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Université Grenoble Alpes, LPMMC, F-38000 Grenoble, France and CNRS, LPMMC, F-38000 Grenoble, France

(Received 18 November 2015; published 7 January 2016)

We describe the dimensional crossover in a noninteracting Fermi gas in an anisotropic trap, obtained by
populating various transverse modes of the trap. We study the dynamical structure factor and drag force. Starting
from a dimension d , the (d + 1)-dimensional case is obtained to a good approximation with relatively few modes.
We show that the dynamical structure factor of a gas in a d-dimensional harmonic trap simulates an effective
2d-dimensional box trap. We focus then on the experimentally relevant situation when only a portion of the gas
in harmonic confinement is probed and give a condition to obtain the behavior of a d-dimensional gas in a box.
Finally, we propose a generalized Tomonaga-Luttinger model for the multimode configuration and compare the
dynamical structure factor in the two-dimensional limit with the exact result, finding that it is accurate in the
backscattering region and at low energy.
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I. INTRODUCTION AND MOTIVATION

In the past decades, low-dimensional systems of ultracold
atoms have attracted attention with many achievements, such
as the observation of the superfluid to Mott insulator transition
[1], solitons [2], the Berezinskii-Kosterlitz-Thouless transition
[3], and the realization of a Tonks-Girardeau gas [4]. In
particular, the possibility to trap and confine ultracold atoms
to various one-dimensional (1D) [5–10] and two-dimensional
(2D) geometries [11] raises new questions regarding the
dynamical behavior of such systems. Yet, few of them are
really one or two dimensional. For a wide class of transverse
confinements, they are better modeled as quasi-one- (Q1D)
or quasi-two- (Q2D) dimensional, meaning that transverse
modes can be populated [12–14]. Indeed, multimode systems
are ubiquitous in condensed matter, in particular in electronic
systems where multichannel quantum wires [15], two-leg
ladders [16], carbon nanotubes [17], and biased bilayer
graphene [18] are a few examples.

Dimensional crossovers in Q1D and Q2D systems, e.g.,
from 1D to 2D or even 3D, can occur in at least two ways.
The first one is the occupation of various energy modes in a
given tight confining trap. The transition to higher dimension
is realized by gradually opening the trap, thereby increasing
the number of populated modes in energy space. The second
scheme is the realization of a higher-dimensional structure by
an ensemble of low-dimensional ones in real space, e.g., in an
optical lattice [19–21].

Especially suitable quantities to probe dimensional
crossovers in ultracold gases are the dynamical structure factor
and the drag force since they are strongly dependent on
the dimensionality of the system. The dynamical structure
factor is of peculiar interest to characterize the dynamical
response of the fluid to a moving potential barrier or an
impurity, and is measurable by Bragg scattering experiments
[22–27]. The drag force measures the heating rate during the
process [11,28–31]. In this paper, we provide calculations of
these quantities for noninteracting fermions in experimental
situations realizing a dimensional crossover in energy space.
Some analytical expressions for the dynamical structure factor
are already known in 1D and 3D [32,33]. We provide a more

general expression depending explicitly on the dimension and
show how the crossover occurs by considering an increasing
number of occupied transverse energy modes. The effect
of an external longitudinal trapping confinement is known
to considerably change the dynamical structure factor [34].
Within the local density approximation, we show that the
harmonic trap enhances the effective dimension of the system,
thus allowing one to simulate the physics in a box trap up
to six dimensions. Reciprocally, we show how to prevent
this enhancement experimentally and simulate the dynamical
structure factor in a 1D box trap using an harmonically
confined gas.

While noninteracting fermions are amenable to exact
calculations, they are also an ideal testbed to develop new
approximation schemes. In 1D, the low-energy excitations of
the gas can be described using the Tomonaga-Luttinger model
(TLM) [35–39]. We show how the well-known breakdown
of the TLM in dimensions higher than one [40] is reflected
in the behavior of the dynamical structure factor and the
drag force. We propose a multimode Tomonaga-Luttinger
model (M-TLM) that correctly captures the behavior of higher-
dimensional systems near the backscattering region.

The paper is organized as follows: in Sec. II we use a
multimode approach to show dimensional crossovers from 1D
to dD in a box. In Sec. III we show that, within the local density
approximation, the d-dimensional dynamical structure factor
in a harmonic trap has the same shape as in a 2d-dimensional
box. In Sec. IV, we extend the Tomonaga-Luttinger model to
multimode systems and dimensions higher than one. In Sec. V
we summarize the main results and give a few outlooks.

II. ENERGY SPACE DIMENSIONAL
CROSSOVER IN A BOX TRAP

A. System

We consider N ultracold noninteracting spinless fermions
of mass m in an anisotropic uniform box confinement at zero
temperature. We assume that the length Lx of the box is much
longer than its width Ly and height Lz. This situation can be
approached experimentally in an optical box trap [41]. If at
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least one of the transverse sizes is small enough, such that
the level spacing is larger than all characteristic energy scales
of the problem (e.g., temperature, chemical potential), then
the gas is confined to 2D or even to 1D, since the occupation
of higher transverse modes is suppressed. In the following,
we study the behavior of the system as transverse sizes are
gradually increased and the transverse modes occupied. This
yields a dimensional crossover from 1D to 2D and eventually
3D.

B. Dimensional crossover for the dynamical structure factor

First, we are interested in the effect of the dimension on
the dynamical structure factor. The latter contains all the
information about the structure and collective excitations of

the gas. In arbitrary dimension d in a box trap, it reads

Sd (�q,ω) = Vd

∫ +∞

−∞
dt

∫
ddr ei(ωt−�q·�r)〈δnd (�r,t)δnd (�0,0)〉,

(1)
where Vd is the volume of the system, ��q and �ω are the
transferred momentum and energy in the Bragg spectroscopy
process, δnd (r,t) ≡ nd (�r,t) − N/Vd are the fluctuations of the
d-dimensional density operator at time t and 〈· · · 〉 stands for
the equilibrium quantum statistical average.

Before discussing the dimensional crossover, we determine
the dynamical structure factor of a d-dimensional gas in the
thermodynamic limit, for d = 1,2,3. We specialize to �q = q�ex ,
where �ex is the unit vector along the x axis. These results can
be written in a compact form as a general power law which
depends explicitly on d and reads

Sd (q�ex,ω) = Vdsd

(
m

2π�q

)d[
�(ω+ − ω)�(ω − ω−)(ω+ − ω)

d−1
2 (ω − αdω−)

d−1
2

+�(2kF − q)�(ω− − ω)
{
[(ω− + ω)(ω+ − ω)]

d−1
2 − [(ω+ + ω)(ω− − ω)]

d−1
2

}]
. (2)

Here � is the Heaviside distribution, kF = [ N
Vd

(2π)d

�d
]
1/d

is
the modulus of the d-dimensional Fermi wave vector, where
�d = π

d
2 /�( d+2

2 ) is the volume of the unit d-dimensional

ball with � the Euler Gamma function, ω± ≡ |�q2

2m
± �kF q

m
|

are the boundaries of the energy-momentum sector where
particle-hole excitations can occur, αd ≡ sgn(qx − 2kF ), and
sd = 2π

d+1
2 /�( d+1

2 ) is the surface of the unit d sphere.
We now consider the dimensional crossover of the

dynamical structure factor from Sd to Sd+1, obtained by
populating higher transverse modes of the atomic wave guide.
We illustrate this procedure by focusing on the dimensional

crossover from dimension one to two in a 2D box with
periodic boundary conditions. We write the two-dimensional
fermionic field operator as ψ(x,y) = ∑

kx

∑
ky

eikx x√
Lx

eiky y√
Ly

akxky
,

where kx,y = 2π
Lx,y

jx,y with jx,y an integer, and akxky
≡ a�k is

the fermionic annihilation operator, such that {a�k,a
†
�k′ } = δ�k,�k′ ,

and 〈a†
�ka�k′ 〉 = δ�k, �k′nF (εk), where nF (εk) ≡ 1

eβ(εk−μ)+1
is the

Fermi-Dirac distribution, with β the inverse temperature, μ

the chemical potential, and εk = �
2k2

2m
≡ �ωk the free-particle

dispersion relation. Then, applying Wick’s theorem we find
that

〈δn(�r,t)n(�0,0)〉 = 1

L2
x

1

L2
y

∑
�k,�k′

e
−i[(�k−�k′)·�r−(ωkx +ωky −ωk′

x
−ωk′

y
)t]

nF

(
εkx

+ εky

)[
1 − nF

(
εk′

x
+ εk′

y

)]
. (3)

Substituting Eq. (3) into Eq. (1), the dynamical structure factor reads

SQ1(q�ex,ω) = Lx

Ly

∫ +∞

−∞
dt

∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dy ei(ωt−qxx) 1

(2π )2

∫ +∞

−∞
dkx

∫ +∞

−∞
dk′

x

×
∑
ky ,k′

y

e
−i[(kx−k′

x )x+(ky−k′
y )y−(ωkx +ωky −ωk′

x
−ωk′

y
)t]

nF

(
εkx

+ εky

)[
1 − nF

(
εk′

x
+ εk′

y

)]
. (4)

A few additional algebraic manipulations and specialization to T = 0 yield

SQ1(q�ex,ω) =
∑
ky

2πLx

∫ +∞

−∞
dkx,�

[
εF − (

εkx
+ εky

)]
�

[
εkx+qx

+ εky
− εF

]
δ
[
ω − (

ωkx+qx
− ωkx

)]

=
M∑

jy=−M

S1(q�ex,ω; k̃F [jy/M]), (5)
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where εF = μ = �
2k2

F

2m
is the Fermi energy,

S1(q�ex,ω; k̃F [jy/M]) is the 1D dynamical structure factor
where the chemical potential has been replaced by εF − εky

,
or equivalently, where the wave vector kF,1 has been replaced

by k̃F [jy/M] ≡ kF

√
1 − j 2

y

M̃2 , which defines the number of

transverse modes 2M + 1 by M = I [M̃], where M̃ ≡ kF Ly

2π

and I is the integer part function. Finally, in the large M limit,

the Riemann sum in Eq. (5) becomes an integral, and one
obtains

S2(q �ex,ω) = kF Ly

π

∫ 1

0
dx S1(q �ex,ω; kF

√
1 − x2), (6)

providing the dimensional crossover from 1D to 2D.
More generally, one can start from a system of any

dimension d and find, after relaxation of the transverse
confinement,

SQd (q �ex,ω) =
M∑

j=−M

Sd (q �ex,ω; k̃F [j/M]) −→
M→+∞

kF Ld+1

π

∫ 1

0
dx Sd (q �ex,ω; k̃F [x])

= Sd+1(q �ex,ω). (7)

If used repeatedly, Eq. (7) allows one to compute the dynamical structure factor up to any dimension if it is known in lower
dimension. In particular, it allowed us to prove Eq. (2) by induction. A detailed illustration of the crossover from 1D to 2D can
be found in Appendix A; generalizations to any integer dimension rely on the same techniques.

The derivation of Eq. (7) also shows that

Sd (q �ex,ω) = Vd

∫
ddk

(2π )d−1
�

(
εF −

d∑
i=1

εkxi

)
�

(
d∑

i=1

εkxi
+qδi,1 − εF

)
δ
[
ω − (

ωkx1 +q − ωkx1

)]
(8)

in agreement with the expression found by using Lindhard’s
formula [42] for the density-density response function com-
bined with the fluctuation-dissipation theorem. We have cross-
checked our results by using Eqs. (7) and (8) independently to
compute the dynamical structure factor in 2D and 3D.

Now, we illustrate numerically the dimensional crossover
from 1D to 2D using Eq. (7). Figure 1 shows the dynamical
structure factor as a function of the frequency ω for two choices
of wave vector q. In each panel are represented a 1D gas, a
Q1D gas for M = 10 and the 2D result for a comparison.
Sections are made at fixed q rather than ω because they are
obtained in experiments [26,27]. We notice that only a few
modes are needed to recover within a very good approximation
the higher-dimensional physics, since in this example, the
staircase shape taken by the dynamical structure factor of the
Q1D gas mimics already quite well the 2D one. We have
checked that this is also the case in the 1D to 3D and in the 2D
to 3D crossovers.

C. Dimensional crossover for the drag force

The dimensional crossover is a powerful approach which
allows to derive the drag force in arbitrary dimension d. In
detail, from the dynamical structure factor one can extract
information about the dynamical response of the fluid to a
small perturbation. If a weak potential barrier or impurity is
stirred along the fluid, putting it slightly out of equilibrium,
then in linear response theory the average energy dissipation
per unit time is linked to the dynamical structure factor by the
relation [29]

〈Ė〉 = − 1

2π�Vd

∫ +∞

0
dω

∫
ddq

(2π )d
Sd (�q,ω)|Ud (�q,ω)|2ω,

(9)

FIG. 1. Dynamical structure factor S(q,ω) in units of S(q =
2kF ,ω = ωF ) for dimensionless wave vectors q/kF = 1 (upper
panel) and q/kF = 3 (lower panel), with kF the Fermi momentum, as

a function of frequency ω in units of the Fermi frequency ωF ≡ �k2
F

2m
,

in 1D (blue, dashed) and Q1D for 2M + 1 = 21 modes (red, solid)
compared to 2D (black, dotted). Few modes are needed for the Q1D
system to display a similar behavior as the 2D one.
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where Ud (�q,ω) is the Fourier transform of the potential barrier
Ud (�r,t) defining the perturbation part of the Hamiltonian
Hpert ≡ ∫

ddr Ud (�r,t)nd (�r).
In analogy with classical hydrodynamics, the concept of

drag force is introduced to quantify the viscosity, and defined

as 〈Ė〉 ≡ − �F · �v, where 〈Ė〉 is the average heating rate per unit
time, �v is the velocity of the potential barrier, which we assume
constant in the following. In the context of ultracold atoms,
measuring the heating rate is a way to probe superfluidity
[11,30]. Indeed, a nonviscous flow leads to a vanishing drag
force at low enough velocity, thus F =0 is a necessary
condition for superfluidity, usually called drag force criterion.

With a delta-potential barrier Ud (�r,t)≡Udδ(x−vt) in the
direction x, covering the whole waveguide in the transverse
directions, the drag force at zero temperature reads

Fd (v) = U 2
d

2π�Vd

∫ +∞

0
dq Sd (q �ex,qv)q. (10)

In 1D we find, in agreement with [29,43], that

F1(v) = 2U 2
1 mn1

�2

[
�(v − vF,1) + v

vF,1
�(vF,1 − v)

]
, (11)

where vF,d ≡ �kF,d

m
is the Fermi velocity. We also compute the

drag force in 2D and 3D. The results found when v � vF,d are

F2(v) = 2U 2
2 mn2

�2

2

π

[
v

vF,2

√
1 −

(
v

vF,2

)2

+ arcsin

(
v

vF,2

)]
(12)

and

F3(v) = 2U 2
3 mn3

�2

3

2

v

vF,3

[
1 − 1

3

(
v

vF,3

)2]
. (13)

If v > vF,d , for the potential barrier considered, the drag force
saturates at the universal value Fd (vF,d ) = 2U 2

d mnd/�
2. We

recovered those results by applying the cross-dimensional
approach from dimension d to dimension (d + 1), which
validates this technique once more, as illustrated in Appendix
A in the case d = 1.

From these expressions it is not easy to guess a general for-
mula for any integer dimension d. Carrying out the calculation
from Eqs. (2) and (10), we found that it actually reads

Fd (ud � 1) = Cd

(
1 − u2

d

) d−1
2

[
(1 + ud )2F1

(
1,

1 − d

2
;
d + 3

2
; −1 + ud

1 − ud

)
− (ud → −ud )

]
, (14)

where Cd ≡ 2U 2
d mnd

�2
2√

π(d+1)
�( d+2

2 )

�( d+1
2 )

is a numerical coefficient,

2F1(a,b; c; x) ≡ ∑+∞
n=0

(a)n(b)n
(c)n

xn

n! is the hypergeometric

function with (a)n ≡ ∏n−1
i=0 (a + i) the Pochhammer symbol,

and we introduced the notation ud ≡ v
vF,d

. In integer
dimensions the hypergeometric function reduces to simple
functions; for a technical discussion and expressions which
do not involve special functions, we refer to Appendix B.

To gain some insight in the structure of these results we
focus on the 2D situation and split the drag force Eq. (12) onto
two contributions, one due to the integration of the dynamical
structure factor below ω−, which we call F<, while the other,
called F>, is due to the contributions above ω−. Then, the drag
force for v < vF is F2 ≡ F2,> + F2,< with

F2,>(u)

F2(u = 1)
= 2

π

[
arcsin

(√
1 + u

2

)
+ f−(u)

]
(15)

and

F2,<(u)

F2(u = 1)
= 2

π

[
u
√

1 − u2 − arcsin

(√
1 − u

2

)
− f−(u)

]
,

(16)

where f−(u) ≡ (2u − 1)
√

u(1 − u) + arctan (
√

u
1−u

) −
arctan (

√
1+u
1−u

) is the boundary term at ω−. As can be seen
in Fig. 2, F< and F> are of the same order of magnitude
even for v 
 vF , showing that the continuum of particle-hole
excitations below ω− and above ω− contribute equally to the
drag force. This is very different from the one-dimensional
case, which sustains particle-hole excitations only for energies

above ω−. As we will discuss in more detail in Sec. IV below,
these results raise the question of the generalization of the
1D Tomonaga-Luttinger model (TLM) to higher dimensions.
We will show that the dimensional crossover discussed above
provides a valuable route to generalize the TLM to dimensions
higher than one.

According to the drag force criterion, the noninteracting
Fermi gas is not superfluid, as expected since superfluidity is a
collective phenomenon, requiring the presence of interactions.
One of the first theoretical insights of an interacting case
was provided in Ref. [29], with a potential barrier Ud (�r,t) ≡
giδ(�r − �vt) in a weakly interacting Bose gas. A mean-field
approach was used, neglecting solitons and vortices. The

FIG. 2. Two-dimensional drag force F2 (black, thick), F<

(dashed, blue), and F> (red) in units of F2(vF ), with vF the Fermi
velocity, as functions of the velocity v in units of vF .
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various results in dimension d ∈ {1,2,3} can be recast into
the general form

Fd (v) = sd−1

(2π )d−1

mdg2
i nd

�d+1

(
v2 − c2

d

v

)d−1

�(v − cd ), (17)

where cd is a critical velocity, coinciding with the sound
velocity in the mean-field approach. It is interesting that
dimensionality manifests in a simple power law, even in
the presence of interactions. It is even simpler than for free
fermions, due to the richer structure of the dynamical structure
factor for the latter.

To conclude this section, we want to emphasize that the
dimensional crossover approach provides a variety of angles to
attack a given problem. We illustrate this point in Appendix A
in dimension d = 2, where the drag force is found in three
different ways.

III. DIMENSIONAL CROSSOVERS IN A HARMONIC TRAP

After having discussed the dimensional crossover in energy
space in a box trap, we focus here on dimensional crossovers in
the experimentally relevant situation of a harmonically trapped
gas.

A. Equivalence between a d-dimensional ideal gas in a
harmonic trap and a 2d-dimensional ideal gas in a box

We consider a 1D Fermi gas longitudinally confined by
a harmonic trap described by the potential V (x) = 1

2mω2
0x

2,
where ω0 is the frequency of the trap. Assuming a slow
spatial variation along x allows us to use the local density
approximation (LDA) to describe the density profile of the gas.
To this end, we describe the system by a position-dependent
chemical potential according to the relation

μ − 1
2mω2

0x
2 = μhom[n(x)], (18)

where μhom[n(x)] = �
2π2n2

2m
is the equation of state for a 1D

homogeneous Fermi gas. Combined with the normalization
condition

∫ RT F

−RT F
dx n(x) = N , this yields

n(x) = 2N

πRT F

√
1 − x2

R2
T F

�(RT F − |x|), (19)

where RT F ≡
√

2μ

mω2
0

is the Thomas-Fermi radius.

Within the same approximation of a slowly varying spatial
confinement we calculate the dynamical structure factor
SLDA

1,HO(q,ω) of the harmonically trapped gas. In detail, for
wave vectors q larger than the inverse scale of the spatial
confinement 1/RT F we take the spatial average

SLDA
1,HO(q,ω) = 1

2RT F

∫ RT F

−RT F

dx S1,hom[q,ω; n(x)], (20)

where S1,hom[q,ω; n] is the dynamical structure factor of a 1D
homogeneous gas of density n. This local density approxi-
mation assumes that portions of the size of the confinement

length scale aH0 =
√

�

mω0
can be considered as homogeneous

and that their responses are independent from each other [44].
The validity of this approximation has been verified in Ref. [34]
by comparing it with exact results.

FIG. 3. Simulated dynamical structure factor S(q,ω) in units
of S(q = 2kF ,ω = ωF ) for dimensionless wave vectors q/kF = 1
(upper panel) and q/kF = 3 (lower panel), with kF the Fermi
momentum, as a function of frequency ω in units of the Fermi

frequency ωF ≡ �k2
F

2m
, in 2D (black, dashed), 4D (blue, dotted), and

6D (red, solid).

After the change of variable x/RT F → x, we find

SLDA
1,HO (q,ω) =

∫ 1

0
dx S1(q,ω; n1

√
1 − x2), (21)

with n1 = 2N
πRT F

. It has the same form as Eq. (6), thus estab-
lishing the equivalence, in terms of the dynamical structure
factor, of a 1D harmonic trapped gas and a 2D gas in a box.

So far we have assumed a strictly 1D geometry. More
generally, a similar procedure allows to obtain one of the
main results of this Section: in reduced units, the dynamical
structure factor of a harmonically trapped ideal gas in dD
is the same as in a box trap in 2dD. We illustrate in Fig. 3
the dynamical structure factor of an ideal gas in a box in
dimensions d ∈ {2,4,6} as can be simulated by a harmonically
confined ideal gas in dimension d = 1,2,3, respectively.

The correspondence between a 2dD box trap and a dD
harmonic trap can be inferred directly from the Hamiltonian
of the system: for a box trap there are d quadratic contributions
originating from the kinetic energy whereas for the harmonic
confinement there are 2d quadratic terms coming from
both kinetic and potential energy. Since, in a semiclassical
treatment each term contributes in a similar manner, harmonic
confinement leads to a doubling of the effective dimensionality
of the system in the noninteracting case, which is expected
not only for the dynamical structure factor, but also for other
quantities such as the density of states, or the condensed
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fraction of a trapped Bose gas below the critical temperature
for instance.

B. Interpolation from 2D box behavior to 1D
box behavior in a harmonic trap

We have pointed out how a harmonic trap increases the
effective dimension of the gas for the dynamical structure
factor. Conversely, we analyze now how the dynamical
structure factor of a harmonically confined gas looks if only
the central part of the cloud is probed over a length r < RT F .
Assuming that r is larger than the characteristic length of the
variation of the external confinement, and again using the local
density approximation, Eq. (21) reduces to

SLDA
1,HO (q,ω; r) �

∫ r/RT F

0
dx S1(q,ω; n1

√
1 − x2). (22)

An explicit expression is obtained by evaluating the integral

I ≡
∫ r/RT F

0
dx �(q2 + 2q

√
1 − x2 − ω)

×�(ω − |q2 − 2q
√

1 − x2|), (23)

where ω and q are expressed in reduced units such that kF = 1
and ωF = 1. The final expression reads

I = �(ω+ − ω)�(ω − ω−) min

⎛
⎝ r

RT F

,

√
1 −

(
ω − q2

2q

)2
⎞
⎠

+�(2 − q)�(ω− − ω) min

⎛
⎝ r

RT F

,

√
1 −

(
ω − q2

2q

)2
⎞
⎠

−�(2 − q)�(ω− − ω) min

⎛
⎝ r

RT F

,

√
1 −

(
ω + q2

2q

)2
⎞
⎠.

(24)

This expression displays the crossover between the behav-
ior of a 1D gas in a box and the one of a 2D gas in a box.
In order to obtain the 1D behavior, r

RT F
must be the minimal

argument in Eq. (24) above, while the 2D behavior is obtained
when r

RT F
is the largest argument. In essence, to get close to the

1D behavior one should take the smallest r compatible with
the condition r � 1

q
assumed in order to use the LDA, and with

the condition 1 − r
RT F


 1 in order to detect enough signal.

Figure 4 shows the dynamical structure factor SLDA
1,HO (q,ω; r)

as a function of frequency, at varying the size r of the probe
region, for a fixed choice q = kF . Quite remarkably, we find
that, for our choice of q, the 1D behavior is probed to a large
accuracy up to a size r � 0.3RT F .

IV. LOW-ENERGY APPROACH FOR
FERMIONS IN A BOX TRAP

A. Tomonaga-Luttinger model in d = 1

In 1D, gapless systems with linear dispersion relation lie
within the universality class of the Tomonaga-Luttinger model

FIG. 4. Reduced dynamical structure factor S(q = kF ,ω; r)/r in
units of S1(q = kF ,ω) in the plane (r,ω), where r is the probed length
of the gas in units of RT F and ω the frequency in units of ωF . If r 

RT F one recovers the 1D box result, while r → RT F yields the 2D
box result. Excitations below the lower branch appear progressively
as the dimensionless ratio r/RT F is increased.

(TLM), associated with the Hamiltonian

HT L = �vs

2π

∫
dx

[
K(∂xφ)2 + 1

K
(∂xθ )2

]
, (25)

where TL stands for Tomonaga-Luttinger, involving canoni-
cally conjugate fields such that [∂xθ (x),φ(x ′)] = iπδ(x − x ′),
the dimensionless Luttinger parameter K and the sound veloc-
ity vs . At low energy, the dispersion relation of the free Fermi
gas in a box can be linearized around the Fermi points ±kF .
With this simplification, after some algebraic manipulations
[37], one finds that the low-energy effective Hamiltonian is
described by the TLM with parameters K = 1 and vs = vF .
This provides us with an alternative formalism to study the
dynamical structure factor and the drag force. Although in the
present work we will focus on the noninteracting limit, where
it will be compared to the exact solution, this formalism can
describe interacting systems as well and is worth studying in
this perspective.

As far as the dynamical structure factor is concerned, the
effective theory yields the linearization of its definition domain
at the origin and around the umklapp point (q = 2kF ,ω = 0)
which corresponds to backscattering processes, intrinsically
limiting its domain of validity to low energies (for more details,
see e.g. [45] and references therein). Since we specialize to
noninteracting fermions, the dynamical structure factor in the
backscattering region reads

ST L
1 (q,ω) = LxB1(K = 1)�(ω − |q − 2kF |vF ), (26)

where B1 is a model-dependent coefficient which depends
on K . Comparison with the exact result at the umklapp point
yields B1(K = 1) = m

2�kF
. Then, Eq. (26) reproduces the exact

dynamical structure factor given by Eq. (2) with less than 10%
error, due to the linearization, provided that ω � 0.3ωF [45].

013603-6



DIMENSIONAL CROSSOVER IN A FERMI GAS AND A . . . PHYSICAL REVIEW A 93, 013603 (2016)

FIG. 5. Definition domain of the dynamical structure factor of
a Fermi gas in the plane (ω,q) in units of (ωF,d ,qF,d ). Shaded
areas represent the domain where single particle-hole excitations
can occur. The light green one is found in any integer dimension
d ∈ {1,2,3}, while the dark orange one is specific to d > 1. Black
straight lines correspond to the linearization of the domain in the
Tomonaga-Luttinger formalism in 1D.

B. Generalized Tomonaga-Luttinger model for d > 1

One can see in Fig. 5 and in Eq. (2) that in 2D and 3D,
since excitations are possible at energies below ω− up to ω = 0
for any q < 2kF , no linearization of the dynamical structure
factor is possible and the standard Tomonaga-Luttinger liquid
theory breaks down. Actually, these excitations progressively
appear as soon as d > 1 [46], yet fractal geometries which
would allow one to probe noninteger dimensions are beyond
the scope of this work.

Many attempts were made to generalize the Tomonaga-
Luttinger model to higher dimensions [47,48] as an alternative
to Fermi liquids to describe interacting systems. In this work,
we use the crossover approach as in Sec. II to construct a
Tomonaga-Luttinger model in higher dimensions, defining
a multimode Tomonaga-Luttinger model (M-TLM). Indeed,
the emergence of contributions at energies lower than ω− in

FIG. 6. Lower boundary of the definition domain for the dynamic
structure factor of a Q1D gas with three modes, in the plane (q,ω)
in units of (kF ,ωF ), as found in the Tomonaga-Luttinger formalism
(dashed) compared to the exact solution (solid).

the dynamical structure factor if d > 1 can be interpreted as
contributions of higher modes of a 1D gas. All those modes,
taken separately, display a linear structure in their dynamical
structure factor at low energy, as illustrated in Fig. 6. Thus,
applying Eq. (6) to the Tomonaga-Luttinger model, in Q1D
the dynamical structure factor reads

ST L
Q1 (q,ω) =

M∑
j=−M

ST L
1 (q,ω; k̃F [j/M]). (27)

The question is up to what point the small errors for each
mode in the framework of the effective theory amplify or
cancel when adding more modes if compared to the exact
result, especially in the limit M → +∞ which corresponds
to the crossover to 2D. To address this question, we carry
out the procedure explicitly on the example of the 1D to
2D crossover and compare the prediction of our theory to
the exact solution. We combine Eq. (27) to Eq. (26) and
find

ST L
Q1 (q,ω) = Lx

m

4π�

1

M̃

M∑
j=−M

1√
1 − j 2

M̃2

�

(
ω −

∣∣∣∣q − 2kF

√
1 − j 2

M̃2

∣∣∣∣vF

√
1 − j 2

M̃2

)

→ M→+∞Lx

m

2π�

∫ 1

0
dx

1√
1 − x2

�(ω − |q − 2kF

√
1 − x2|vF

√
1 − x2). (28)

Evaluating the integral yields

ST L
2 (q,ω) = mLx

2π�
[�(q − 2kF )S> + �(2kF − q)S<](q,ω), (29)

with

S>(q,ω) = �

(
�q2

8m
− ω

)
�(q̃vF − ω) arcsin

(
q

4kF

[
1 −

√
1 − 8mω

�q2

])

+�(4kF − q)�(ω − q̃vF )�

(
�q2

8m
− ω

)(
arcsin

[
q

4kF

(
1 −

√
1 − 8mω

�q2

)]
+ arccos

[
q

4kF

(
1 +

√
1 − 8mω

�q2

)])

+�

(
ω − �q2

8m

)
�(ω − q̃vF )

π

2
(30)
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and

S<(q,ω) = �(|q̃|vF − ω) arcsin

(
q

4kF

[
1 +

√
1 + 8mω

�q2

])
+ �

(
�q2

8m
− ω

)(
arcsin

[
q

4kF

(
1 −

√
1 − 8mω

�q2

)]

− arcsin

[
q

4kF

(
1 +

√
1 − 8mω

�q2

)])
+ �(ω − |q̃|vF )

π

2
, (31)

where q̃ ≡ q − 2kF .

We illustrate Eqs. (30) and (31) in Fig. 7, where we compare
sections of the dynamical structure factor, as a function of q

at ω = 0.1ωF . Around the umklapp point (q = 2kF ,ω = 0)
there is an area where the approximate model is in a rather
good quantitative agreement with the exact result in 2D. The
differences between the two models at low q are due to the
fact that for a given point, the TLM slightly overestimates
the value of the dynamical structure factor for larger q and
underestimates it at lower q, as can be seen in the 1D case.
Combined with the fact that the curvature of the dispersion
relation has been neglected, and that the density of modes is
lower at low q, this explains both the anomalous cusp and
the falling down of the M-TLM at low q. Note however that
the M-TLM result is by far closer to the 2D exact result

FIG. 7. Section of the dynamical structure factor S(q,ω=0.1ωF )
in units of S(q = 2kF ,ω = 0.1ωF ) as a function of q in units of kF ,
at fixed dimensionless frequency ω/ωF = 0.1. The exact result in 2D
(red, dashed) is compared to the M-TLM prediction (solid, black) in
the upper panel. The lower panel shows a zoom into the backscattering
region near q = 2kF . It compares the 2D exact (red, dashed) and the
M-TLM model (solid, black) to the exact (brown, thick) and TLM
(dotted, blue) results in 1D.

than the 1D one, showing that there is a true multimode
effect.

We have checked that the M-TLM predictions for a
noninteracting gas are in quantitative agreement with the
exact 2D result for ω 
 ωF and |q − 2kF | 
 2kF . Similar
conditions have to be met in 1D in order to ensure the validity
of the Tomonaga-Luttinger model [45]; therefore, our heuristic
construction is quite satisfactory from this point of view.

V. SUMMARY AND OUTLOOK

We have computed the dynamical structure factor and drag
force of a noninteracting Fermi gas in an anisotropic box
confinement in dimension d = 1,2,3. We have developed a
multimode treatment in energy space and have pointed out
the crossover from any integer dimension to a higher one.
We have found that only a few modes are needed to recover
higher-dimensional physics to a good approximation.

Using the local density approximation and a Thomas-Fermi
profile for the density, we have shown that in a harmonic trap,
each added degree of confinement is equivalent to increasing
the effective dimension by one unit compared to a box trap for
an ideal gas. This allows to simulate the dynamical structure
factor of an ideal gas in a box up to six effective dimen-
sions using a harmonic confinement. Reciprocally, probing a
region around the center of the trap can reduce the effective
dimension, allowing to extract experimentally the physics of
the 1D ideal gas from a higher-dimensional one, and we have
identified the conditions.

As far as low-energy excitations are concerned, the dynam-
ical structure factor has allowed us to illustrate the breakdown
of the standard Tomonaga-Luttinger model in dimensions
higher than one. Yet, we have shown that a multimode
approach provides a suitable generalization of the model to
two and possibly higher dimensions around the backscattering
region.

Although our results have been obtained for a noninter-
acting Fermi gas, we conjecture that the M-TLM could be
able to give (at least qualitative) hints about the behavior of
multimode or multicomponent interacting bosons or fermions,
even in the presence of some types of couplings (e.g.,
density-density) in an array of 1D wires. Some analytical
results are already available for two [49] or three [50] coupled
Tomonaga-Luttinger liquids, but most challenging is the limit
of an infinite number of components [51] as compared with
higher-dimensional interacting systems. This may give new
insights on the conditions to observe a transition from a 1D
Luttinger liquid to a 2D Fermi liquid, studied in Ref. [46],
and more generally on the huge differences between the
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low-dimensional and the 3D systems, for instance in the
appearance of vortices or solitons.

Our M-TLM model could be further improved by taking
into account the effects of the curvature (see e.g. [52] for a
review) and thermal excitations.
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APPENDIX A: COMPARISON OF THREE DIFFERENT
APPROACHES TO FIND THE DRAG FORCE IN

DIMENSION d = 2

In this Appendix we illustrate three approaches to compute
the drag force for a given dimension, provided by the
dimensional crossovers. We focus on the case of the drag force
in d = 2.

We first perform a direct calculation of both the dynamical
structure factor and drag force in 2D; then we use the crossover
approach to derive the dynamical structure factor, derive it in
2D, and deduce from it the drag force in 2D. Finally, we
calculate both the dynamical structure factor and drag force in
1D, and use the crossover approach to obtain the drag force in
2D.

1. Approach (I): Direct calculation of S2 and F2

According to Eq. (8), one has to calculate

S2(q,ω) = LxLy

1

2π

∫
d2k�(kF − |k|)�(|k + q| − kF )

× δ[ω − (ωk+q − ωk)]. (A1)

The main difficulty of the calculation consists in finding the
integration boundaries. From a physical point of view, they
are defined by an interplay between the energy conservation in
the scattering process, described by the delta distribution, and
the impenetrability of the two Fermi spheres (disks in d = 2),
described by the Heaviside distributions.

The task of finding the maximal integration domain allowed
by the Heaviside distributions can be translated into the
following geometry problem: let S be a disk of radius kF .
Draw a vector q �ex starting from its center whose extremity
defines the center of an other disk of the same radius called S ′.
Then, the maximal integration domain is S ′ \ {S ′ ∩ S}, which
is S ′ if q > 2kF and has a crescent shape otherwise. We already
see that q = 2kF will play a major role in the process.

As a second step, the Dirac distribution restricts the
integration range to an even smaller area. We treat the case
q > 2kF first. Equation (A1) in this case reads

S2(q,ω) = 1

2π

∫
S ′

k dk

∫
dθkδ

{
ω − �

2m
[q2 + 2kq cos(θk)]

}
,

(A2)
hence

S2(q,ω)

LxLy

= 2
1

2π

∫ kF

(ω−ωq ) m
�q

k dk
1

�kq

m

√
1 − ( ω−ωq

�kq/m

)2

×�(ω − ω−,2)�(ω+,2 − ω), (A3)

where the overall factor 2 stems from the two allowed angles
leading to the allowed value of the cosine. Then a simple
integration yields the final result. We now turn to the case
q < 2kF . It is more convenient to use Cartesian coordinates,
and one has

S2(q,ω)

LxLy

= 1

2π

∫
S ′\{S ′∩S}

dkxdkyδ(ω − ωq − kx�q/m)

= 1

2π

∫
S ′\{S ′∩S}

dkxdky

δ(kx − kx,0)

�q/m

= 1

2π

m

�q

∫
{S ′\{S ′∩S}}∩{kx=kx,0}

dky. (A4)

The last step consists in describing explicitly {S ′ \ {S ′ ∩ S}} ∩
{kx = kx,0}, i.e., the intersection of a vertical straight line and
a vertical crescent. If the line crosses the crescent in its filled
part, i.e., if kF − q � kx,0 � kF , the domain is a straight line

of length 2kF | sin(θkF
)| = 2kF

√
1 − ( ω−ωq

qkF �/m
)
2
. It corresponds

to the case where ω+,2 � ω � ω−,2. If instead the line crosses
the crescent and its hollow part, then the integration line is a
segment deprived from a part in its inside; thus it consists in
two lines. Then, the total length is 2kF [| sin(θkF

)| − | sin(θk′)|],
with

kF |sin(θk′)| =
√

k2
F − (q + kF |cos(θkF

)|)2

= kF

√
1 −

(
q

kF

+ ω − ωq

�qkF /m

)2

= kF

√
1 −

(
ω + ωq

�qkF /m

)2

. (A5)

The latter case implies that ω−,2 � ω � 0. Putting everything
together and after some algebra, one finds the final result
[Eq. (2)]:

S2(q,ω) = LxLy

1

π

m2

�2q2
{�(ω−,2 − ω)�(2kF,2 − q)[

√
(ω+,2 − ω)(ω + ω−,2) − √

(ω−,2 − ω)(ω + ω+,2)]

+�(ω+,2 − ω)�(ω − ω−,2)
√

[ω+,2 − ω][ω − sgn(q − 2kF,2)ω−,2]}. (A6)

013603-9



GUILLAUME LANG, FRANK HEKKING, AND ANNA MINGUZZI PHYSICAL REVIEW A 93, 013603 (2016)

We next calculate the drag force in the case v < vF,2. Using Eq. (10) we split the integral in three parts so that, up to a
prefactor,

F ∝
∫ q−

0

dq

q
[
√

(ω+ − qv)(qv + ω−) −
√

(ω− − qv)(qv + ω+)]

+
∫ 2kF

q−

dq

q

√
(ω+ − qv)(qv + ω−) +

∫ q+

2kF

dq

q

√
(ω− − qv)(qv + ω+)

= �

2m

[ ∫ q+

0
dq

√
(q + q−)(q+ − q) −

∫ q−

0
dq

√
(q + q+)(q− − q)

]
, (A7)

where q± ≡ 2m
�

(vF ± v). The integrals can be expressed in terms of the hypergeometric function 2F1(1,−1/2; 5/2; −x), using the
property 3.196.1 of [53]:

∫ u

0 (x + β)ν(u − x)μ−1dx = βνuμ

μ 2F1(1,−ν; 1 + μ; −u
β

), with β ≡ q±,u ≡ q∓,ν ≡ 1/2,μ ≡ 3/2 here.
Then we use the following sequence of recursion theorems from the same reference to modify the arguments of the hypergeometric
function: 9.137.1 with γ = 3/2,z = −x,α = 1 and β = −1/2, 9.137.14 with β = −1/2,γ = 1/2,α = 1,z = −x, 9.131.1, then
9.137.8 with α = 0,β = 1,γ = 1/2 and z = x

x+1 , 9.131.1 again, twice, and eventually

2F1(1/2,1/2; 3/2; z2) = arcsin(z)

z
, (A8)

which allows one to express the result in terms of simple functions. Then, with the property

arcsin(x) − arcsin(y) = arcsin(x
√

1 − y2 − y
√

1 − x2), xy > 0 (A9)

and putting back the prefactors, we find Eq. (12).

2. Approach (II): Direct calculation of S1, dimensional crossover to S2, and direct calculation of F2

Recalling that the dynamical structure factor of a 1D Fermi gas reads

S1(q,ω) = �

m|q|�(ω+ − ω)�(ω − ω−), (A10)

then, for a 2D gas in a box of finite transverse size Ly , Eq. (5) yields

SQ1(q �ex,ω) =
∑
ky

∫
dkx

Lx�

m|q|δ
(

ω − ωq

�q/m
− kx

)
�

(
εF,y − εkx

)
�

(
εkx+q − εF,y

) = �Lx

m|q|
∑
ky

�(ω+,y − ω)�(ω − ω−,y),

(A11)

where εF,y ≡ εF − �
2k2

y

2m
, yielding Eq. (7) in this peculiar case:

SQ1(q �ex,ω) = LykF

2π

1

M̃

M∑
j=−M

S1(q �ex,ω;
√

1 − (j/M)2). (A12)

In reduced units where q/kF → q and ω/ωF → ω, in the limit M → +∞ where the Riemann sum becomes an integral we are
left to compute

I ≡
∫ 1

0
dx �(q2 + 2q

√
1 − x2 − ω)�(ω − |q2 − 2q

√
1 − x2|). (A13)

Special attention should be paid to the integration range, namely the argument of the Heaviside distributions and the square
roots must be non-negative. In the discussion, it is useful to consider separately the cases q > 2 and q < 2, but also ω > q2 and
ω < q2, which appear naturally. After a careful analysis one finds

I = �(q2 − ω)�(q − 2)[�(ω+ − ω)]�(ω − ω−)
∫ √

1−( q2−ω

2q
)2

0
dx + �(q2 − ω)�(2 − q)[�(ω+ − ω)]

∫ √
1−( q2−ω

2q
)2

√
1−( q

2 )2
dx

+�(q2 − ω)�(2 − q)[�(ω+ − ω)]�(ω − ω−)
∫ √

1−( q

2 )2

0
dx + �(q2 − ω)�(2 − q)[�(ω+ − ω)]�(ω− − ω)

∫ √
1−( q

2 )2

√
1−( ω+q2

2q
)2

dx
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+�(ω − q2)�(q − 2)�(ω+ − ω)�(ω − ω−)
∫ √

1−( ω−q2

2q
)2

0
dx + �(ω − q2)�(2 − q)�(ω+ − ω)

∫ √
1−( ω−q2

2q
)2

√
1−( q

2 )2
dx

+�(ω − q2)�(2 − q)�(ω+ − ω)�(ω − ω−)
∫ √

1−( q

2 )2

0
dx + �(ω − q2)�(2 − q)�(ω+ − ω)�(ω− − ω)

∫ √
1−( q

2 )2

√
1−( ω+q2

2q
)2

dx.

(A14)

These terms can be recombined pairwise, thus recovering Eq. (A6). The drag force is then computed directly as in (I).

3. Approach (III): Direct calculation of S1 and F1 and dimensional crossover to F2

Given S1, F1 is readily computed, treating separately the cases v > vF,1 and v < vF,1. For a Q1D system, we get

FQ1(v) = U 2

2π�LxLy

∫ +∞

0
dq Sq1D(q �ex,qv)q = U 2

2π�

m

�

∫ +∞

0
dq

∑
ky

�(ω+,y − qv)�(qv − ω−,y). (A15)

Interchanging the sum and the integral, we find

FQ1(v) = 1

Ly

kF

2π

2U 2
2 m

�2

M∑
j=−M

{
v

vF

�[vF (j ) − v] + vF (j )

vF

�[v − vF (j )]

}
, (A16)

where vF (j ) ≡ vF

√
1 − j 2/M̃2, so that in the limit M → +∞, using reduced variables we have to compute

J ≡
∫ 1

0
dx[u�(

√
1 − x2 − u) +

√
1 − x2�(u −

√
1 − x2)], (A17)

which readily yields Eq. (12) in the main text.

APPENDIX B: DRAG FORCE IN d DIMENSIONS

In this Appendix we provide the technical details on the derivation of the drag force in arbitrary integer dimension d, Eq. (14).
We start from Eq. (2) combined with Eq. (10). If v > vF,d , one easily shows that, up to a prefactor,

Fd (v) ∝
∫ q+,d

q−,d

dq[(q+,d − q)(q − q−,d )]
d−1

2 , (B1)

where q±,d ≡ 2m
�

(v ± vF,d ). Using the property

∫ b

a

dx(x − a)μ−1(b − x)ν−1 = (b − a)μ+ν−1B(μ,ν), (B2)

where B is the Euler Beta function and B(x,x) = 21−2x�(1/2)�(x)/�(x + 1/2), the problem is readily solved by expliciting the
prefactor, yielding

Fd (v > vF,d ) = 2U 2
d mnd

�2
. (B3)

The case v < vF,d is more involved. In this case q±,d ≡ 2m
�

(vF,d ± v), and one can show that, up to a prefactor,

Fd (v < vF,d ) ∝
∫ q+,d

0
dq[(q+,d − q)(q + q−,d )]

d−1
2 −

∫ q−,d

0
dq[(q−,d − q)(q + q+,d )]

d−1
2 . (B4)

Using the identity [53] ∫ u

0
dx(x + β)ν(u − x)μ−1dx = βνuμ

μ
2F1

(
1, − ν; 1 + μ; −u

β

)
, (B5)

where 2F1 is the hypergeometric function, we obtain Eq. (14). Although the hypergeometric representation is convenient to
synthesize the results, we would like to express the drag force in terms of simple functions.
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Using properties of hypergeometric functions, in odd dimensions one finds

Fd (v < vF )

Fd (vF )
= 1 + 2√

π

�
(

d+2
2

)
�

(
d+1

2

)(
1 − u2

d

) d−1
2 (1 + ud )

1

d

⎛
⎝1 +

d−1
2∑

j=1

(1 − ud )−j

j∏
i=1

ad,i − (1 − ud )
1−d

2

(
2

1 + ud

) d+1
2

d−1
2∏

i=1

ad,i

⎞
⎠,

(B6)

where ad,i ≡ d+1−2i
d−i

.
In the even dimension case, the expression is a bit more involved. To obtain it we showed that for any integer J ,

2F1
(
1,k + 1; 3

2 ; x
) = 2F1

(
1,k − J ; 3

2 ; x
)
aJ + 2F1

(
1,k − J − 1; 3

2 ; x
)
bJ , (B7)

where a−1 = 1, b−1 = 0, aj = cjaj−1 + bj−1, bj = djaj−1, cj ≡ 4(k−j )−3+2(1−(k−j ))x
2(k−j )(1−x) , and dj ≡ 3−2(k−j )

2(k−j )(1−x) .
The cutoff index J is chosen so that J = k − 1, yielding after some algebra

Fd (v < vF )

Fd (vF )
=1 + 2√

π

�
(

d+2
2

)
�

(
d+1

2

)(
1 − u2

d

) d−1
2 (1 + ud )

1

d

⎛
⎝1 +

d−2
2∑

j=1

(1 − ud )−j

j∏
i=1

ad,i − (1 − ud )
2−d

2

d−2
2∏

i=1

ad,i

[
2a d−2

2
f (ud ) + b d−2

2

]⎞⎠,

f (u) ≡
arcsin

(√
1−u

2

)
√

1 − u2
, (B8)

where a product with upper index 0 is equal to 1 by convention.
The same techniques allowed us to find Eqs. (15) and (16). Using the property∫ 1

0
dx xλ−1(1 − x)μ−1(1 − βx)−ν = B(λ,μ)2F1(ν,λ; λ + μ; β), Re(λ) > 0, Re(μ) > 0, |β| < 1, (B9)

six of the Gauss recursion theorems, and

2F1(1/2,1; 3/2; −x2) = arctan(x)

x2
, (B10)

we evaluated ∫ 1

0
dx

√
x
√

1 − βx, |β| < 1 = 1

4β

[
arcsin(

√
β)√

β
+ (2β − 1)

√
1 − β

]
. (B11)
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Phys. Rev. Lett. 92, 130403 (2004).
[9] Y.-A. Chen, S. D. Huber, S. Trotzky, I. Bloch, and E. Altman,

Nat. Phys. 7, 61 (2011).
[10] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G.
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