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The exact velocity-gauge minimal-coupling Hamiltonian describing the laser-matter interaction is transformed
into another form by means of a series of gauge transformations. The Hamiltonian corresponding to this point
of view is valid for an arbitrary time- and space-dependent laser field, also known as a nondipole field. In effect,
the Hamiltonian represents a generalization of the original velocity-gauge minimal-coupling Hamiltonian in the
sense that the particle’s (classical) velocity in the laser propagation direction is also explicitly accounted for by
a new operator term. Imposing the so-called long-wavelength approximation (LWA) on the field, i.e., assuming
the laser wavelength being much larger than the extent of the atomic system, the spatial dependence of the field
can be neglected and the interaction Hamiltonian reduces to a simpler form. Nevertheless, the resulting LWA
Hamiltonian includes the effect of the magnetic-field component of the laser, which is in clear contrast with
the usual dipole approximation Hamiltonian derived by imposing the LWA directly on the initial velocity-gauge
minimal-coupling Hamiltonian. As such, the weak-field condition necessary to justify neglecting the magnetic
field, and the LWA condition, can be considered independently in this formalism, making it an attractive alternative
for a broad range of applications in strong-field physics. We demonstrate that, from a numerical perspective,
this form of the light-matter interaction is advantageous compared to its standard velocity-gauge counterpart as
it gives rise to faster convergence properties when describing ionization dynamics in superintense fields beyond
the dipole approximation.
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The time-dependent dynamics of matter in interaction with
a laser field is usually described within the so-called semiclas-
sical approximation. In this approximation, and due to the vast
number of photons involved, the laser field may be considered
equivalent to a classical electromagnetic field [1], meaning
that the formalism of second quantization, i.e., the quantization
of the electromagnetic radiation [2], is not necessary in describ-
ing the laser-matter interaction. Nevertheless, the dynamics of
the atomic system itself is treated fully quantum mechanically
by means of the time-dependent Schrödinger equation, or in
the relativistic limit, the time-dependent Dirac equation.

The laser-matter interaction is often simplified by imposing
the so-called dipole approximation, one of the most frequently
used approximations in theoretical physics. Here several
equivalent formulations exist, the most common ones being
the velocity gauge, the length gauge, and the Kramers-
Henneberger frame; see, e.g., [3] and references therein.
In the dipole approximation the laser field is treated as
a homogeneous time-varying electric field, i.e., any spatial
dependences of the electric field as well as the entire magnetic
component of the laser are neglected altogether. The dipole
approximation is a type of long-wavelength approximation
(LWA) in that it is likely to be valid whenever the laser
wavelength is much larger than the relevant atomic dimensions
in question. However, justifying the dipole approximation
approach requires, in addition to the long-wavelength con-
dition, that the laser intensity should not be so high that
the homogeneous magnetic-field component [4–11] and/or
relativistic effects [12–14] come into play.
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It is generally well known that among the equivalent
versions of the dipole approximation, the velocity-gauge
formulation of quantum mechanics is often beneficial in the
description of matter interacting with electromagnetic fields.
Now how does this comply with the gauge principle, merely
stating that all physical observables are gauge invariant?
Of course the gauge principle cannot be violated, meaning
that two representations, e.g., the velocity- and length-gauge
formulations, must yield identical results in an exact treatment.
However, as most practical approaches involve at least some
level of approximation, that being either an intentional restric-
tion, for instance, the LWA, or simply truncation of the exact
problem, the choice of gauge can have critical impact on the
modeling of the physical processes. In the case of the velocity
gauge, it is often found to be the more convenient choice due
to its faster convergence criteria from the point of view of a
discrete representation, in particular in the strong-field limit.

With the development of x-ray lasers, for instance, the
European XFEL that is currently under construction at the free-
electron laser facility at DESY in Hamburg, the wavelength of
the laser field will ultimately become so short that the validity
of the dipole approximation becomes questionable [15]. The
European XFEL will generate extremely intense x-ray pulses
in the wavelength range from 0.05 to 4.7 nm, opening up
many new opportunities for manipulating and controlling
matter at the most fundamental level and paving the way
for studies of atomic and molecular systems under extreme
nonperturbative conditions. Nondipole effects induced by the
magnetic field have already been observed experimentally
in laser-matter interactions in the optical regime [16,17].
Motivated by the current developments and the need to include
beyond-dipole (nondipole) effects for a proper description of
the underlying dynamics, and considering the question of
gauge choice in theoretical modeling, we here propose an
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alternative velocity-gauge form of the light-matter interaction
valid beyond the dipole approximation, thus revisiting the
question of equivalent formulations of electrodynamics.

In this work we transform the nondipole minimal-coupling
Hamiltonian of a massive charged particle in an explicitly
space- and time-dependent electromagnetic field into another
form by executing a sequence of (unitary) gauge trans-
formations. The transformed Hamiltonian takes a relatively
simple form that proves to be both useful and appealing
in the description of strong-field nondipole dynamics. The
Hamiltonian from this alternative point of view contains an
operator of the form k̂ · p (k̂ being a unit vector pointing
in the laser propagation direction), whose prefactor happens
to be equal to the velocity component along the direction
of propagation for the corresponding classical (free) particle
subjected only to the laser field. As such, we will refer to the
resulting gauge as the propagation gauge.

In the nonrelativistic limit, the evolution of a wave packet
representing a particle of mass m and charge q in a (Coulomb)
potential V and laser field A is governed by the time-dependent
Schrödinger equation i�∂t�0 = H0�0, with the usual exact
minimal-coupling Hamiltonian

H0 = 1

2m
[ p − q A(η)]2 + V (r), (1)

where the classical electric E and magnetic B fields are given
by E = −∂t A and B = ∇ × A, respectively. Here we require
that A(η) satisfies the wave equation and depends on both space
and time coordinates in the following way: η = ωt − k · r ,
where ω is the angular frequency of the field, k = ω/c k̂ is the
wave vector, and c is the speed of light. Imposing the Coulomb
gauge restriction ∇ · A = 0 on the field, the Hamiltonian is
cast in the form

H0 = p2

2m
+ V − q

m
A · p + q2

2m
A2, (2)

where the velocity-gauge form of the Hamiltonian is recog-
nized by the A · p interaction term. While the A2 term in
the Hamiltonian (2) is not contributing to the light-matter
interaction within the dipole approximation, it is well known
that it plays a central role in the description of the nondipole
dynamics of atoms and molecules in superintense laser fields
[4–11,18–22]. In particular, the main nondipole contribution
due to the magnetic field is accounted for by this operator. From
a theoretical point of view, it is common to assume that the
space-dependent vector potential can be expanded in powers
of k · r , where the term linear in k · r represents the dominant
nondipole correction [4–11,15,18–22]. In this approach, the
nondipole operator takes a similar form (up to a prefactor) as
the ordinary dipole interaction operator as represented in the
length-gauge formulation of the light-matter interaction, i.e.,
−q E · r [3], except that its line of action is now directed along
the laser propagation direction instead of the laser polarization
axis.

In our alternative formulation of the light-matter inter-
action, the last term in Eq. (2) is in effect substituted by
a velocity-gauge-like operator, acting in the direction of
propagation. To this end, we define a recursive sequence of
gauge transformations of the form

�n = Un�n−1 = eiαn�n−1, (3)

with

αn(η) = an

mc2

�ω

∫ η

−∞

[
q A(η′)

mc

]2n

dη′, (4)

where an are real transformation weights for n = 1,2,3, . . ..
Gauge invariance is maintained in each step by transforming
the wave function under the unitary transformations, resulting
in different corresponding Hamiltonians in the time-dependent
Schrödinger equation. In each transformation step, the Hamil-
tonian from the new point of view is then given recursively by

Hn = UnHn−1U
†
n + i�U̇nU

†
n, (5)

where Hn defines the “new” Hamiltonian that is derived from
the “old” Hamiltonian Hn−1 by means of the transformation
Un. Using the operator identity known as the Baker-Hausdorff
lemma [23],

eiabe−ia = b + i

1!
[a,b] + i2

2!
[a,[a,b]]

+ i3

3!
[a,[a,[a,b]]] + · · · , (6)

[a,b] = ab − ba denoting the commutation relationship be-
tween two Hermitian operators a and b, the effect of the unitary
transformation Un is evaluated. The resulting Hamiltonian Hn

is related to its predecessor Hn−1 by

Hn =Hn−1 − anmc2

(
q A
mc

)2n

+ a2
n

mc2

2

(
q A
mc

)4n

+ an

c

2

{(
q A
mc

)2n

,k̂ · p
}

+ anmc2
n−1∑
i=1

ai

(
q A
mc

)2(n+i)

,

(7)

where curly brackets denote the anticommutator notation
{a,b} = ab + ba.

When applying Eq. (7) to the original velocity-gauge
Hamiltonian (2) and choosing a1 = 1/2, the following ex-
pression for H1 is obtained:

H1 = p2

2m
+ V − q

m
A · p + 1

4

(
q2 A2

m2c
k̂ · p + k̂ · p

q2 A2

m2c

)

+ 1

8

q4

m3c2
A4. (8)

Comparing Eqs. (2) and (8), we note that the A2 term in the
former has been replaced by the A2 (k̂ · p) and (k̂ · p) A2

terms in the latter. In addition, due to the transformation,
a higher-order term proportional to A4 has emerged in
Eq. (8). Now, in order to eventually arrive at a Hamiltonian
formulation where only those light-matter interaction terms
explicitly containing the momentum operator p are retained,
i.e., successively removing terms proportional to A2n, the
transformation (3) is repeated with n = 2,3,4, . . .. To this end,
the corresponding transformation weights must be defined in
the following way:

an = 1

2

n−1∑
i=1

aian−i =
(

2n

n

)
1

4n(2n − 1)
, (9)
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with a1 = 1/2 and ( a

b
) = a!

b!(a−b)! being the binomial coeffi-
cient. Then, by applying the recursion formula (7) n times, the
corresponding transformed Hamiltonian is simply given by

Hn = p2

2m
+ V − q

m
A · p + c

2

n∑
i=1

ai

{(
q A
mc

)2i

,k̂ · p
}

+ mc2

2

n∑
i=1

(
q A
mc

)2(n+i) n−i+1∑
j=1

ai+j−1an−j+1. (10)

In a nonrelativistic treatment, one must require that |q A|/m <

c, i.e, the velocity of the particle in the field is never allowed
to exceed the speed of light. This means that all the terms
in the last (double) sum in Eq. (10) can be made arbitrarily
small for increasing value of n, i.e., in the limit n → ∞
the corresponding sum vanishes and the Hamiltonian (10)
simplifies to

H ≡ lim
n→∞ Hn

= p2

2m
+ V − q

m
A · p + c

2

∞∑
i=1

ai

{(
q A
mc

)2i

,k̂ · p
}
. (11)

The Hamiltonian (11) constitutes the main result of this
work. It is valid for an arbitrary time- and space-dependent
(nondipole) laser field A(η) provided the condition |q A|/m <

c holds. However, since this condition is violated only for
laser fields strong enough to accelerate the corresponding
classical particle to superrelativistic velocities, any description
of the light-matter interaction within the (nonrelativistic) time-
dependent Schrödinger picture is defective per se. So, without
loss of generality, the full Hamiltonian (11) is equivalent to
the ordinary minimal-coupling Hamiltonian in Eq. (2), in
the sense that they can be used interchangeably and their
corresponding wave functions are related exactly by the unitary
transformations (3). Comparing Eqs. (2) and (11), we note that
the last term proportional to A2 in the first Hamiltonian has
been replaced by an operator series with terms proportional
to k̂ · p in the second. As a matter of fact, the sum over all
the prefactors in the series expansion in Eq. (11) turns out to
be equal to the component of the velocity in the propagation
direction of the corresponding free (classical) particle moving
in the laser field, i.e., the velocity in the propagation direction
is simply given as

v k̂(η) = ck̂
∞∑
i=1

ai

[
q A(η)

mc

]2i

. (12)

This is an important result that provides an interpretation of
the terms in the Hamiltonian (11). Note the similarity between
the two interaction terms −q/mA · p and (v k̂ · p + p · v k̂)/2,
where −q/mA and v k̂ correspond to the velocity components
of a classical particle subjected to the laser, along the directions
of polarization and propagation, respectively. As such, we
suggest that the Hamiltonian (11) represents a generalization of
the original velocity-gauge minimal-coupling Hamiltonian (2),
in that the velocity in the laser propagation direction is
explicitly taken into account in the present formulation.
Therefore, we will adopt the notion of the propagation gauge
for the corresponding light-matter interaction scheme.

An important difference between the propagation
gauge (11) and the velocity gauge (2) is revealed when we
assume the LWA, i.e., A becomes a purely time-dependent
function. Then Eq. (11) reduces to

H LWA = p2

2m
+ V − q

m
A0 · p + c

2

(
q A0

mc

)2

×
[

1 + 1

4

(
q A0

mc

)2

+ 1

8

(
q A0

mc

)4

+ · · ·
]

k̂ · p, (13)

where A0 ≡ A(t). Furthermore, neglecting all terms but
the first one in the square brackets in Eq. (13), the re-
duced Hamiltonian takes the same form as the one used
in Refs. [6,21,22,24]. Adopting instead the LWA directly
to the minimal-coupling Hamiltonian (2), the usual dipole
approximation Hamiltonian is retrieved,

H LWA
0 = p2

2m
+ V − q

m
A0 · p, (14)

where the purely time-dependent and unimportant q2

2m
A2

0(t)
term effectively cancels out by a phase (gauge) transforma-
tion [10].

Comparing the two versions of the LWA interaction
Hamiltonians (13) and (14), the first one contains an extra
operator term of the form k̂ · p, i.e., a velocity-gauge-like
operator acting along the propagation direction of the laser.
This term plays the role of the radiation pressure originating
from the combined effect of the electric and magnetic fields, as
represented by the Poynting vector in Maxwell’s classical the-
ory of electromagnetism. Radiation pressure is obviously not
supported by the usual dipole approximation Hamiltonian (14)
where any field-driven motion along the direction of propaga-
tion is neglected altogether. At first sight, the appearance of
the additional operator in Eq. (13) that has no counterpart
in the ordinary dipole approximation Hamiltonian (14) might
seem inconsistent, given that both Hamiltonians have been
derived from the very same assumption, namely, that the vector
potential is taken to be purely time dependent.

Then the natural question arises: How is it possible that
the very same assumption on the laser field, i.e., the LWA,
can have such a different impact? The answer is that it is
a question of choice of gauge and the fact that the validity
range of an imposed approximation generally depends on this
choice. The Hamiltonians (2) and (11) are both of general
validity but they correspond to two different points of view
(gauges) from which the time-dependent Schrödinger equation
may be represented. As such, in a complete treatment they
would always yield identical observables, i.e., the results
are gauge invariant. However, once an approximation has
been adopted, e.g., the LWA on the field, the resulting
forms (13) and (14) are no longer equivalent and they would
generally yield diverging results. We would here like to note
the similarity to the so-called gauge problem that has been
identified in connection with the strong-field approximation
(SFA) for describing the ionization and high-order harmonic
generation dynamics of atoms and molecules in intense laser
fields [25]. It is well known that the length- and velocity-gauge
formulations of the SFA are likely to yield quite different
results, often differing by several orders of magnitude. This
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problem is merely an example of the more general principle
that states that within an approximate framework the prediction
of physical observables become gauge dependent [3]. The
radiation pressure is a phenomenon that depends on the
laser intensity per se, rather than its frequency, and therefore
it should be considered independently of the extension of
the system and long-wavelength assumptions. Therefore, we
suggest that the LWA Hamiltonian in the propagation gauge
form (13) is of more general validity than its velocity-gauge
counterpart (14) and this in spite of the fact that they are
indeed both derived by imposing the very same restriction on
the vector potential.

We now turn to an application of the propagation gauge
(PG) to a relevant physical problem and show that numerical
calculations yield identical, yet faster converging results
compared to those obtained within the already well established
velocity-gauge (VG) description. In order to compare the PG
and the VG on an equal footing, we resort to a first-order
spatial expansion of the vector potential in the latter case
(see, e.g., Ref. [10]); this in order to include a beyond-dipole
interaction term describing the radiation pressure, which is
already inherently accounted for in the PG picture. For this
demonstration, we retain only the first leading-order term
from the LWA Hamiltonian (13) such that the VG and PG
Hamiltonians become equivalent (within an exact treatment)
and take the forms

H VG
1st = p2

2me

+ V + e

me

A0 · p − e2

mec

(
A0 · d A0

dt

)
k̂ · r,

(15)

H PG
1st = p2

2me

+ V + e

me

A0 · p + c

2

(
eA0

mec

)2

k̂ · p, (16)

where me and −e are the electron mass and charge, re-
spectively, and the system under study is chosen to be
atomic hydrogen. The time-dependent Schrödinger equation
(TDSE) is discretized by expanding the three-dimensional
wave function on a product basis of B-spline functions Bk

and spherical harmonics Ylm,

�(r,t) =
kmax∑
k=1

lmax∑
l=0

l∑
m=−l

cklm(t)
Bk(|r|)

|r| Ylm(r̂), (17)

where a total number of kmax B splines is distributed on
some radial domain |r| ∈ [0,Rmax]. We would here like to
point out that the resulting Hamiltonian matrix systems are
of the same size and complexity when discretization of the
Hamiltonians (15) and (16) is performed. Any difference when
it comes to computational performance relates to different
convergence criteria with respect to the basis sizes kmax and
lmax and possibly the propagation time step. The matrix system
of ordinary differential equations is propagated in time with
the same scheme as described in Refs. [10,11]. For the laser
field, we choose a linearly polarized XUV pulse of sine-square
shape with a central photon energy �ω = 3.5 a.u. At maximum
intensity, the peak electric-field strength reaches E0 = 45 a.u.
and the pulse lasts for a total of 40 optical cycles. Such laser
parameters have recently been found to induce beyond-dipole
effects associated with the radiation pressure [10] and that

FIG. 1. Momentum expectation value of the electron along the
laser propagation direction vs time during the laser-matter interaction
between a hydrogen atom and an XUV laser pulse, as obtained with
the velocity-gauge (thin black line) and propagation gauge (thick red
line) versions of the interaction Hamiltonian, i.e., Eqs. (15) and (16),
respectively. The electric-field strength E0 = 45 a.u. at peak intensity,
the photon energy �ω = 3.5 a.u., and the pulse is modeled by a
sine-square envelope profile (dashed black line) lasting for a total of
40 optical cycles, i.e., 71.8 a.u.

without introducing significant corrections due to spatial
variations in the electric and magnetic fields themselves, thus
the long-wavelength approximation should remain valid.

When comparing the propagation-gauge frame [Eq. (16)]
with the usual (first-order expansion) velocity-gauge form of
the nondipole interaction [Eq. (15)], very different dynamics
can be observed if we track the momentum expectation value
along the direction of propagation during the full extent of the
laser-atom interaction. The results are shown in Fig. 1. It is
shown that the expectation value 〈pk̂〉 oscillates rapidly in the
VG picture (with an angular frequency 2ω), which stands in the
direct opposition to the smooth variation with time observed
in the PG case. The origin of this fundamentally different
behavior relates directly to the previous discussion and the
fact that the Hamiltonian (16) represents a different point of
view, as compared to Eq. (15). The much smoother temporal
behavior of the momentum in the PG case simply calls for a
less time consuming propagation scheme with less restrictive
convergence criteria.

In order to test the performance of the two discretized
Hamiltonians when it comes to the prediction of physical
observables, we present the kinetic energy distribution of the
ionized electron in Fig. 2. The top panel shows a comparison of
the photoelectron spectra as obtained when applying the LWA
directly to the velocity-gauge Hamiltonian, thus arriving at the
dipole approximation [Eq. (14)], and when applying the LWA
to the propagation-gauge Hamiltonian, i.e., Eq. (16). Clear
differences between the dipole and beyond-dipole results are
revealed in the spectra, in that the multiphoton resonances in
the dipole situation exhibit a pronounced oscillatory structure
not seen in the corresponding beyond-dipole case. These
fringes are a result of the interference between the wave
packets being ejected during the laser ramp-on and ramp-off,
respectively. As it turns out, the electron’s displacement
along the laser propagation direction during the laser-matter
interaction has a great impact on the underlying interference
phenomenon with the result that the interference pattern is
suppressed. As such, an exceedingly accurate description of
the quantum mechanical radiation pressure and the associated
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FIG. 2. Probability distribution with respect to the kinetic energy
of the ionized electron following a laser-assisted ionization process
with the laser field described in Fig. 1. The top panel shows a
comparison between the spectra as obtained within the LWA applied
directly to the velocity gauge Hamiltonian [Eq. (14)], i.e., the dipole
approximation result, and the corresponding result obtained when
imposing the LWA to the PG Hamiltonian [Eq. (16)]. The results
are obtained with lmax = 30. In the middle panel, the beyond-dipole
velocity-gauge results [Eq. (15)] are shown for four different (angular)
truncation sizes, i.e., lmax = 10 (thick yellow line), lmax = 30 (red
line), lmax = 50 (thin black line), and lmax = 70 (dashed green line).
In the bottom panel, the corresponding results obtained with the
propagation gauge form of the laser-matter interaction [Eq. (16)] are
displayed for the basis sizes lmax = 10 (thick yellow line), lmax = 15
(red line), and lmax = 20 (thin black line).

electron displacement is prerequisite for obtaining fully con-
verged energy distributions, which in turn serves as an ideal
benchmark quantity for testing the numerical performance of
the PG with respect to the VG.

Focusing for the moment on the kinetic energy region
Ek ∈ [2.25 a.u.,3.75 a.u], i.e., the net absorption of one photon
from the laser field, the results obtained by solving the TDSE
in the usual velocity gauge and in the propagation gauge
are shown in the middle and bottom panels in Fig. 2. The
different curves pertain to different upper thresholds for the
(angular) basis expansion (17), where lmax = 10–20 was used
in the propagation gauge (bottom panel) and lmax = 10–70
was applied in the velocity-gauge (middle panel). From the

FIG. 3. Energy distributions for the same case as in Fig. 2,
but for a fixed value of lmax = 30. Two different radial simulation
domains have been used, one sparse grid with kmax = 1200 and
Rmax = 450 a.u. (thin black line) and one dense grid with kmax = 3200
and Rmax = 800 a.u. (thick red line). The top and bottom panels
depict the results as obtained with the velocity gauge and the
propagation gauge, respectively. The dashed curve shows the fully
converged calculations with the richest set of basis parameters, i.e.,
Rmax = 800 a.u., kmax = 3200, and lmax = 70 a.u.

figure it is clear that the structure in the energy distribution
around the one-photon absorption resonance has very dif-
ferent convergence properties in the two respective gauges.
Whereas lmax = 15 is sufficient when using the nondipole
Hamiltonian (16), the standard first-order expansion of the
VG Hamiltonian, i.e., Eq. (15), requires lmax = 50 in order to
reach the same level of accuracy. This is quite a remarkable
difference considering that all possible values of the magnetic
quantum numbers m are included for each value of l. If we for
simplicity assume a straightforward software implementation
where all nonzero matrix elements are stored in the computer
memory, we are looking at more than a tenfold increase in basis
size, overall memory consumption, and execution run-time for
the problem at hand.

In Fig. 3 the photoelectron distribution is shown for
two different radial representations. Here the low-accuracy
representation (sparse grid) corresponds to a radial box size
of Rmax = 450 a.u. and kmax = 1200 equidistantly distributed
B splines, whereas the high-accuracy basis (dense grid)
comprises kmax = 3200 B splines distributed over Rmax =
800 a.u. The top and bottom panels show the logarithm of the
energy distributions for the five first multiphoton resonances
obtained with the Hamiltonians (15) and (16), respectively.
The dashed background curve depicts in both panels the fully
converged energy distribution (the reference result) as obtained
with the dense grid radial representation and lmax = 70. Again,
the PG variant of the interaction Hamiltonian achieves a higher
performance at a considerably cheaper computational cost than
its VG counterpart. For the propagation gauge case, both
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grids reproduce the reference energy distribution, whereas
for the case of the velocity gauge the two different radial
representations both predict deviating photoelectron spectra
with respect to the reference, especially for the higher kinetic
energies. The reason for the faster convergence of the PG
with respect to the radial parameters can be understood when
comparing the k̂ · r and the k̂ · p forms of the associated
nondipole interaction terms in Eqs. (15) and (16), respectively.
The first one, depending on the spatial coordinate, will promote
a large potential value for |r| 	 0, indicating that the ionized
electron, possibly situated far from the nucleus, will be
harshly accelerated and decelerated in the field. As such, at
intermediate times during the laser pulse, very large kinetic
energies are attained temporarily by the ionized electron in
the VG case and high-energy continuum states are populated.
These states tend to be less accurately, or even wrongly,
represented in a sparse radial discretization, thus influencing
the entire intermediate dynamics and preventing the correct
final state in the end.

In conclusion, we have from the velocity-gauge minimal-
coupling Hamiltonian derived an equivalent form of the
light-matter interaction. Motivated by the current development
of superintense and high-frequency light sources used to study
atomic and molecular systems, we present a formalism tailored
for describing quantum-mechanical systems interacting with
fields beyond the dipole approximation. From this point of

view, the motion along the laser propagation direction due
to the combined contribution of the electric and magnetic
(nondipole) fields is explicitly accounted for by a velocity-
gauge-like operator. As such, we suggest that the present
formalism can be viewed as a generalized velocity gauge where
the kinematics in the laser propagation direction is inherently
included on an equal footing with the motion in the polarization
direction and we call the resulting gauge the propagation
gauge. The propagation-gauge Hamiltonian has a relatively
simple form and one of its highly advantageous properties
is that the long-wavelength approximation can be imposed
directly without making any assumptions about the importance
of magnetic-field effects, which stands in direct contrast to the
original velocity-gauge formulation. Furthermore, by solving
the time-dependent Schrödinger equation for atomic hydrogen
exposed to a superintense XUV laser pulse of femtosecond du-
ration, we demonstrate that the propagation-gauge form of the
interaction Hamiltonian is highly tractable from a numerical
perspective due to its faster convergence properties, as com-
pared to the original velocity-gauge form of the Hamiltonian.
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