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In recent experiments, spin-orbit-coupled (SOC) bosonic gases in an optical lattice have been successfully
prepared into any Bloch band [Hamner et al., Phys. Rev. Lett. 114, 070401 (2015)], which promises a viable
contender in the competitive field of simulating gauge-related phenomena. However, the ground-state phase
diagram of such systems in the superfluid regime is still lacking. Here we present a detailed study of the phase
diagram in an optically trapped Bose gas with equal-weight Rashba and Dresselhaus SO coupling. We identify
four different quantum phases, which include three normal phases and a mixed phase, by considering the wave
vector k1, the longitudinal 〈σz〉, and the transverse 〈σx〉 spin polarizations as three order parameters. The ground
state of normal phases is a Bloch wave with a single wave vector k1, which can position in arbitrary regions in
the Brillouin zone. By contrast, the ground state of the mixed phase is a superposition of two Bloch waves with
opposite k1, which, remarkably, may lack periodicity even though the system’s Hamiltonian is periodic. This
mixed phase in the lattice setting can be seen as the counterpart of the stripe phase associated with the uniform
SOC gas. Furthermore, due to the lattice-renormalized SOC, the phase diagram of the model system becomes
significantly different from the uniform case when the lattice strength grows. Finally, a scheme for experimentally
probing the mixed phase using Bragg spectroscopy is proposed.
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I. INTRODUCTION

Loaded into an optical lattice (OL), an ultracold quantum
gas with spin-orbital coupling (SOC) [1–4] has been recently
realized in the laboratory [5], which has stimulated significant
interests and ongoing activity. The motivation behind these
efforts is twofold. First, prompted by the analogy to the
newly discovered topological insulator and the related
topological orders in the condensed-matter physics [6–8],
where the interplay of SOC and periodicity plays an important
role, an optically trapped atomic gas with SOC promises
controlled realization of exotic configurations with nontrivial
topology [9–14]. Compared to the uniform case, adding an
OL results in enhanced correlations, which in particular opens
the possibility to explore the SOC physics in the strongly
interacting limit. Second, recent work in atomic physics has
shown that even the SOC per se can lead to exotic many-body
ground states which bear no direct analogy in solid-state
systems [1–4]. For example, the SOC can impact the quantum
phase transition from a superfluid to a Mott insulator [9–14].
It also gives rise to an effective Dzyaloshinskii-Moriya
interaction [14–16], which is crucial for realizing such novel
magnetic phases as Skyrmion crystals.

Motivated by the ongoing experiments [5], the emphasis
of recent efforts has shifted timely to an optically trapped
atomic gas with equal Rashba and Dresselhaus SOC within
the Gross-Pitaevskii framework. In the uniform space, a
remarkable feature of a SOC Bose-Einstein condensate (BEC)
in its ground state is the existence of a stripe phase [17–21],
where the density profile exhibits periodic modulation with the
period intrinsically determined by the system’s parameters.
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Adding an external OL on top of such SOC system, as has
been done in recent experiments [5], introduces an external
periodic modulation. Thus an outstanding challenge along this
line is to understand the competition between SOC and OL in
determining the possible ground states.

In this paper, we study the ground-state phase diagram of
an optically trapped BEC with equal-weight combination of
Rashba and Dresselhaus type SOC. Our main findings are
as follows. (1) We have identified four phases of the model
system, including three normal phases with Bloch-type ground
states, and one mixed phase whose ground state involves a
superposition of two Bloch states with opposite wave vectors.
This mixed phase can be seen as generalizing the striped phase
of the uniform counterpart to the presence of optical lattice.
(2) The size of the mixed phase in the phase diagram shrinks
with increasing lattice strength. This is accompanied by a shift
of the single-particle energy spectrum minimum to the edge of
Brillouin zone (BZ), which results in strong modifications of
the phase diagram. (3) We have derived the low-energy excita-
tions of the mixed phase, based on which we propose an exper-
imental probe of the mixed phase using Bragg spectroscopy.

This paper is organized as follows. In Sec. II, we describe
our model system, and introduce the variational ansatz which
allows us to find the ground state of the system. A detailed
analysis of the resulting phase diagram is presented in Sec. III.
Afterwards, a scheme for the experimental detection of the
mixed phase is proposed in Sec. IV, followed by a brief
discussion on experimental conditions in Sec. V. We conclude
with a summary in Sec. VI.

II. OPTICALLY TRAPPED BEC WITH SOC

We consider a three-dimensional (3D) BEC with Raman-
induced SOC in the following geometry: in the x direction, the
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BEC is trapped in an OL, while in the y and z directions, the
confinement is sufficiently strong so that the atomic motion in
these directions can be seen as frozen. At the mean-field level,
the energy functional of our model system can be written
as [17–23] (see Appendix A for the validity of mean-field
treatment for the considered system)

H =
∫

d3r

[
�†H0� + g11

2
|�1|4 + g22

2
|�2|4

+ g12|�1|2|�2|2
]
. (1)

Here, � = (�1,�2)T denotes the two-component condensate
wave function,

∫
d3r|�|2 = N describes the renormalization

with N being the total number of atoms, and gij = 4π�
2aij /m

(i,j = 1,2) labels the interaction strength with aij being the
s-wave scattering length between atoms in individual internal
states. In addition, H0 is a single-particle Hamiltonian which
reads as

H0 = 1

2m
[(px − �kRσz)

2 + p2
⊥] + �

2
σx + δ

2
σz + mω2

⊥
2

×
[(

y − d

2
σz

)2

+
(

z − d

2
σz

)2]
+ V0 sin2(kLx). (2)

Here σx(z) labels the standard Pauli matrices and m is the bare
atom mass. In addition, ω⊥ is the transverse trapping frequency
of a spin-dependent harmonic potential, which confines the
spin-up and spin-down condensate wave function near two
positions displaced by a distance d along the y and z directions.

The above microscopic model is motivated by recent
experiments [5] where Hamiltonian of the form (2) can arise
as follows. First, the SOC with equal Rashba and Dresselhaus
contributions [24–27] has been realized by coupling two
hyperfine states of 87Rb via a Raman process characterized
by a momentum transfer 2�kR , a coupling strength �, a two-
photon detuning δ, and the corresponding recoil energy ER =
�

2k2
R/2m; then, the SOC BEC is loaded adiabatically into a

conventional optical lattice formed by two counterpropagating
laser beams, which align with the Raman beams [5]. Here, kL

is the wave vector of the lattice beams with EL = �
2k2

L/2m

being the recoil energy and V0 the lattice strength. In addition,
the harmonic trapping potential along the x direction is very
weak compared to the strength of lattice, and therefore will be
ignored in our subsequent analysis.

Due to the strong transverse confinement, the BEC is frozen
to the ground state of the harmonic trap along these directions.
This allows a decomposition of the condensate wave func-
tion of the form �(r) = ψT (x)φ(y,z) with φ = (φ−,φ+)T ,
where φ± = 1/(

√
πa⊥)e−[(y±d/2)2+(z±d/2)2]/2a2

⊥ with a⊥ =√
�/(mω⊥) [28], which, as we now show, permits our model

system to be effectively described by an effective 1D energy
functional. We first rescale the energy functional (1) into a
dimensionless form with x → 2kLx, � → �e−d2/2a2

⊥/8EL,
δ → δ/8EL, v = −V0/16EL, cij = N�ω⊥kLaij

4πNdEL
(i = j ), cij =

N�ω⊥kLaij

4πNdEL
e−d2/a2

⊥ (i �= j ), γ = kR/2kL, and ψ(x) → √
nψ(x)

[n = N/Lx with Lx the condensate size in the x directions and
N the total number of atoms; Nd is the number of lattice wells].
Assuming a spin asymmetric interaction with c11 = c22 = c

and δ = 0, we substitute the above ansatz into (1) and, after

integrating out φ(y,z), we obtain an effective 1D mean-field
energy functional of the form

H = 1

Lx

∫ Lx/2

−Lx/2

{
ψ†

[
(px − γ σz)2

2
+ �

2
σx + v cos(x)

]
ψ

+ c

2
(|ψ1|4 + |ψ2|4) + c12|ψ1|2|ψ2|2

}
dx, (3)

with the normalization (1/Lx)
∫ Lx/2
−Lx/2 (|ψ1|2 + |ψ2|2)dx = 1.

Based on Eq. (3), the ground-state phase diagram of an
optically trapped BEC with SOC is governed by the interplay
among five parameters: the SOC parameters of γ and �, the
interaction parameters of c and c12, and the lattice strength v.

Before investigating the effects of an OL on the ground-state
phase diagram, we first briefly review some important features
of a SOC BEC in the uniform space, corresponding to Eq. (3)
with v = 0. There, an exact ground state of the energy
functional (1) exists for a noninteracting system (c = c12 =
0) which takes the form ψ = √

n(− sin θ, cos θ )T eik1x , with
cos θ = R/

√
1 + R2, R = �/2(k1 +

√
k2

1 + �2/4), and k1 =
±

√
γ 2 − �2/4γ 2 (� < 2γ ) or k1 = 0 (� > 2γ ). Depending

on the strength of the Raman coupling �, this ground state
can be either in the “zero momentum” phase with k1 = 0
and 〈σz〉 = 0, where the BEC tends to condense into the zero
momentum state, or in the “plane-wave phase” with k1 �= 0
and 〈σz〉 �= 0 which exhibits broken Z2 symmetry. Turning
on an asymmetric interaction (c1 = c2 > c12) gives rise to
a competition between the kinetic energy and spin-density
interaction. As a result, a stripe phase can arise, which is
favored for small �. The corresponding ground-state wave
function is a superposition of two plane waves with opposite
wave vectors [see Eq. (5) below]. Note that both the double-
minimum structure in the single-particle energy spectrum and
the spin-dependent interatomic interaction are crucial for the
emergence of stripe phase.

Adding an additional OL (v �= 0) to the above SOC BEC
in the uniform space introduces an external spatial periodic
modulation, which leads to two immediate consequences: first,
the plane waves [see Eq. (5) below] are Bragg refracted to
form Bloch waves [see Eq. (4) below]; second, the energy
spectrum forms a Bloch band where an energy gap opens at
the edge of the Brillouin zone. Thus intuitively we expect that
(1) the action of an OL on the stripe phase of a SOC BEC
in the uniform space will cause Bragg refraction of the two
plane-wave components into the Bloch waves, giving rise to
a ground state that is a superposition of Bloch waves with
opposite wave vectors. (2) The modification of OL to the
ground state of the uniform case will strongly depend on how
close the energy minima kmin is to the edge of the Brillouin
zone. In the limit of small Raman coupling, the momentum
associated with the energy minima is kmin ∼ γ . For γ 	 1/2,
kmin is a distance away from the band edge. In this case, the
minima configuration in the energy spectrum is qualitatively
similar as its uniform counterpart, i.e., the energy spectrum is
robust against the effect of OL. This can also be qualitatively
understood from the renormalized mass picture: the effect of
a weak OL gives rise to an effective mass m∗ and an effective
interaction c̃, such that the optically trapped system can be seen
as a uniform fluid with lattice-renormalized parameters. By
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contrast, when γ grows to become γ ∼ 1/2, kmin shifts toward
the band edge. There, the minima configuration becomes
strongly altered by the OL, and we expect significant effect
of an OL on the ground state.

The above intuitive understanding into the effect of an OL
on a SOC BEC motivates us to write down an ansatz for the
ground state of (3) which reads as

ψt = ψk1 + ψ−k1

=
∑
m

{(
a1m

b1m

)
ei(k1+m)x +

(
a2m

b2m

)
ei(−k1+m)x

}
. (4)

Here, ψ±k1 are Bloch functions with wave vector ±k1 and
{aim,bim,i = 1,2} are the corresponding Fourier expansion co-
efficients. Using Eq. (4) to minimize the energy functional (3)
under the normalization condition

∑
i,m |aim|2 + |bim|2 = 1,

we can find the variational parameters and thus determine
the ground state. The ansatz (4) allows us to capture the
competition between the stripe phase and the external periodic
modulation due to OL as follows. (i) When γ �= 0 and v = 0,
corresponding to a SOC Bose gas in free space, the expansion
series is limited to m = 0. In this case, the coefficients
{ai0,bi0}(i = 1,2) can be chosen as a10 = C1 cos θ,b10 =
−C1 sin θ,a20 = C2 sin θ , and b20 = −C2 cos θ with |C1|2 +
|C2|2 = 1. The ansatz (4) then reduces to

ψt = √
n

[
C1

(
cos θ

− sin θ

)
eik1x + C2

(
sin θ

− cos θ

)
e−ik1x

]
, (5)

which recovers exactly Eq. (3) in Ref. [18]. (ii) When v �= 0
and γ = 0, corresponding to an optically trapped Bose gas
without SOC, the ansatz (4) trivially describes a Bloch state
with a period of 2π . (iii) For γ �= 0 and v �= 0, when the
SOC interplays with OL, we see that the atoms can condense
into a state that is a superposition of two Bloch waves with
opposite wave vectors of ±k1. The density profile of this state
exhibits a SOC-induced periodic modification with the period

depending on k1, aside from the period 2π due to the lattice. We
remark that in writing down the ansatz (4), we have ignored
higher-order harmonics with wave vectors like ±3k1, ±5k1,
etc. [18,20,21], which can be justified for our case (see detailed
discussions in Appendix B).

In determining the ground-state phase diagram of the energy
functional (3), we stress the existence of three order param-
eters: the wave vector k1, the longitudinal spin polarization
〈σz〉, and the transverse polarization 〈σx〉 defined by

〈σz/x〉 = 1

Lx

∫ Lx/2

Lx/2
ψ†σz/xψ dx. (6)

Depending on the interplay among the three order parameters,
we identify four phases in the ground-state phase diagram as
follows.

Phase I, the mixed phase, where both components ψ±k1

exist with k1 �= 0, σz = 0, and σx �= 0. The ground state is a
superposition of two Bloch waves with opposite wave vectors.

Phase II, the separated phase with 0 < |k1| < 1/2, σz �= 0,
and σx �= 0. The ground state is described by a Bloch wave with
both nonzero longitudinal and transverse spin polarizations.

Phase III, a single momentum phase with k1 = 0, σz = 0,
and |σx | = 1, where the spin along x direction is fully
polarized.

Phase IV, a single momentum phase with k1 = 1/2, σz = 0,
and σx �= 0, which has no counterpart in the uniform case and
arises uniquely from the periodic modulation.

III. GROUND-STATE PHASE DIAGRAM

In the previous section, we have developed the intuitive
physical picture and predicted features in the ground state of
an optically trapped SOC BEC compared to the uniform case.
Below we derive the complete ground-state phase diagram (see
Fig. 1) by numerically minimizing the energy functional (3)

FIG. 1. Ground-state phase diagram of SOC bosonic superfluid in an OL. The k1 and � (or E) are in units of 2kL and 8EL, respectively. Left
panel: (a) lattice-modified ground-state phase diagram in the �-k1 plane with v = −V0/16EL = 0 (black solid curves), v = −V0/16EL = 0.01
(open triangles), and v = −V0/16EL = 0.1 (open circles). Different colored curves correspond to the different quantum phases, i.e., green
curves: zero momentum phase or normal phase; red curves: separated phase or plane-wave phase; blue curves: mixed phase or stripe phase.
Right panel: subplots are physical quantities of k1 [(b1) and (b2)], energy density E [(c1) and (c2)], transverse and longitudinal spin polarization
〈σx〉 [(d1) and (d2)] and 〈σz〉 [(e1) and (e2)] for single momentum as well as the mixed phase states with respect to � with the parameters of
v = −V0/16EL = 0.01 for (b1)–(e1) and v = −V0/16EL = 0.1 for (b2)–(e2), respectively. Here, red circles correspond to the plane-wave phase
and black triangles represent the mixed phase. Other dimensionless parameters are γ = kR/2kL = 0.4, c = N�ω⊥kLa11/(4πNdEL) = 0.05,
and c12 = N�ω⊥kLa12/(4πNdEL)e−d2/a2

⊥ = 0.04.
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FIG. 2. Effects of lattice strength v on the ground-state phase
diagram. The k1, �, and v are in units of 2kL, 8EL, and −16EL,
respectively. (a) The wave vector of k1 as a function of � for various
lattice strength with v = 0.05 (circles), v = 0.08 (upper triangles),
v = 0.12 (lower triangles), and v = 0.20 (squares). Red dashed line:
the critical value of � at which the transition into the phase (IV)
occurs for v = 0.2; blue dash-dot line: critical value of � when
v = 0.12. (b) The critical value of � when the phase transition
from phase (I) to phase (II) occurs, for γ = kR/2kL with γ = 0.6
(triangles), γ = 0.4 (squares), and γ = 0.2 (circles), respectively.
Other parameters are c = N�ω⊥kLa11/(4πNdEL) = 0.05 and c12 =
N�ω⊥kLa12/(4πNdEL)e−d2/a2

⊥ = 0.04.

using anstaz (4). In particular, we will show how an OL can
affect the momentum minima k1 (see Fig. 2) which plays a
key role in determining the phase diagram, and the density
dependence in the phase diagram (see Fig. 3). We will refer to
a weak OL as the case when V0 	 EL with EL being the recoil
energy (e.g., v = −V0/16EL = 0.01), and a strong lattice as
the case when V0 ∼ EL (e.g., v = −V0/16EL = 0.1). We also
note that for a BEC trapped in an OL, there exist two different
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FIG. 3. Ground-state phase diagram in the �-c plane with
(c − c12)/c = 1/3 being fixed. The � is in units of 8EL and
c = 1/(4π )(kLa11) �ω⊥

EL

N

Nd
. Different phases are labeled and separated

by the solid lines, which are fitting curves of the numerical data (i.e.,
the squares, circles, and triangles). (a) There exist three phases, two
phase transitions, and a tricritical point for γ = kR/2kL = 0.4 and
v = −V0/16EL = 0.05. (b) There are four phases and three phase
transitions for γ = kR/2kL = 0.4 and v = −V0/16EL = 0.12. The
tricritical points are marked by arrows.

types of instabilities that can break the superfluidity of the
system, dynamical instability and Landau instability [29–31],
both of which have been extensively studied in theories
[29–31] and experiments [32,33]. To avoid the instability
problem, in our calculations we have limited ourselves within
the stable parameter regime.

We begin with discussing the effect of an OL on the ground-
state phase diagram of a SOC BEC with fixed interaction
strength. As a benchmark for later analysis, we recall the
phase diagram of the uniform case (v = 0) where analytical
expressions exist [18]: k1 = γ

√
1 − �2/[4F (β,c,c12)] with

F (β,c,c12) = γ 2 − (1 − 4β)(c − c12)n/2 + β(c + c12)n (de-
pending on whether the system is in the stripe phase or
not, β takes the value of 1/4 or 0). Our numerical results
for v = 0 are clearly consistent with those in Refs. [24,25]
[solid black curves in Fig. 1(a)]. In the presence of a weak
OL, our results [v = 0.01, see the curve with open triangles
in Fig. 1(a)] are seen to barely deviate from the uniform
counterpart (v = 0). This is because here the particle energy
minima locate at ±γ = ±0.4. As discussed earlier, for such
case a weak perturbation from OL will barely influence the
position of the minima, instead, it only renormalizes the mass
m∗ and interaction coupling c̃ and c̃12. By contrast, notable
changes in the phase diagram are observed with increasing
lattice strength [see v = 0.1, the curves with open circles in
Fig. 1(a)], including the relative sizes of the mixed phase [blue
curves in Fig. 1(a)], the zero momentum phase [green curves
in Fig. 1(a)], and the behavior of k1 for the separated phase
[red curves in Fig. 1(a)].

To gain more insight into each phase and the corresponding
phase transitions, we have plotted the wave vector k1, the
energy density E, and the spin polarizations 〈σx〉 and 〈σz〉 as a
function of � for a weak OL (v = 0.01) [Figs. 1(b1)–1(e1)],
and a strong OL (v = 0.1) [Figs. 1(b2)–1(e2)], respectively.
We see that the system favors the mixed phase in the limit
of weak Raman coupling �. When � grows, a competition
arises between the mixed phase (I) and the separated phase
(II), with a phase transition from (I) to (II) revealed by the
energy subplot. Further increase of � leads to a transition
from the separated phase (II) to the zero-momentum phase
(III), which can be clearly seen in the k1 and σz subplots. In
addition, by comparing Figs. 1(b1) with 1(b2), we conclude
that the critical value for the onset of the transition from the
separated phase to the zero-momentum phase is insensitive to
the increase of v.

For both cases of weak and strong optical lattices, the
global phase diagrams show several features that are similar
to their uniform counterpart: the transitions from the phase
(I) to (II) and from (II) to (III) occur successively, which are
accompanied by a jump of 〈σz〉 and 〈σx〉 for the first transition.
Yet remarkably, different features arise in the case with strong
OL: the size of the mixed phase is seen to shrink significantly
[Figs. 1(b1) and 1(b2)], while the value of k1 in the separated
phase shows an anomalous increase and shifts toward the band
edge when � grows, accompanied by a dip in σz toward
σz = 0. This is due to the increasingly pronounced role of
OL on modifying the single particle spectrum in the region
near the band edge. For example, when γ = 0.4, the single
particle minimum is not well separated from the band edge,
and therefore is more susceptible to a relative strong OL. We
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stress that this phenomenon can be seen as a signature for the
emergence of phase IV. Further increase in the lattice strength
will cause k1 to reach the band edge (k = 1/2), with 〈σz〉 = 0.
We expect the existence of phase IV and transition from phase
(II) to phase (IV). Interestingly, when γ ∼ 1/2, the ground
state is a Bloch wave with k ∼ 1/2 which does not suffer from
the instability problem typically occurring to a Bloch wave at
the band edge.

To further verify above conjecture about the new phase IV,
we have plotted the momentum minimum k1 as a function of
� for various lattice strength v, as illustrated in Fig. 2(a). We
clearly see that for a sufficiently strong lattice, a plateau is
formed at k1 = 1/2, which enlarges when v further increases.
This results in significant modification in the phase structure
of the system: On one hand, since one more phase emerges
compared to the weak lattice case, there can exist four phase
transitions with increasing �, i.e., (I)−(II)−(IV)−(II)−(III),
as illustrated by the case of v = 0.12 (blue dash-dot line in
the left panel of Fig. 2). On the other hand, the growth of the
phase (IV) may cause one or both of the phase (II)s to vanish,
thus reduce the number of phase transitions from four to three,
even to two. This is observed in the v = 0.2 case (red dashed
line in the left panel of Fig. 2), where three phase transitions
exist, i.e., (I)−(IV)−(II)−(III).

In addition, from the anstaz (4) and Fig. 1 we have seen
that the effect of OL on the phase diagram becomes more
pronounced when k1 (or γ ) approaches 1/2. To gain more
insight into this, we have plotted the critical value of �c taken
from phase (I) to phase (II) as a function of the lattice strength
v (see the right panel of Fig. 2) for two cases: when γ is away
from 1/2, e.g., γ = 0.2, and when γ ∼ 1/2, e.g., γ = 0.4
and γ = 0.6. For both γ = 0.4 and γ = 0.6, we see that �c

is sensitive to the strength of OL, showing a monotonous
decrease for increasing v and asymptotically saturates to
the same value for large v. By contrast, for γ = 0.2, �c is
almost constant with respect to the increasing lattice strength,
indicating a robust phase diagram against the lattice induced
periodic modulation. In this case, the ground-state properties
resemble its uniform counterpart and the phase (IV) never
appears.

Equipped with the above understanding into the effect of
OL on the phase diagram of the model system, we conclude
this section with the discussion on the effect of interaction,
as illustrated in Fig. 3. As stated earlier, the phase diagram
for a weak v is qualitatively similar as its uniform space
counterpart. This is also clearly seen in Fig. 3(a). There, the
transition lines show a similar structure as that in uniform
space (i.e., the gray lines) with slight deviation, which only
becomes visible for large c. As a result, the tricritical points
are close to each other. However, for deeper lattice as shown
in Fig. 3(b), the phase diagram experiences a drastic change
due to the emergence of one more phase, i.e., phase (IV). The
phase (IV) separates phase (I) from (II) and (III), leading to at
most three phase transitions in this system. A tricritical point is
shown to exist, however, among phases (II, III, and IV), which
has no counterpart in the uniform space. One may conjecture
that another tricritical point among phase (I, III, and IV) might
arise from the trend of the triangles and circles by further
increasing c, the discussion of which is however beyond the
scope of the present paper.

IV. EXPERIMENTAL DETECTION

In this section we briefly discuss the experimental identifi-
cation of different phases predicted in this work. We will focus
on the case of mixed phase as other phases can be distinguished
by measuring the wave vector k1 [24,25]. Note that even in the
uniform space, a direct experimental detection of the stripe
phase is currently an outstanding challenge due to the relative
small stripe separation in the density profile and the finite reso-
lution capability [24,25]. In this direction, a recent paper from
Stringari’s group [21] has proposed to increase the fringe con-
trast by reducing the effective interspecies interaction while in-
creasing the wavelength of the fringe with a Bragg pulse, which
may put their experimental detection in a realistic perspective.

Here, we consider an alternative route to probe the mixed
phase, using Bragg spectroscopy as a way to measure the
corresponding excitation energy [34–38]. At the heart of our
proposal with Bragg spectroscopy is the measurement of the
dynamic structure factor of a SOC BEC, i.e., the response
of a BEC to the external density perturbation generated by
the Bragg beam (in this sense the role of Bragg beam in our
scheme is different from Ref. [21] where a π/2 Bragg pulse is
used to cause the increase of the fringe wavelength). Denoting
the linear perturbation by V1 = V

2 [ρ†
qe

−iωt + ρ−qe
+iωt ], where

ρq = ∑
j eiq·rj /� is the Fourier transformed one-body density

operator with q = k1 − k2 the probe momenta, the dynamical
structure factor takes the form [35]

S(q,ω) =
∑

e

|〈e|ρ†
q|0〉|2δ(ω − (Ee − Eg)/�). (7)

Here |0〉 (|e〉) is the ground (excited) state having the energy
Eg (Ee) and Ze = |〈e|ρ†

q|0〉|2 the excitation strength. The
knowledge of dynamic structure factor then allows a direct
probe of the excitation spectrum of the system.

Our goal is thus to calculate the excitation spectrum and the
dynamic structure factor S(q,ω) of the model system in the
mixed phase within the Bogoliubov framework [22,39,40].
Specifically, the condensate wave function (ψ1,ψ2)T can be
decomposed into the ground-state wave function (φ↑0,φ↓0)T

and a small fluctuating term, reading(
ψ1

ψ2

)
= e−iμt

[(
φ↑0

φ↓0

)
+

(
u↑(x)
u↓(x)

)
e−iωt +

(
v∗

↑(x)
v∗

↓(x)

)
eiωt

]
.

(8)

Substituting Eq. (8) into the Gross-Piteavskii equation and
keeping the first-order terms, we obtain the Bogoliubov–de
Gennes (BdG) equation [22,39–41],(

A B

−B∗ −A∗

)(
u

v

)
= ω

(
u

v

)
. (9)

Here u = (u↑,u↓)T , v = (v↑,v↓)T , and matrices A and B are
given by

A =
(

T− + 2c|φ↑0|2 + c|φ↓0|2 c12φ↑0φ
∗
↓0 + �

2

c12φ
∗
↑0φ↓0 + �

2 T+ + 2c|φ↓0|2 + c|φ↑0|2
)

,

B =
(

cφ2
↑0 c12φ↑0φ↓0

c12φ↑0φ↓0 cφ2
↓0

)
, (10)
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with T∓ = −∂2
x /2 ± iγ ∂x + v cos(x) − μ. Note that in the

normal phase, u(x) and v(x) can be taken as Bloch-type so
that a solution of the BdG equation is viable through a Fourier
decomposition as in Eq. (4). However, in the mixed phase,
the effective potential takes the form v cos(x) + |ψ |2, which
involves two periodic functions: an external period 2π due
to lattice and an intrinsic period π/k1 due to SOC. (i) If the
two periods are commensurate, we can always express k1 by
a rational number s/2t , with s < t being coprime integers.
As such, the ground state is still a Bloch wave. The band
structure of the excitation spectrum is preserved, but each
excitation band of a lattice-free SOC gas will split into t

subbands. (ii) On the other hand, it is possible that the two
aforementioned periods become incommensurate. When this
occurs, the ground state will be no longer Bloch wave and
the excitation spectrum turns out to be pointlike. For both
cases, the band-splitting manifests itself in the discretization
of the dynamical structure factors Zn, especially the low energy
part. We emphasize that in the present work, k1 is determined
numerically, which actually leads to the prohibition of the
determination of optimal s and t as well as the determination
of the commensuration of the two periods. To circumvent
this difficulty, and to be more in line with experiments
where the condensate always resides in external trap with
finite dimension, we consider a system trapped in a weak
harmonic trap 1

2mω2
xx

2 with ωx being trap frequency. This
way Eq. (9) can be solved by a discretization in the real
space, i.e., ψ0 = ∑

n ψnδ(x − nδx), which can be obtained
by the imaginary-time evolution method. Correspondingly,
u(x) = ∑

n unδ(x − nδx), v(x) = ∑
n vnδ(x − nδx), and

Z(q,j ) =
∣∣∣∣
∫

dx eiqx/�(u†
jφ0 + φ

†
0v

∗
j )

∣∣∣∣
2

. (11)

Note that while the momentum �q is no longer a good
quantum number [35], the momentum transferred by Bragg
refraction is well defined. When the wavelength of the
perturbation is smaller than the linear size of the condensate,
the linear response is supposed to resemble its uniform space
counterpart, which implies q >

√
ωx [42–44].

Before proceeding, it is instructive to briefly recall some
recent work on the dynamic and static structure factors of
the stripe phase of a SOC BEC in the uniform case [20], as
well as in the plane-wave phase and zero-momentum phase
of a SOC BEC in an OL [22]. As pointed by Ref. [20], a
band structure featuring a vanishing excitation energy and
a divergent behavior of the structure factor at the Brillouin
wave vector can be seen as an unambiguous evidence for
the characteristic density modulations of the stripe phase.
In Ref. [22], the linear-to-quadratic crossover in both the
low-energy spectrum and the static structure factor presents
a striking manifestation of the transition from an ordinary
band to a flat band of a SOC BEC in an OL. Experimentally,
Bragg spectroscopy has been recently used to reveal the
structure of the excitation spectrum in a BEC with SOC in
free space [45–47]. In particular, the measurement of the static
structure factor combined with Feynman’s relation has allowed
the experimental verification of the roton-maxon dispersion in
these systems. As we will see, this work complements our
present study, and altogether provides a complete description
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FIG. 4. Space density along x direction [(a) and (d)], momentum
density of ψp = 1/

√
Lx

∫
dx e−ipx |ψx |2 [(b) and (e)], and the

corresponding static structure factor Z1 [(c) and (f)] of an optically
trapped SOC BEC in the mixed phase. The x and p (or q)
are in units of 1/(2kL) and 2kL, respectively. The dimensionless
parameters γ , �, c, and c12 read γ = 2kR/kL, � → �/8EL c =
N�ω⊥kLa11/(4πNdEL), and c12 = N�ω⊥kLa12/(4πNdEL)e−d2/a2

⊥ .
We take γ = 0.35, c = 0.1, c12 = 0.08, � = 0.1, and v = 0
[(a)–(c)]; � = 0.04, v = 0.1 [(d)–(f)]. A weak harmonic trap with
the trap frequency �ωx/8EL = 0.003 is included in the numerical
calculations.

of how to probe the ground-state phase diagram of an
optically trapped SOC BEC in the superfluid regime by Bragg
spectroscopy.

We now detail our discussions on the Bragg spectroscopy
of a SOC BEC in an OL. Let us first describe as a reference
the Bragg spectroscopy of a lattice-free SOC BEC in the stripe
phase. Both our results for the density profile along the x

direction [see Fig. 4(a)] and the static structure factor Z1 as a
function of q [see Fig. 4(c)] are consistent with Ref. [20]: the
density profile exhibits periodic modulation, and the structure
factor is divergent around ±2k1 ∼ 0.7 [see Fig. 4(c)], both
being the characteristic features of the stripe phase with sponta-
neously broken continuous symmetries. By contrast, the inclu-
sion of an OL (v �= 0) results in complicated density distribu-
tion [see Fig. 4(d)], where an obvious periodicity is absent [48].
Unlike the uniform counterpart, in particular, the structure
factors Z1 for the lowest level [see Fig. 4(f)] exhibit multiple
peaks at momenta ∼±0.7,±0.3,±0.4, which can be seen as a
signature for the mixed phase which lacks the periodicity. This
phenomena can be understood in a similar spirit as Ref. [20]:
there exists inequalities of m0(F )m0(G) � |〈[F,G]〉|2 with
m0(F ) = ∑

l(|〈0|F |l〉|2 + |〈0|F †|l〉|2). Here we choose the
operators F = ∑

j eiqxj and G = ∑
j (pxe

−i(q−qB )xj + H.c.)/2
with qB being the arbitrary momentum to be determined. Then,
the commutator 〈[F,G]〉 = qxN〈eiqBx〉 is proportional to the
density modulations of the mixed phase, which are plotted
in Fig. 4(b) for v = 0 and Fig. 4(e) for v �= 0, respectively.
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Without the OL (v = 0), 〈eiqBx〉 is nonzero at qB = 2k1. In this
case, the m0(F ) and m0(G) can be shown to be proportional to
Z1(q) and |q − qB | in the first Brillioun zone, respectively,
resulting in a divergence of Z1 around 2k1. In contrast,
adding an OL (v �= 0) can give rise to a mixed state which is
nonperiodic [48]. In addition, due to the appearance of multiple
peaks in 〈eiqBx〉 at ±0.3,±0.4 [see Fig. 4(e)], the structure
factor at these momenta becomes divergent [see Fig. 4(f)]. We
conclude that the appearance of multiple peaks beyond 2k1 in
the structure factor can serve as a criterion for the identification
of the mixed phase studied in this work.

V. EXPERIMENTAL ASPECTS

The experimental realization of the phase diagram studied
in this work requires control of five parameters: the SOC
parameters γ and �, the lattice strength v, and the interatomic
interactions c and c12. In current experiments [5], the relevant
experimental parameters are given as follows. The wave
vectors of generating the OL and SOC reads kL = 2π/

√
2λL

with λL = 1540 nm and kR = 2π/
√

2λR with λR = 784 nm,
respectively, leading to a dimensionless SOC parameter γ =
kR/2kL = 0.98. The γ can be further tuned by the method of
shaking [49,50]: a fast coherent modulation of the Raman
coupling � = �0 + �� cos(ω0t) gives rise to a modified
SOC parameter such that γ → γ J0(��/ω0), thus allowing
a control of γ via varying the laser parameters. The detuning δ

and the Rabi frequency � are free parameters and in the exper-
iment they can be tuned by changing of frequency difference
and the intensity of Raman beams, respectively. The lattice
strength in Ref. [5] is set by V0 = −1.4EL, corresponding
to the dimensionless parameter v = 0.09. Moreover, v can
be easily varied from 0 to 0.5 provided the BEC is in the
superfluid regime [5] (corresponding to a lattice strength of
V0 from 0EL to 8EL). In addition, the typical values of ratio
cij = N�ω⊥kLaij

4πNdEL
(i = j ) range from 0 to 0.2 and the variation

of gij can be achieved in a very versatile manner by optical
Feshbach resonance [51] or confined induced resonance. The
ratio of c/c12 can be adjusted as c/c12 = exp(−d2/a2

⊥) by
changing the relative displacement d of the two-component
densities located in the harmonic trap.

Upon reaching the aforementioned parameter regimes,
central to testing the validity of the physics in this article
concerns the experimental realization of an optically trapped
SOC BEC in superfluid phase in the crossover from 3D to
quasi-1D. The present facilities have allowed that a quasi-1D
BEC without SOC and superfluidity can be both achieved
below a critical temperature at the nodes of 2D optical
lattice potentials. Furthermore, adding SOC to a quasi-1D
BEC allows one to combine the benefit of the reduced
dimensionality with the advantage of working with large, yet
coherent samples. Therefore, the predicted phase diagram of
an optically trapped Bose gas here is expected to be observable
within the current experimental capabilities.

Finally, we should bear in mind the assumptions that
underly our results. First, our study is based on the Gross-
Pitaevskii mean-field theory. Theoretically, it has been estab-
lished that, at the mean-field level, the Gross-Pitaevskii theory
can well describe both the static and dynamic properties of a

BEC with SOC. The validity of the Gross-Pitaevskii equation
can be tested a posteriori by evaluating the quantum depletion
of the condensate as shown in Appendix A. For a more rigorous
proof of the validity of Gross-Pitaevskii equation in uniform
case, we refer to the Supplemental Material in Ref. [52].
Second, our treatment is limited to the superfluid regime [53],
where the lattice strength v is tuned below the critical value
above which the system is supposed to be in the Mott phase.

VI. CONCLUSION AND OUTLOOK

In summary, we have obtained the ground-state phase
diagram of a SOC BEC trapped in a 1D OL, where three
normal phases and one mixed phase are identified. We find that
while for a weak OL the phase diagram resembles its uniform
counterpart, a strong OL will lead to significant modifications.
In particular, the ground state of the mixed phase is represented
by a superposition of two Bloch waves with the opposite Bloch
vector k1, which involves an interplay between the periodicity
of the OL and the periodicity due to the SOC. Remarkably,
when these two periods are incommensurate, the ground state
exhibits no periodicity even though the system’s Hamiltonian
is periodic. We hope this work can contribute to the ongoing
experiments of loading a SOC BEC into an OL.
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APPENDIX A: VALIDITY OF GROSS-PITAEVSKII
MEAN-FIELD THEORY

Here, we justify the Gross-Pitaevskii mean-field approx-
imation used in this work a posteriori by evaluating the
quantum depletion. For a uniform BEC, the quantum de-
pletion is ∼

√
na3 and the mean-field approximation is valid

provided na3 	 1. While this result is modified by a prefactor
(k2

R/gn)
1/4

[18] in a SOC BEC, the quantum depletion remains
small for the relevant experimental parameters and can be
safely ignored. On the other hand, for an optically trapped
quasi-1D SOC BEC studied in this work, in addition to the
phase fluctuations due to the tight confinement along y and
z directions, the effect of a strong lattice potential can also
increase quantum fluctuations and thus affect the mean-field
approximation. Nevertheless, as we will show below, for
the considered parameter regimes, the quantum depletion
of the model system remains sufficiently small, which justifies
the mean-field description.

Our starting point is the 3D Gross-Piteavskii equation
derived by variation of the energy functional (1) with respect
to �†

i�
∂�

∂t
=

[
H0 + Vext (r) + 1

2
(g + g12)�†�

+ 1

2
(g − g12)(�†σz�)σz

]
�. (A1)
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We first apply the Bogoliubov theory to Eq. (A1) and
decompose the 3D condensate wave function �(r) into the
ground-state wave function �0(r) and a small fluctuating term
δ�(r) reading

δ�(r) = e−iμt/�

[(
U1(r)
U2(r)

)
e−iωt +

(
V1(r)
V2(r)

)
eiωt

]
. (A2)

Due to the strong transverse confinement which freezes
the atomic motion along these directions, the fluctuating
amplitudes of Ui(r) and Vi(r) (i = 1,2) can be simplified
into Ui(r) = ui(x)φ(y,z) and Vi(r) = vi(x)φ(y,z) with φ =
(φ−,φ+)T and φ± = 1/(

√
πa⊥)e−[(y±d/2)2+(z±d/2)2]/2a2

⊥ . Sub-
stituting Eq. (A2) into Eq. (A1) and expanding ui(x) and vi(x)
in the Bloch form, we obtain the dimensionless Bogoliubov–de
Gennes equations (9) in the main text. By solving Eqs. (9)
numerically, both the Bogoliubov excitation spectrum and the
amplitudes in Eq. (A2) can be extracted. Then the quantum
depletion of SOC BEC is given by

�N

N
= 1

N

∑
j

∑
i=1,2

∑
q

∫
d3r

∣∣V j

q,i(r)
∣∣2

, (A3)

where N denotes the total number of atoms, �N is the
number of noncondensed particles, and V

j

q,i(r) are the 3D
Bogoliubov amplitudes of the elementary excitations. The
summation involves all Bogoliubov bands j with i = 1,2
labeling the two-component amplitude, and the quasimomenta
q in the first Brillouin zone. Note that we set qy = qz = 0
in our detailed calculations, because the strong transverse
confinement freezes the fluctuations in these directions.

0.00 0.05 0.10 0.15 0.20
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1
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FIG. 5. Quantum depletion as a function of the lattice strength
v. Here, the lattice strength v is in units of −16EL. The quantum
depletion is always less than 2%, thereby confirming the validity of
the Gross-Piteavskii mean-field theory. In our numerical simulations,
we have chosen a quasi-1D SOC BEC with the s-wave scattering
length of kLa11 = kLa12 = 3.1 × 10−4, which consists of ∼2π × 104

atoms that are confined in a trap with frequency ω⊥ = 10 × EL/h

in transverse directions. Here, we choose the experimental param-
eters: kL = 2π/

√
2λL with λL = 1540 nm and EL = h × 483 Hz

in Ref. [5]. Along x direction, the SOC is subjected to an OL
consisting of ∼100 lattice well, i.e., ∼2π × 102 atoms per well.
Other parameters are γ = kR/(2kL) = 0.4, � → �/8EL = 0.25,
and c = c12 = N�ω⊥kLa11/(4πNdEL) = 0.05.

In Fig. 5, we present the quantum depletion δN/N as
a function of the periodic potential depth v, taking typical
experimental parameters. For the parameters relevant in our
work, we have verified that the quantum depletion is always
less than 2%, thereby confirming the validity of the Gross-
Pitaevskii approach.

APPENDIX B: VALIDITY OF ANSATZ (4)

In this section, we discuss the validity of the ansatz (4),
based on which we have derived the ground-state phase
diagram of an optically trapped BEC. To put our discussion
into perspective, we note that for a SOC BEC without lattice,
the ansatz (4) is not the stationary solution of the Gross-
Pitaevskii equation in the stripe phase. As pointed out by
Ref. [20], this ansatz has neglected the high-order harmonics
of the condensate wave function generated by the interatomic
interactions, which is analogous to the frequency doubling
in nonlinear optics [54,55]. Specifically, the condensate will
not only occupy the ±k1 states, but also the states with
momenta ±3k1, ±5k1, etc., which result in corrections to the
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FIG. 6. Left panel: density profile along the x direction for
lattice strength v = 0 (a1), v = 0.01 (b1), v = 0.1 (c1), and v = 0.2
(d1). Right panel: momentum density profile along the momentum
k with the different lattice strength of v = 0 (a2), v = 0.01 (b2),
v = 0.1 (c2), and v = 0.2 (d2). The x, p, and v are in units of
1/(2kL), 2kL, and −16EL, respectively. In our numerical simulations,
we have chosen a quasi-1D SOC BEC with the s-wave scattering
length of kLa11 = 3.1 × 10−4 and kLa12 = 2.5 × 10−4, consisting
of ∼2π × 104 atoms confined in a trap with a transverse trapping
frequency ω⊥ = 10 × EL/h. We take typical experimental parame-
ters kL = 2π/

√
2λL, with λL = 1540 nm and EL = h × 483 Hz in

Ref. [5]. In the x direction, the SOC is subjected to an OL with
∼100 lattice well, and therefore, there are ∼2π × 102 atoms on the
average in each well. For other parameters, we take γ = kR/(2kL) =
0.4, � → �/8EL = 0.03, c = N�ω⊥kLa11/(4πNdEL) = 0.05, and
c12 = N�ω⊥kLa12/(4πNdEL)e−d2/a2

⊥ = 0.04. For the weak har-
monic trap along the x direction, we choose the trapping frequency
ωx/8EL = 0.0025.
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energy density obtained from the ansatz (4). These corrections
are usually small, in particular when the density is not
very high and interaction strength is small, and will only
become pronounced in the stripe phase where they need to be
properly taken into account. However, when an OL is present
(particularly for strong OL), where the plane-wave functions
are Bragg refracted to form Bloch waves, it is expected
these correction can influence the entire phase diagram. The
improved ansatz for the energy functional (3) including all
these effects can be assumed as

ψt =
∑

l=0,1,...

{ψ(2l+1)k1 + ψ−(2l+1)k1}

=
∑
m

{(
a1m

b1m

)
ei(k1+m)x +

(
a2m

b2m

)
ei(−k1+m)x

+
(

a3m

b3m

)
ei(3k1+m)x +

(
a4m

b4m

)
ei(−3k1+m)x + · · ·

}
. (B1)

Thus ansatz (4) in the main text corresponds to a truncation of
Eq. (B1) to the first term with l = 0, with higher-order terms

ignored. Below we verify the validity of such truncation, by
numerically solve Gross-Pitaevskii equation with imaginary
time algorithm.

Figure 6 presents the numerical results of space and
momentum density profiles for γ = 0.4 (corresponding to
cos θ = 0.93 and k1 = 0.4). Note that for v = 0, the ansatz (4)
is expected to reduce to Eq. (5) describing the stripe phase
of a uniform SOC BEC. This is also confirmed by our direct
numerical calculation for the momentum density [Fig. 6(a2)],
which clearly display two peaks around ±k1. The cases
with OLs are shown in Figs. 6(b2)–6(d2), where we have
considered the lattice strength v = 0.01, 0.1, and 0.2. We see
that when the lattice is weak, there are two sharp peaks at
around ±k1. When lattice strength increases, the two peaks
at ±k1 remain dominant compared to other emerging peaks
(note that for v = 0.2, k1 is shifted to 0.49 due to strong
periodic modulation). This suggests that we can neglect the
contributions of the high-order harmonics of the condensate
wave function generated by the nonlinear interactions. We thus
conclude within our calculation that the ansatz (4) provides a
satisfactory description of our model system for v up to 0.2.
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