5 we find

t∗Rb 
 25

N/6000
s. (36)

While we do have

t∗Rb > t∗Li (37)

for the two parameter sets given in footnotes 4 and 5, there
is no principle reason that the time scale (34) has to be larger
for Rb-bright solitons than for Li-bright solitons in all future
experiments. The vertical trapping frequencies are always
likely to be smaller for the heavier Rb atoms as mω2x2 scales
with the laser intensity used for optical confinement. However,
mω2 is what enters into the equation for the characteristic
time (34). In the following sections we thus also identify
different, experimentally accessible parameter sets for which
the characteristic time scale is considerably shorter.

Including the higher-order terms coming from the initial
state (cf. Appendix B ), Eq. (32) becomes (for not too large
times)

(�X)2(t) 
 σ 2
X,0 + σ 2

X

〈δt〉 t + σ 2
V,0t

2 + 1

3

σ 2
V

〈δt〉 t
3. (38)

C. Bright solitons in 7Li

As the comparison of the relevant time scales (37) suggests
Li as the more suitable candidate, we start with Li; Rb follows
in Sec. IV D.

In order to show the validity of the analytical approach,
we initially focus on single-particle losses (Fig. 1). For the
parameters of the experiment of Ref. [11] (see footnote 4 but
without three-particle losses), the analytical approach works
very well even without the initial velocity. For the parameters
used in Fig. 1 the initial velocity only plays an important
role for idealized small values for single-particle losses.6

Superballistic behavior is particularly well visible for less
perfect vacuum.

In Fig. 2 we focus on the dominant three-particle losses as
done in Ref. [10]; the initial velocity again only plays a role
for some of the parameters. Superballistic spreading of the
center-of-mass density is well visible in the analytical curves
but only barely visible in the numerics. This clearly indicates
that our assumption that the loss rate is constant is not fulfilled.
Nevertheless, the analytical equations provide a qualitative
understanding for the dynamics.

Unfortunately, superballistic behavior starts rather late.
In order to change this, we propose to use the parameters

5For 85Rb, the set of parameters used is given in Ref. [14] for the s-
wave scattering length a = −11a0 = −0.58 × 10−9 m, ω⊥ = 2π ×
27 Hz. For three body-losses, we have K3 ≈ 5 × 10−27 cm6/s = 5 ×
10−39 m6/s and K2 ≈ 3 × 10−14 cm3/s = 3 × 10−20 m3/s [73]. As
described in footnote 4, for bright solitons we have to divide K3 by
3! and additionally have to divide K2 by 2!.

6In the Appendix in Fig. 7 we show that including the initial velocity
into the analytical equation considerably increases the agreement
between our analytical approach and the numerics.

FIG. 1. Li-bright soliton under the influence of single-particle
losses [parameters as in footnote 4 but with K3 = 0 and N (0) =
6000]. (a) Particle number N (t) (thin curves) and N (0) − N (t) (thick
curves). Thick blue (black) dashed curves correspond to a moderate
vacuum with single-particle losses given by t1 = 20 s (b); wide brown
(black) short dashed curves an excellent vacuum t1 = 200 s (c); wide
dark green (black) short dashed curves, t1 = 2000 s (d); wide red
(black) solid curves, t1 = 10 000 s (e). Thin light blue (gray) solid
curves, analytical formula (32). As guides for the eye we added the
magenta (dark gray) dash-dotted curves (∝√

t) and the green (light
gray) dotted curves (∝t). Data files are available online [74].

suggested in Ref. [75].7 If the value of the initial trap has a
harmonic oscillator length

√
�/(mω) that is 10 larger than the

7For 7Li and N ≈ 100, the set of parameters used is given in
Ref. [75] for the s-wave scattering length a = −1.72 × 10−9 m,
ω⊥ = 2π × 4800 Hz. For K3 and K2 we use the parameters given
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FIG. 2. Root-mean-square fluctuation of the spreading of the
center-of-mass density of a Li-bright soliton as a function of time.
Thick curves, numerical data from Fig. 3 of Ref. [10]; the agreement is
good for not too large times. Light blue (dark gray) curves, analytical
formula (38). Superballistic spreading of the center-of-mass density
is barely visible in the numerics and by far not as strong as predicted
by the analytical approach. Data files are available online [74].

soliton length ξN (the value used in all other figures), Fig. 3 pri-
marily shows ballistic spreading of the center-of-mass density.
However, as predicted by the analytical approach (38), using
an initial trap for which the harmonic oscillator length is 25
soliton lengths, superballistic spreading of the center-of-mass
density becomes clearly visible already at short time scales.

D. Bright solitons in 85Rb

Let us start by comparing the time scales for Li- and Rb-
bright solitons using the parameters in footnotes 4 and 5, based
on the experiments of Refs. [11] and [14], Eqs. (35) and (36).
Figure 4 confirms that Rb-bright solitons are less useful to in-
vestigate superballistic spreading of the center-of-mass density
than Li-bright solitons if one uses the experimental parameters
of Refs. [11] and [14]: Even if we chose an excellent vacuum,
superballistic spreading of the center-of-mass density is not
observable as too many particles are lost already.

However, even without changing the experimental param-
eters in future Rb experiments as suggested in the lines below
Eq. (37), performing such experiments can be very useful.
Contrary to the case of Li, both two-particle and three-particle
losses are present for Rb. If we assume that the values given
in footnote 5 have an error of a factor of 5, this leads to
quite distinct curves for the number of atoms as a function
of time (Fig. 5). Contrary to the experiment of Ref. [73] for
which two-particle losses are the dominant loss process, for the
bright solitons investigated experimentally in [14] both loss
rates are initially comparable. The effects of single-particle
losses would have to be included only for a very much smaller
error margin.

in footnote 4; for practical purposes and the moderate vacuum used
in Fig. 3 we could have set K3 = 0 (in addition to setting K2 = 0).

FIG. 3. Superballistic spreading of the center-of-mass density
for 7Li using the parameters of footnote 7 with N (0) = 100 and a
moderate vacuum with t1 = 20 s. (a) Root-mean-square fluctuations
of the center-of-mass as a function of time. Thick brown (black)
dashed curve, computer simulation if the initial harmonic oscillator
length is 10 soliton lengths. Thick red/black solid curve, weaker
initial trap (factor 2.5 greater harmonic oscillator length) leads
to clearly visible superballistic spreading of the center-of-mass
density starting earlier. Light blue/light gray dashed and solid curves,
corresponding analytical curves (38). As guides for the eye we added
the green (light gray) dotted curve (∝t) and the black dash-dotted
curve (∝t3/2). (b) Two-dimensional projection of the single-particle
density (which is the convolution of the center-of-mass density
and the soliton width) as a function of both time and position.
This quantity is experimentally accessible by averaging over the
positions of all particles; however, it is insightful to plot it differently:
by normalizing the maximum to one for each time shown (c).
Plotting the variance as a function of time squared shows again
that the spreading occurs faster than ballistically (which would be
parallel to the main diagonal in this panel). Data files are available
online [74].
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FIG. 4. Rb-bright solitons under the influence of three-, two-, and
one-particle losses. Most parameters used can be found in footnote
5, additionally a very good vacuum with t1 = 200 s was chosen.
(Top) Red (black) dashed curves correspond to N0 = 4000, blue
(black) solid curves correspond to N0 = 3000. Thin curves: N (t);
thick curves: N0 − N (t). (Bottom) Root-mean-square fluctuations of
the center-of-mass position. Red (black) dashed curves correspond
to N0 = 4000, blue (black) solid curves correspond to N0 = 3000.
Light blue (light gray) solid curves: analytical curves that assume the
time 〈δt〉 for one loss event remains constant [Eq. (38)]. As guides to
the eye for ballistic motion a curve ∝t [green (light gray) dotted line]
and a curve ∝t3/2 for superballistic motion (black dash-dotted line)
have been added. Data files are available online [74].

FIG. 5. Number of atoms in a Rb-bright solitons under the
influence of three-, two-, and one-particle losses for N = 3000 and
the parameters given in footnote 5. Thick magenta (dark gray) line,
parameters as in footnote 5; thin black lines, an error of a factor of
5 was added to the loss parameters; green (light gray) lines, also
includes single-particle losses with t1 = 200 s. All data generated
with analytical equations [71] [cf. Eqs. (21) and (22)]; the numerical
data from Fig. 4 lies on top of the corresponding green curve in this
figure [which, in turn, is partially identical to the thick magenta (dark
gray) curve]. Data files are available online [74].

FIG. 6. Superballistic spreading of the center-of-mass density in
85Rb-bright solitons. The parameters are the same as in footnote
5 except for ω⊥ = 2π × 0.972 kHz, the particle number is lower
than in all other plots (N = 20) and the vacuum is nearly perfect
(t1 = 2000 s). As for nearly all other curves, the initial trap is a factor
of 10 larger than the soliton length. While the numerics [thick red
(black) curve] does not reach the ∝t3/2 behavior (black dash-dotted
curve), predicted by the analytical approach [light blue (light gray)
solid line; Eq. (38)] it does grow faster than ∝t [green (light gray)
dotted line]. Data files are available online [74].

If, on the other hand, we go the path of changing the
parameters in the Rb experiments [14,18], one approach
would be to choose deep optical lattices perpendicular to the
quasi-one-dimensional waveguide which would allow trapping
frequencies in the kHz regime. Implementing optical lattices
might even provide the possibility of having many tubes in
which a very similar experiment is performed, thus allowing
to average over different realizations of the spreading of the
center-of-mass density in a single experiment.

For Fig. 6, we use the parameters of footnote 5 except
for ω⊥ = 2π × 0.972 kHz. This increase of the trapping
frequency by a factor of 36 reduces the perpendicular harmonic
oscillator length only by a factor of 6 while reducing the
soliton length (4) via Eq. (2) by a factor of 36 (if N

remains of the order of 6000 atoms). While this endangers the
one-dimensional character of our waveguide, this can easily
be compensated by reducing the particle numbers. We thus
reduce the particle number. When doing this, we also have to
ensure that 10 × t∗/〈δt〉 � N0 is fulfilled (to be in the regime
of weak decoherence even after superballistic spreading of the
center-of-mass density has set in); thus we have to fulfill [cf.
Eqs. (14), (17), (33), and (24)]

10t∗
(

1

t1
+ N2

2t2
+ N4

3t3

)
� 1. (39)

The fact that three-body losses are larger for Rb than for Li
(see footnotes 4 and 5) requires low particle numbers to make
the second and third term small, as t∗ ∝ 1

N
; the first term

then requires nearly perfect vacuum. As a proof of principle,
Fig. 6 displays superballistic spreading of the center-of-mass
density for a Rb-bright soliton. However, contrary to what
we suspected in Ref. [10], it is not the heavier mass of Rb
that makes it less useful for experimental realizations; the
analytic treatment leading to Eq. (39) shows that it is rather
the higher loss rates. While the time scale in Fig. 6 could

013605-7



WEISS, CORNISH, GARDINER, AND BREUER PHYSICAL REVIEW A 93, 013605 (2016)

easily be reduced by choosing higher particle numbers, two-
and three-particle losses would then prevent us from observing
superballistic spreading of the center-of-mass density in both
computer simulations and experiments.

V. CONCLUSION AND OUTLOOK

To conclude, the main results of our paper treating
attractively interacting Bosons in a quasi-one-dimensional
waveguide with an additional initial weak harmonic trap are
as follows.

(1) We present an analytical solution for the numerical
model of the spreading of the center-of-mass density intro-
duced in Ref. [10] under the influence of decoherence via
one-, two-, or three-body losses.

(2) For stronger decoherence, the analytical model still
qualitatively describes the transition from short-time diffusive
to long-time ballistic behavior investigated numerically in
Ref. [10] (Figs. 2 and 4).

(3) The analytical solutions predict center-of-mass rms
fluctuations as a function of time that scales as ∝t3/2; in the
numerics the scaling is slower but still considerably faster than
the ballistic (∝t) regime (Figs. 3 and 6).

(4) For 85Rb, measuring the decay of the number of
particles could furthermore help narrowing down the error
margins for two- and three-particle losses (Fig. 5).

For many aspects of the spreading of the center-of-mass
density 7Li-bright solitons are more suitable as, in particular,
the time scale for particle losses is longer. Our model differs
considerably from the noise-driven motion of Ref. [76] and
other systems used to investigate superballistic motion (see [9]
and references therein): The decoherence-induced spreading
of the center-of-mass density of quantum bright solitons
described via the numerical model of Ref. [10] can be viewed
as a mesoscopic signature of microscopic quantum physics.
The analytic solution presented here allowed us to predict and
subsequently numerically observe superballistic motion.

Decoherence via particle losses is also likely to affect
predictions beyond the center-of-mass motion. Unless one
uses the approach of Ref. [75] to focus on experiments
with time scales shorter than the first decoherence event,
theoretical predictions for bright solitons are likely to change
if decoherence via particle losses is included.

Topics for which this might play a role include interfer-
ometric applications [26,28,77] and modeling the collisions
of two bright solitons observed recently in the experiment
of Ref. [17] (cf. [78]), in particular as soon as beyond-mean
field quantum effects play a role [79] in these collisions. The
long-time behavior of bright solitons after scattering from a
barrier, investigated experimentally for a large repulsive barrier
in Ref. [14] and for a narrow attractive barrier in Ref. [18], are
likely to be affected.8

The model introduced in Ref. [10] and solved analytically in
the current paper is based on the unique properties of quantum
bright solitons. Developing a similar model valid for repulsive

8The barriers used, for example, in Refs. [14,18] were made with a
laser focus. For more complex structures written with light that could
be used for experiments with ultracold atoms, see Ref. [80].

interactions is an interesting question for future research. The
data presented in this paper are available online via Ref. [74].
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APPENDIX A: LIEB-LINGER MODEL WITH
ATTRACTIVE INTERACTIONS

For attractively interacting atoms (g1D < 0) in one dimen-
sion, the Lieb-Liniger-(McGuire) Hamiltonian [58,81] is a
very useful model,

Ĥ = −
N∑

j=1

�
2

2m

∂2

∂x2
j

+
N−1∑
j=1

N∑
n=j+1

g1Dδ(xj − xn); (A1)

xj denotes the position of particle j of mass m. For this
model, even the (internal) ground-state wave function is known
analytically. Including the center-of-mass momentum K , the
corresponding eigenfunctions relevant for our dynamics read
(cf. [57])

�(x1,x2, . . . ,xN ) ∝ eiKX exp

⎛⎝−m|g1D|
2�2

∑
j<ν

|xj − xν |
⎞⎠;

(A2)
the center-of-mass coordinate is given by Eq. (6). If the
center-of-mass wave function is a δ function and the particle
number is N � 1, then the single-particle density can be
shown [56,57] to be equivalent to the mean-field result (3).
Thus, the Lieb-Liniger model is a one-dimensional many-
particle quantum model that can be used to justify the approach
to treat a quantum bright soliton like a mean-field soliton with
additional center-of-mass motion after opening a weak initial
trap. In the limit N → ∞, g1D → 0 such that Ng1D = const,
the initial width of the center-of-mass wave function goes to
zero, �X0 ∝ 1/

√
N .

APPENDIX B: DERIVING THE ANALYTIC RESULTS

In order to derive an analytical expression for the variance of
the position of the center of mass X, we use the approximation
of a constant particle number N . The master equation (25) can
then be written in the simpler form,

∂

∂t
P (X,V,t) = −V

∂

∂X
P (X,V,t)

+
∫

dX′
∫

dV ′W (X − X′,V − V ′)

× P (X′,V ′,t) − 
P (X,V,t), (B1)

where P (X,V,t) is the probability to find at time t the
center-of-mass coordinate X and the velocity V . The rate for

013605-8



SUPERBALLISTIC CENTER-OF-MASS MOTION IN ONE- . . . PHYSICAL REVIEW A 93, 013605 (2016)

a transition X → X′, V → V ′ is given by

W (X − X′,V − V ′) = 


√
1

2πσ 2
X

exp

[
− (X − X′)2

2σ 2
X

]

×
√

1

2πσ 2
V

exp

[
− (V − V ′)2

2σ 2
V

]
, (B2)

and the total transition rate takes the form


 = 
(1) + 
2 + 
(3) = N

t1
+ N3

2t2
+ N5

3t3
= 〈δt〉−1. (B3)

From the master equation (B1) one can derive, without further
approximations, the following equations of motion for the first
and second moments of the process:

d

dt
〈X(t)〉 = 〈V (t)〉, (B4)

d

dt
〈V (t)〉 = 0, (B5)

d

dt
〈X2(t)〉 = 2〈X(t)V (t)〉 + 
σ 2

X, (B6)

d

dt
〈V 2(t)〉 = 
σ 2

V , (B7)

d

dt
〈X(t)V (t)〉 = 〈V 2(t)〉. (B8)

For example, to derive Eq. (B4) one starts from

〈X(t)〉 =
∫

dX

∫
dV XP (X,V,t), (B9)

and takes the time derivative
d

dt
〈X(t)〉 =

∫
dX

∫
dV X

∂

∂t
P (X,V,t). (B10)

Substituting the master equation (B1) leads to

d

dt
〈X(t)〉

= −
∫

dX

∫
dV XV

∂

∂X
P (X,V,t)

+
∫

dX

∫
dV

∫
dX′

∫
dV ′XW (X − X′,V − V ′)

× P (X′,V ′,t) − 
〈X(t)〉. (B11)

After partial integration the first term on the right-hand side
yields 〈V (t)〉. Integrating first over X and V the second term
gives +
〈X(t)〉, which cancels out the third term. This leads
to Eq. (B4). In a similar way, Eqs. (B5)–(B8) can be obtained.

The closed system of differential equations (B4)–(B8) for
the moments can easily be solved to yield

〈X2(t)〉 − 〈X(t)〉2 = σ 2
X,0 + 
σ 2

X t + σ 2
V,0 t2 + 1

3
σ 2
V t3

+ 2[〈X(0)V (0)〉 − 〈X(0)〉〈V (0)〉]t,
(B12)

where

σ 2
X,0 = 〈X2(0)〉 − 〈X(0)〉2, (B13)

σ 2
V,0 = 〈V 2(0)〉 − 〈V (0)〉2. (B14)

The last term on the right-hand side of Eq. (B12) does not
appear in the main text as it is zero because position and
velocity are uncorrelated at the initial time.9

APPENDIX C: RANDOM WALK IN VELOCITY SPACE

For a random walk in velocity space [82–84] with Gaussian
step distribution characterized by

σV = �

2(N − 3)mσX

, (C1)

where

σX = πξN√
3

= π�
2

√
3m|g1D|(N − 4)

(C2)

leads, for (N − 4)/(N − 3) 
 1, to an N - and particle-mass-
independent step size,

σV =
√

3|g1D|
2π�

. (C3)

For the velocity after n random-walk steps we thus have

(V )n =
n∑

�=1

δV�. (C4)

For an n-independent time step δt (thus assuming N 
 N −
n), we have

(�X)2
nV steps ≡ 〈X(t)2〉nV steps

≈
〈(

n∑
ν=1

Vν

)⎛⎝ n∑
μ=1

Vμ

⎞⎠〈δtμδtν〉
〉

nV steps

= 〈δt〉2
n∑

ν=1

n∑
μ=1

ν∑
�=1

μ∑
j=1

〈
δV�δVj

〉
= 〈δt〉2

n∑
ν=1

ν∑
�=1

n∑
μ=1

μ∑
j=1

σ 2
V δ�,j

= 〈δt〉2σ 2
V

n∑
ν=1

ν∑
�=1

n∑
μ=�

1. (C5)

Solving the remaining sums analytically yields [71]

(�X)2
nV steps = (

1
3n3 + 1

2n2 + 1
6n

)〈δt〉2σ 2
V (C6)


 1

3
n3〈δt〉2σ 2

V . (C7)

The above assumes that 〈δt2〉 is n independent; the (�X)2 ∝
t3 dependence is visible because of n ∝ t .

APPENDIX D: ESTIMATING THE INITIAL VELOCITY

Figure 7 shows the importance of including the initial
velocity: If the initial velocity is added to the analytical curves

9The full quantum mechanical expression for the
last term on the right-hand side of Eq. (B12) reads
2[(〈X(0)V (0)〉 + 〈V (0)X(0)〉)/2 − 〈X(0)〉〈V (0)〉]t .
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FIG. 7. Li-bright soliton under the influence of single-particle
losses [parameters as in footnote 4 but with K3 = 0 and N (0) =
6000]. The data are the same as for Fig. 1 but for the fact that the
analytical curves now include the initial velocity and the initial width
of the wave packet [Eq. (38)]. This leads to a much better agreement
for weaker decoherence. Data files are available online [74].

depicted in Fig. 1, this considerably increases the agreement
between analytical and numerical results. Comparing the very
good agreement between analytical and numerical results if
the correct value of the initial velocity is used (Fig. 7) to the
approximation σV,0 = 0 (and σX,0 = 0) of Fig. 1 shows that the
initial velocity does indeed play a role and merits our attention.

Particle losses are particularly easy to model if we have
a product state. We start with a noninteracting Bose gas in
the ground state of a one-dimensional harmonic trap; both in
position space and in velocity space we have

σ 2
N = σ 2

1

N
, (D1)

and this changes to

σ 2
N−ν = σ 2

1

N − ν
(D2)

after one loss event losing ν particles, thus increasing the
variance by

σ̃ 2 = σ 2
1

(
1

N − ν
− 1

N

)
. (D3)

In order to estimate how long our assumption that the initial
velocity distribution is given by Eq. (D1) remains valid, we
use a linear variation of the additional variance introduced in
one step (D3) during the ramping process,

σ 2(t) = σ̃ 2 + (
σ 2

ourmodel − σ̃ 2) t

T
. (D4)

For a specific experiment, we thus can check if

1

〈δt〉
∫ T

0
σ 2(t) � σ 2

1

N
(D5)

is indeed fulfilled. With T typically in the tens of
milliseconds [85] for experiments like [11], T/〈δt〉 ≈
50 ms/(200 s/N) if single-particle losses are the dominant
source of decoherence during the adiabatic switching. For
N = 6000 we have less than two loss events and thus do
not have to change the initial velocity in our model. The
larger trapping frequencies for Li as compared to the heavier
Rb leads to shorter switching times for Li. While this again
is an argument for choosing lighter atoms for this type of
experiment, future experiments are likely to show if further
modeling is necessary.
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