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Simulations of the bichromatic force in multilevel systems
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Coherent optical bichromatic forces have been shown to be effective tools for rapidly slowing and cooling
simple atomic systems. While previous estimates suggest that these forces may also be effective for rapidly
decelerating molecules or complex atoms, a quantitative treatment for multilevel systems has been lacking. We
describe detailed numerical modeling of bichromatic forces by direct numerical solution for the time-dependent
density matrix in the rotating-wave approximation. We describe both the general phenomenology of an arbitrary
few-level system and the specific requirements for slowing and cooling on a many-level transition in calcium
monofluoride (CaF), one of the molecules of greatest current experimental interest. We show that it should be
possible to decelerate a cryogenic buffer-gas-cooled beam of CaF nearly to rest without a repumping laser and
within a longitudinal distance of about 1 cm. We also compare a full 16-level simulation for the CaF B ↔ X

system with a simplified numerical model and with a semiquantitative estimate based on two-level systems. The
simplified model performs nearly as well as the complete version, whereas the two-level model is useful for
making order-of-magnitude estimates, but nothing more.
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I. INTRODUCTION

During the past few years, methods for direct laser slowing
and cooling of small molecules have progressed remarkably,
advancing from a demonstration of modest forces in 2009
all the way to a full realization of magneto-optical trapping at
ultracold temperatures [1–8]. Nevertheless, all-optical slowing
and cooling is presently applicable only to a small number of
molecules, and the present schemes require complex optical
configurations with multiple repumping beams to recycle
atoms that are lost by unwanted radiative decay into distant
“dark” states. In 2011 we proposed that the coherent optical
bichromatic force could improve greatly on this situation,
by providing not only a much stronger force, but one that
allows much greater momentum transfer prior to radiative
loss into noncycling dark states [9]. Our 2011 paper relied
largely on semiquantitative arguments based on a two-level
model, admittedly not fully adequate to describe the multilevel
manifolds inevitably encountered in real molecules. Here we
verify and greatly extend this treatment by describing detailed
numerical modeling of the bichromatic force (BCF) in realistic
multilevel systems.

The bichromatic force in two-level systems has successfully
been demonstrated in several atoms and is amply described in
prior publications [9–19]. In brief, the BCF is the coherent
force produced by a balanced counterpropagating pair of two-
color cw laser beams. Each two-color beam can be regarded
as a beat note train produced by beams with frequencies
ω ± δ, for a carrier frequency ω centered close to the two-level
resonant frequency. If the laser power is adjusted so that each
beat is approximately a π pulse, and if the counterpropagating
beat notes are sequenced properly, a large net force is produced
by alternating cycles of coherent excitation and stimulated
emission. Larger bichromatic detunings δ produce a faster
beat note period and thus a larger force, at the cost of a laser
power requirement that scales as δ2. In practice detunings
of 100–400 times the radiative decay lifetime are workable,
producing average forces larger than the radiative force by
a similar multiple. The velocity range of the force is also

superior to the radiative force, extending over a range of δ/k,

where k is the wave vector for the transition of interest. Recent
developments in diode laser technology and rf electronics have
made it relatively easy to produce the multifrequency beams
required for the BCF.

In a molecule the maximum attainable velocity reduction
will usually be limited not by the velocity range of the force, but
instead by unwanted radiative decay to noncycling dark states,
typically vibrational or rotational levels that are addressed
neither by the BCF laser nor by added repumping lasers [9].
Thus there is a dual motivation for using stimulated optical
forces when working with molecules: to enhance the average
force and more importantly, to increase the number of optical
cycles that occur before the molecule is lost into an inaccessible
vibrational or rotational level.

In a multilevel system like the one depicted in Fig. 1, it
is impossible to achieve a π pulse for every component of
a transition, even for a stationary molecule with an optimal
laser pulse. Thus the optimal laser power and detuning involve
unavoidable compromises, and the force is an average over
the effects of several concurrently cyling transitions, some
of them coupled coherently. In our 2011 paper we treated
this problem phenomenologically for the CaF molecule [9],
an approach repeated more recently for MgF by Dai and
co-workers [20]. By contrast, in this paper we describe detailed
numerical calculations that fully incorporate multilevel coher-
ence, optical pumping, and the effects of repumping lasers
that can optionally be used to repopulate the cycling system
from dark states. We begin with some general predictions
and observations for three-level and many-level systems, then
focus specifically on the CaF molecule, for which experimental
tests are currently underway in our laboratory.

In Sec. II we describe the theoretical approach used to
numerically solve for the time-dependent density matrix of a
multilevel system in a pair of bichromatic laser fields in the
rotating-wave approximation. Direct numerical integration has
proven to be surprisingly stable and rapidly convergent, and
we have successfully treated systems with up to 16 levels.
We start by treating three-level λ-type systems in Sec. III,
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FIG. 1. Schematic diagram of the general multilevel system
simulated here. Ground (g) and excited (e) levels with multiplicities
Mg and Me are coupled by a bichromatic laser field with frequencies
ωL

eg ± δ, and excited levels are coupled to a distant (d) level by a
laser field with frequency ωL

ed . There is no direct coupling or decay
between the d and g states. Levels are labeled by their characteristic
frequencies.

then introduce the effects of dark-state repumping from distant
dark states in Sec. IV. In Sec. V we consider the additional
complication of intrasystem dark states, which can arise
in many-level systems with high ground-state multiplicity.
Finally, in Sec. VI we consider in detail the feasibility of
bichromatic slowing for the CaF molecule, a species of
considerable current interest for laser slowing and cooling [6].
We treat the CaF problem using both full 16-level simulations
for the B ↔ X (0 − 0) P11(1.5)/PQ12(0.5) branch and a more
approximate approach, in which the system is simplified
by dividing it into several subsystems that are assumed to
cycle nearly independently. We show that the subsystem-based
modeling yields results very similar to the exact treatment in
most cases, supporting the use of similar simplifications for
treating the bichromatic force in other molecular systems.
More generally, the results verify the predictions of the
semiquantitative reasoning in our 2011 paper indicating that
BCF slowing of molecular beams shows great promise.

II. THEORY AND METHODS

In our modeling of multilevel systems, we assume il-
lumination by a pair of counterpropagating two-frequency
laser beams that provide equal electric-field magnitudes in
all four components. In each beam the two frequencies
ω + δ and ω − δ produce a train of beat notes, as described
above. The total on-axis electric field for this arrangement is
approximately [18]

�EBCF(z,t) = 4E0 Re[{ε̂(cos(kz) cos(δt) cos(χ/2)

+ i sin(kz) sin(δt) sin(χ/2))}e−iωt ], (1)

valid so long as the beat length c/δ is much longer than the
length scale over which the system is evaluated. In this ap-
proximation the phase difference χ between the electric fields

of the counterpropagating beat notes remains approximately
constant. E0 is the amplitude of the electric field of each of the
four beams and ε̂ is the polarization, assumed to be identical
for all four components.

When this field is incident on an atom or molecule with
transitions |j 〉 ↔ |i〉, each such transition is associated with a
complex Rabi frequency defined by

�R
ij (z,t) ≡ 〈i| d̂ · �E(z,t) |j 〉

�
, (2)

where d̂ is the electric dipole operator. It is important to
note that systems may have closely spaced transitions with
differing dipole transition elements, so the same optical field
will simultaneously drive multiple transitions at different Rabi
frequencies. We separate each of these Rabi frequencies �R

ij

into two terms with amplitudes �ij and �∗
ij that describe

corotating and counterrotating components in the rotating
wave approximation:

�R
ij (z,t) = 1

2 (�ije
−iωt + �∗

ij e
iωt ). (3)

It is also often convenient to refer to the “Rabi frequency
amplitude” of a transition, which we define as

�0
ij ≡ E0

�
〈i| d̂ · ε̂ |j 〉 . (4)

As shown in Fig. 1, our simulations assume a system with a
lower-state manifold of Mg levels and an upper-state manifold
of Me levels, for which each of the lower-state levels may be
coupled to any of the upper-state levels by the BCF optical
field, depending on selection rules and line strengths. A single
distant dark state is at times included as well, where “distant”
in this setting means that couplings of this state to any of the
others by the primary BCF optical field are negligible. These
systems will be referred to in this work as Mg + Me, with (or
without) a distant dark state. Sums over a ground-state index
(p, q, r) should be understood to run from 1 to Mg , and sums
over an excited-state index (i, j , k) from 1 to Me.

The general BCF Hamiltonian includes the zero-field
energies H0 and the electric dipole coupling due to the applied
optical field. This Hamiltonian is given by

H

�
= H0

�
+

⎛⎝∑
i,p

�R
eigp

|ei〉 〈gp| +
∑

i

�R
eid

|ei〉 〈d| + c.c.

⎞⎠,

(5)
where

H0

�
=

∑
i

ωei
|ei〉 〈ei | +

∑
p

ωgp
|gp〉 〈gp| + ωd |d〉 〈d| . (6)

Here |gp〉 are the ground states, |ei〉 are the excited states, and
|d〉 is the distant state.

The time dependence of the density matrix ρ is computed
by numerically solving the Liouville equations with dispersion
in the rotating wave approximation. In particular, the density
matrix and Hamiltonian are expressed in terms of the quantities
[21,22]

ρ̃eigp
≡ ρeigp

eiωL
eg t ,

ρ̃eid ≡ ρeid eiωL
ed t , (7)

ρ̃dgp
≡ ρdgp

ei(ωL
eg−ωL

ed )t ,
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where ωL
eg is the carrier frequency of the laser field coupling

the excited and ground states and ωL
ed is the carrier frequency

of the laser field coupling the excited and distant states.
We now make the rotating wave approximation by ne-

glecting all oscillatory terms in the equations of motion

with frequencies given by a sum of optical frequencies. We
also include total decay rates 
i and specific channel decay
rates γip. The resulting full set of equations of motion of the
density matrix of an Mg + Me system with a distant state |d〉
is given by

ρ̇ei ei
= −

∑
q

Im
[
�∗

eigq
ρ̃eigq

] − Im
[
�∗

eid
ρ̃eid

] − 
iρeiei
,

ρ̇eiej
= i

2

[
2
(
ωej

− ωei

)
ρeiej

+
∑

q

(
�∗

ej gq
ρ̃eigq

− �eigq
ρ̃ ∗

ej gq

) + �∗
ej d

ρ̃eid − �eid ρ̃ ∗
ej d

]
− 
i + 
j

2
ρeiej

,

˙̃ρeid
= i

2

⎡⎣2
(
ωL

ed + ωd − ωei

)
ρ̃eid + �eid

(
ρeiei

− ρdd

) −
∑

q

�eigq
ρ∗

dgq
+

∑
k �=i

�ekd ρeiek

⎤⎦ − 
i

2
ρ̃eid ,

˙̃ρeigp
= i

2

⎡⎣2
(
ωL

eg + ωgp
− ωei

)
ρ̃eigp

+ �eigp

(
ρeiei

− ρgpgp

) −
∑
q �=p

�eigq
ρgqgp

+
∑
k �=i

�ekgp
ρeiek

− �eid ρdgp

⎤⎦ − 
i

2
ρ̃eigp

,

ρ̇dd = −
∑

k

ρ̇ekek
−

∑
q

ρ̇gqgq
,

˙̃ρdgp
= i

2

[
2
(
ωL

eg + ωgp
− ωL

ed − ωd

)
ρ̃dgp

+
∑

k

(
�ekgp

ρ̃ ∗
ekd

− �∗
ekd

ρ̃ekgp

)]
,

ρ̇gpgp
=

∑
k

(
Im

[
�∗

ekgp
ρ̃ekgp

] + γkp ρekek

)
,

ρ̇gpgr
= i

2

[
2
(
ωgr

− ωgp

)
ρgpgr

+
∑

k

(
�ekgr

ρ̃ ∗
ekgp

− �∗
ekgp

ρ̃ekgr

) + �dgr
ρ̃ ∗

dgp
− �∗

dgp
ρ̃dgr

]
. (8)

Defining N = Mg + Me and taking into account the Her-
miticity and preserved trace of the density matrix, this is
a system of equations in N real and (N2 + N )/2 complex
independent variables, as any one of the N + 1 diagonal
density matrix elements can be described as a function of only
the other N states. Numerical solutions to this set of equations
are computed using the builtin numerical differential equation
solver of Wolfram Mathematica [23]. For a given set of fixed
parameters, the computation of the time dependence of the
density matrix for a sixteen-level system requires about thirty
seconds on a moderately fast personal computer (Intel i7-3770
processor at 3.4 GHz) for a time range of 100/
, where 
 is
the smallest of the decay rates 
i .

The behavior of an atom or a molecule with velocity v in
the laboratory frame is modeled by making the replacement
z → vt in the spatial dependence of each Rabi frequency. This
assumes that only motion along the laser beam axis is relevant;
effects of transverse velocity across an inhomogeneous beam
profile are not considered here. As in previous work [11,15,16]
the force on the system at a particular velocity is then obtained
by application of Ehrenfest’s theorem which gives, for the
Hamiltonian in Eq. (5),

F = −�

⎛⎝∑
i,p

Re
[
ρ̃eigp

∇�∗
eigp

] +
∑

i

Re
[
ρ̃eid∇�∗

eid

]⎞⎠. (9)

Here the ∇�ij are obtained symbolically from Eqs. (1)–
(4) prior to the z → vt replacement discussed above. This
expression gives an immediate general idea of how to achieve
strong forces: strong coherences must be maintained and must
change in phase with the driving field.

III. 2+1 “�” SYSTEMS

A simple 2+1 λ-type system without a distant dark state
was simulated to facilitate systematic study of the effects of
multiple levels on the bichromatic force. The system is set up
such that each of the two lower states can have a different
electric dipole coupling to the excited state and a different
zero-field energy (Fig. 2).

Since each transition has a different coupling to the electric
field, the BCF laser irradiance produces two different Rabi
amplitudes, �0

e1g1
and �0

e1g2
. We assume in this section that

each transition is optimally driven and that both laser fields
have the same polarization, so that(

�0
e1g1

�0
e1g2

)2

= γe1g1

γe1g2

. (10)

To aid comparisons, we define a total Rabi frequency
amplitude �tot as the quadrature sum of the two Rabi
amplitudes,

�tot =
√(

�0
e1g1

)2 + (
�0

e1g2

)2
. (11)
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FIG. 2. 2+1 system simulated in Sec. III. Decay rates and ground-
state splitting are indicated; the ratio of Rabi frequencies on each
transition was set to the ratio of the square roots of the branching
fractions.

There are two regimes in which the force resulting from BCF
illumination is relatively easy to explain, the small-detuning
regime (δ 
 |ωg1 − ωg2 |) and the large-detuning regime (δ �
|ωg1 − ωg2 |).

In the small-detuning regime, our simulations show that
a central BCF frequency resonant with one transition or the
other is preferable to one tuned near the weighted average
energy of the lower states. When the carrier frequency
ω is on resonance with one of the transitions, the other
transition sees the light as essentially a single-frequency laser.
Figure 3 shows calculated force profiles for resonance with
each of the ground-state levels |g1〉 and |g2〉. While it is
necessary to supply more laser irradiance on the weaker
transition to achieve the optimal force at a given detuning,
this force is comparable to the optimal force attainable on
the stronger transition. This might be expected at first glance,

FIG. 3. BCF force from simulations of a lambda-type system,
with the BCF carrier frequency resonant with the |g1〉 → |e1〉
transition (top) or the |g2〉 → |e1〉 transition (bottom). Force contours
as a function of the total Rabi frequency �tot and velocity (left) reveal
the optimum �tot for each transition (dashed line) which, though at
different irradiances, result in similar force vs velocity profiles (right).

given that the two-level BCF at optimal irradiance depends
only on the bichromatic detuning. What may confound such
an argument is the possibility of differing overall coupling
strengths when the system reaches a periodic quasiequilibrium.
Thus we discuss this equilibrium in some detail.

In a two-level system with resonant monochromatic illu-
mination and without radiative decay, the population cycles
between being fully in the ground state and fully in the excited
state. When radiative decay is included, the system eventually
damps to an equal mixture of the ground and excited states.
With the addition of a third state coupled to the excited state,
assuming that the original transition is resonantly driven, the
steady-state excited population becomes [24]

�2
e1g1

�2
e1g2


�2
e1g2

/O
(
�6

e1g1
,�4

e1g2

)
, (12)

where �e1g2 is the detuning of the light from the |e1〉 ↔ |g2〉
transition. We see from this that for finite Rabi frequencies,
if the second transition is driven with a nonzero detuning,
the system remains at least partially bright (a full expression
can be found in Ref. [24]). Even though a true coherent dark
state does not exist, the excited-state population is reduced
compared to a resonantly driven two-state system, and some
population collects in the off-resonant state. For the system
shown in Fig. 2, if both lower states were coupled to the
excited state by the same monochromatic light resonant with
the |e1〉 ↔ |g1〉 transition (and therefore �e1g2 = ωg2 − ωg1 ),
the combined steady-state population in levels |e1〉 and |g1〉
would rise with increasing Rabi frequency from zero to a
maximum of approximately two-thirds that occurs at a Rabi
frequency beyond the small-detuning regime. Likewise for
the bichromatic case in the small-detuning regime, if the
bichromatic carrier frequency is resonant with one transition,
the other transition is expected to experience no appreciable
bichromatic force. We expect in this case that the bichromatic
force in the λ-type system will be reduced by a factor of the
“participating” fraction, which can be estimated by adding the
populations in the excited state and resonantly coupled ground
state under monochromatic illumination.

This is verified in Fig. 4, for which the example system
is simulated using a range of small bichromatic detunings
δ, in each case keeping the carrier ω on resonance with the
|g1〉 → |e1〉 transition and using the optimal Rabi frequency
�0

e1g1
= √

3/2 δ. In contrast to the two-level BCF, the average
force is nonlinear in δ, roughly scaling as δ3. Up to a
bichromatic detuning of one-quarter of the ground-state energy
splitting, this force closely follows a curve defined by the
product of the two-level bichromatic force and the participating
fraction calculated from the equilibrium populations for
monochromatic excitation. An effective monochromatic Rabi
frequency was included as a δ-independent fitting parameter
in calculating this participating fraction. The best-fit effective
Rabi frequency was found to be 2.040(19) �tot.

The full width at half maximum (FWHM) of the force
versus velocity profiles was found to scale linearly with
detuning, as it does for the two-level BCF, at detunings
δ � 25
. The best-fit FWHM is 0.706(12) δ/k, somewhat
wider at the half maximum point than for two-level simulations
[15], due primarily to a softening of the sharp velocity
dependence near the edges of the force profile.
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FIG. 4. Velocity-averaged force for BCF with carrier frequency
resonant with the |g1〉 → |e1〉 transition of the system shown in
Fig. 2. The Rabi frequency amplitude is �0

e1g1
= √

3/2 δ throughout.
Points show results of direct simulation and the line shows the
two-level force times an estimated participating fraction calculated
for monochromatic excitation (see text). Beyond δ ≈ 25
, the system
transitions to the intermediate-detuning regime.

In the intermediate-detuning regime (δ ≈ |ωg1 − ωg2 |), the
force drops off significantly (Fig. 5). Even adjusting the applied
laser irradiance does not fully restore the force. In this regime,
it is impossible to treat the second state either as an incoherent
perturber or as a fully coherent contributor to the BCF. Clearly
this region of the parameter space should be avoided. This
adverse interaction with the transition structure of the system

δ

FIG. 5. Contours depict the velocity-averaged force in an asym-
metric lambda-type system, scaled by the bichromatic detuning δ, in
units of �k/2. On the horizontal axis, δ is scaled by the ground-state
splitting �g2g1 = ωg2 − ωg1 . Results show a large “dead zone” near
δ = |�g2g1 | (vertical dashed line), and very different optimal values
of the Rabi frequency �tot in the small- and large-detuning regimes
(horizontal dashed lines).

FIG. 6. Force due to large-detuning BCF in the Fig. 2 system.
Data was smoothed over a velocity range of 0.1 δ/k. Both the force
near zero velocity and the velocity range of the force increase with
increased bichromatic detuning.

is a newly described effect that is not possible in two-level
systems.

As the detuning is increased further and enters the large-
detuning regime, the force reemerges with an optimal �tot

lower than the optimal value for either transition individually.
This corresponds to the maximum visible in the lower
right-hand corner of Fig. 5. In this high-detuning regime
where δ � |ωg1 − ωg2 |, the splitting between the lower states
becomes negligible and a transition is driven between the
upper state and a superposition of the two lower states. The
total Rabi frequency then approaches its two-level value of
�tot = √

3/2 δ.
Once the dead zone of low force in the intermediate-

detuning regime is exited, the force and FWHM velocity
range both grow linearly with δ, continuing up to quite large
bichromatic detunings as shown in Fig. 6. The slopes for the
force and the velocity range are found by least-squares fitting
to be 0.258(22) �k/2 and 0.123(21) 1/k, respectively. This can
be compared with the equivalent slopes in the ideal two-level
case, 0.637 �k/2 and 0.3 1/k.

From these results, we can give a general prescription for
large detunings that the optimal irradiance when multiple lower
states are coupled to a single upper state is the one that produces
a total quadrature-summed Rabi frequency of

√
3/2 δ for the

transitions “surrounded” by the two bichromatic frequencies.
In the small-detuning regime, where only one transition is
addressed, the irradiance should instead be chosen so that
Rabi frequency for this individual transition is

√
3/2 δ. In both

cases, we can also say that the force and its velocity range
increase monotonically with δ. Finally, we have learned that
the intermediate-detuning region generally leads to very small
forces, and is to be avoided.

013419-5



L. ALDRIDGE, S. E. GALICA, AND E. E. EYLER PHYSICAL REVIEW A 93, 013419 (2016)

IV. REPUMPING

For molecular applications of the BCF, it will often be
the case that radiative decay losses to distant dark states
are significant over the desired interaction time, requiring a
repumping scheme to recover the population from these states.
To understand the effects of incoherent population loss and
subsequent repumping in isolation from other complications,
we have simulated a 1+1 system that also includes a distant
dark state. A continuous repumping laser field is used to
transfer population from the dark state to the same excited
state used by the cycling BCF transition. Because radiative
decay is incoherent, the effects of multiple dark states are
expected to be qualitatively similar to those simulated here for
a single dark state, apart from the obvious impact of increased
level degeneracies.

Figure 7 shows the calculated bichromatic force as a
function of the repumping laser Rabi frequency for an example
in which 5% of decays are to the distant state. For each of the
several detunings δ shown in the figure, a broad but obvious
maximum in the force is observed, indicating that there is
an optimum value for the repumping laser irradiance. This
contrasts starkly with the more familiar case of repumping for
the incoherent radiative force, for which a simple saturation
behavior is typically observed and the repumping irradiance
is otherwise noncritical. The difference can be attributed
primarily to decoherence induced when the repumping rate
is too rapid.

For the example in Fig. 7, the optimum repumping Rabi
frequency was found to very closely fit a set of curves
proportional to

√
δ
, and this scaling is expected to be

generally applicable. Using a least-squares fit, the optimal
frequency was determined to be

�
opt
ed = 0.536(14)

√
δ
. (13)

FIG. 7. In a 1+1 system with 5% of decays going to a distant state,
the achievable force depends on the Rabi frequency for repumping
out of the distant state. The force exhibits a clear optimum in
the repumping Rabi frequency that depends on the bichromatic
detuning δ. An optimum BCF Rabi amplitude of

√
3/2 δ is assumed

throughout. Solid lines are smooth curves to guide the eye.

FIG. 8. At a fixed bichromatic detuning of 100
, the optimal
repump Rabi frequency (top) and the optimized force on molecules
with near-zero velocities (bottom) depend on the branching ratio of
excited-state decays to a distant dark state. For very small decay rates
to the dark state, the force approaches a value given by the two-level
force multiplied by a statistical factor equal to the participating state
fraction (dashed line, bottom).

Comparing the BCF with repumping at optimal parameters
to the two-level BCF, the velocity range remains unchanged,
but the peak force is reduced. For the case of 5% decay to
a distant state, the force is reduced to approximately 50%
of the two-level force. Further simulations were carried out to
compare the reduction in force over a range of decay branching
ratios, with the bichromatic detuning and overall excited-state
decay rate remaining fixed. As seen in Fig. 8, as the branching
fraction of spontaneous decays to the distant state increases, the
peak force decreases monotonically. For very small dark-state
branching fractions, the force converges to 2/3 of the two-level
bichromatic force, the value expected based on steady-state
population statistics. At large branching fractions, the peak
force decreases approximately linearly to zero. The optimal
repumping Rabi frequency increases with the decay fraction
to the dark state over most of the range, but begins to decline
when more than 70% of the decay is to the dark state.

It should be kept in mind that one of the key advantages
of the bichromatic force is the rapid stimulated transition rate,
which allows a much larger total momentum transfer than
incoherent forces if the available interaction time is limited.
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Thus for weak out-of-system decay channels, it will often
become possible to omit a repumping scheme and allow the
loss, as the time it would take to accumulate a large population
in the distant state may be long compared to the needed
interaction time. Nevertheless, for the case of rapid decay to
dark states the need for repumping will be unavoidable.

V. DARK STATE DESTABILIZATION IN
MULTILEVEL SYSTEMS

Here we consider the effects of dark states within the
transition manifold, which differ fundamentally from the
distant incoherently coupled dark states treated in Sec. IV.
These dark states can form either when the electric dipole
selection rules make certain levels inaccessible, or, for the
case of degenerate levels, when a coherent dark state forms
in which the excitation dipole amplitude to a superposition
state coherently cancels. For any system in which the ground-
state multiplicity of degenerate projection quantum states m

exceeds the excited-state multiplicity by at least two, there
will be two dark states regardless of the polarization of
light used to couple the two manifolds [25]. A number of
schemes have been developed to prevent or reverse optical
pumping of the population into these dark states [8,25], which
would otherwise cause the BCF to rapidly diminish to zero.
We investigate the two most obvious schemes, one involving
the application of a skewed dc magnetic field and the other
rapid switching of the optical polarization state.

A. Skewed magnetic field

The first method is to apply a dc magnetic field of magnitude
B at an angle θBE relative to the principal quantum axis
defined by the optical polarization. For a state with angular
momentum J and degeneracy 2J + 1, this causes a remixing
of the mJ levels and leads to Zeeman shifts proportional (to
first order) to mJ . This approach has been analyzed in detail
for monochromatic excitation in Ref. [25] and has recently
been used successfully for radiative cooling and trapping of
SrF by the DeMille group [5]. Here we define the magnetic
field to lie in the x-z plane, where it can be written in spherical
tensor notation as

�B = B√
2

sin(θBE)T̂ −1
1 + B cos(θBE)T̂ 0

1 − B√
2

sin(θBE)T̂ +1
1 .

(14)
The magnetic-field Hamiltonian is modeled by adding the

additional terms

HB

�
= μB

∑
p,q

〈gp| �B · (gsŜ + gLL̂) |gq〉

+μB

∑
i,j

〈ei | �B · (gsŜ + gLL̂) |ej 〉 (15)

to the Hamiltonian given in Eq. (5). Magnetic interactions with
nuclear spins are neglected because they are generally small,
and magnetic coupling between ground and excited states is
neglected because for small dc magnetic fields this coupling
is extremely small compared with typical optical energy-level
separations.

FIG. 9. Contours of velocity-averaged force for a 3S1 ↔ 3P 0

system driven by a linearly polarized BCF field of δ = 100
 and
� = 122.5
, with a dc magnetic field of varying amplitude and
angle. The dashed line that follows the ridge of the force defined
by

√
2B sin(θ ) = 12
.

In Ref. [25] the steady-state excited fraction is examined in
a 3S1 ↔ 3P 0 system driven by linearly polarized monochro-
matic light with a skewed dc magnetic field. We have simulated
this same system, replacing the monochromatic optical field
with a BCF field. We scale the magnetic-field units such that
the first-order Zeeman shift is equal to mJ B cos(θBE), and
express B in units of the total upper-state decay rate 
.

For a fixed bichromatic detuning δ = 100
 and Rabi
frequency �0 = √

3/2 δ for the single transition being directly
driven, simulations with varying magnetic-field strengths and
skew angles reveal a clear optimum force in the B-θBE plane,
evident in Fig. 9. There is also a ridge in the force that
corresponds to a fixed remixing rate, up to a skew angle of
about 60◦. By fixing δ, B, and θBE at their optimum values as
determined by these simulations and varying �0, we confirm
that a Rabi frequency of �0 = √

3/2 δ remains optimal in this
system.

At varying detunings, always keeping �0 at its two-level
optimum, the magnetic-field parameter space was searched to
find how the optimum parameters change with detuning. It
was found that the optimal intra-ground-state coupling scales
with the square root of the detuning and that the optimal level
splitting scales linearly with the detuning, and we find using
least-squares fitting that these optimal values are

√
2B sin(θBE) = 1.184(31)

√
δ
,

(16)
B cos(θBE) = 0.2054(35)δ.

The
√

2B sin(θBE) parameter plays the same role here as the
repumping Rabi frequency in Sec. IV, which is to reintroduce
lost population to the cycling transition. That both have
optimum values that scale in the same way as

√
δ
 stands to

reason. Equation (16) can be rearranged to give expressions for
the optimum magnetic-field strength and angle in this system,
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FIG. 10. At optimum magnetic-field parameters and Rabi fre-
quency, the bichromatic force with magnetic remixing in a 3S1 ↔ 3P 0

system results in an average force that scales linearly with bichromatic
detuning and is approximately one-third of the ideal two-level
bichromatic force.

directly:

B = δ
√

0.700(37)
/δ + 0.0422(14),
(17)

θBE = tan−1(4.07(13)
√


/δ).

If the magnetic-field parameters are kept optimized, the
velocity-averaged bichromatic force remains linear with the
bichromatic detuning as shown in Fig. 10. A least-squares fit
gives the constant of proportionality as F/δ = 0.1203(27)�k.
This is just slightly greater than 1/3 of the ideal two-level
proportionality of F/δ = �k/π (1/3π = 0.1061). Since the
remixing process blends one participating ground state with
two nonparticipating states, a multiplier close to 1/3 is indeed
expected.

For other multilevel systems the details will differ, but the
basics of this remixing scheme can be expected to be similar,
as will the scaling rules. An example of level mixing in a
much more complicated system is given in Sec. VI B, where a
detailed 16-level simulation is carried out for the bichromatic
force on a molecular beam of CaF.

B. Polarization switching

An alternative method for destabilizing dark states is to
dynamically switch the polarization of the driving fields,
thereby dynamically switching which state is dark. This can
generally be accomplished using the counterpropagating-beam
geometry of a BCF configuration, with the notable exception
of four-level transitions for which J ′′ = 1 in the lower state
and J ′ = 0 in the upper state. While the simple structure
of these transitions is often advantageous [26], dark states
can be avoided only if three polarization states are available,
requiring a new laser beam at a skewed angle [25]. This
awkward arrangement strongly disfavors the polarization-
switching method relative to the alternative of using a skewed
B field.

We consider transitions of the type J ′ = J ′′ + 1 with
J ′′ > 1. Here the dark states can be avoided by alternating
between σ+ and σ− polarization. For example, in a J ′′ = 2 ↔
J ′ = 1 transition, defining the quantization axis along the k

vector of the stimulating light, σ+ light leaves m′′ = 1 and
m′′ = 2 dark, while σ− light leaves m′′ = −1 and m′′ = −2
dark. Clearly the dark-state spaces for these polarizations
do not overlap, and the necessary polarization switching can
readily be performed on a collinear pair of beams.

To test whether polarization switching during BCF still
allows significant forces, a 5S2 ↔ 5P1 system was simulated
with the polarization of the BCF field switched between σ+
and σ−. Since the pulse area of the bichromatic beat notes
is a critical BCF parameter, a sinusoidal variation between
polarization states can be expected to give poor results because
it leads to nonconstant pulse areas. Instead, we simulate a
simple on-off modulation pattern in which each polarization is
kept on for a time T before switching to the other polarization.

During each step in this cycle, population will gradually be
optically pumped into the two dark mJ states that cannot be
reexcited, diminishing the force commensurately. Each switch
in polarization constitutes a rephasing of the system after
which coherence on the new transition (and thus the optical
force) will gradually begin building up. An optimal switching
period is therefore expected that balances these two effects.

The initial phase of the bichromatic optical field influences
how quickly an incoherent population equilibrates under
bichromatic driving. In most of our simulations, this phase is
set to θ = 45◦, which gives the quickest equilibration, and the
transient behavior is allowed to die away before evaluating the
force. However, this transient behavior takes up a significant
portion of each polarization-switching cycle and must now
be treated more systematically. Simulations for which the
global phase is reset to a particular value θ at each switch
of polarization show that θ = 45◦ does indeed result in the
strongest force, and θ = 0◦ the weakest, actually exhibiting a
weak force in the reverse direction.

The 5S2 ↔ 5P1 system has a further complication because
the three transitions driven by σ -polarized light are not equally
strong. Therefore, it is not immediately apparent what laser
irradiance is optimal. Simulating this polarization switching
scheme at δ = 100
 over a range of switching times T showed
that a maximum in the force is achieved when setting the Rabi
frequency to the value optimal for the |m′′| = 1 ↔ m′ = 0
transition. Also, a switching time of T ≈ 5/
 is found to
be optimal as shown in Fig. 11, with a shallower falloff on
the long-T side than for short T . The peak force in these
simulations is approximately 20�k
/2, which is about 1/3 of
the peak two-level force at the same bichromatic detuning,
64�k
/2.

If the switching cycle is not phase-locked to the global
bichromatic phase, the random starting phase at each polariza-
tion switch will cause a reduction in the force compared with
these simulations. As expected, the polarization switching pe-
riod must be at least comparable to the upper state lifetime (the
optimum period is ∼5/
 as described above) and the transition
time between polarization states should be short compared to
1/δ, typically requiring nanosecond-scale switching.

For comparison, dark-state destabilization by a skewed
magnetic field was also simulated for the same 5S2 ↔ 5P1
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FIG. 11. Bichromatic force for a 5S2 ↔ 5P1 transition as a
function of the switching period T between σ+ and σ− polarization
states. The Rabi frequency is set to its optimum value for the |m′′| =
1 ↔ m′ = 0 transition or for the |m′′| = 2 ↔ |m′| = 1 transition,
giving the two curves above, and the bichromatic detuning is 100


throughout.

model system, with π -polarized BCF fields. With the Rabi
frequency optimized for |m| = 1 transitions, such that two of
the three available transitions were being driven with optimal
Rabi frequency, the peak force over a considerable range of
magnetic field parameters is found to be 24�k
/2. Unlike
the polarization switching scheme, no fine-tuning of phases
or timing is required. At least in this system, magnetic-field
remixing is the better choice, but if a particular application
cannot tolerate external magnetic fields, polarization switching
remains a viable alternative.

VI. CALCIUM MONOFLUORIDE

A. Structure and parameters

With an eye towards experimental realization of the BCF
using calcium monofluoride, the structure of the 2�+B ↔
2�+X (0 − 0) P11(1.5)/PQ12(0.5) branch was examined. This
scheme differs in some details from the A ↔ X transition that
we have previously discussed semiquantitatively in Ref. [9],
although the differences are for the most part minor. The
fine and hyperfine sublevels for this transition are shown in
Fig. 12. In the X state N = 1 manifold, J is a poor quantum
number due to mixing of the two F = N = 1 levels. The
two eigenfunctions |F = 1±〉 can be written in terms of the
J = 1/2 and J = 3/2 levels with F = 1 by introducing a
mixing angle φ,(|F=1+,mF 〉

|F=1−,mF 〉
)

=
(

cos φ sin φ

− sin φ cos φ

)(|3/2,mF 〉
|1/2,mF 〉

)
. (18)

The mixing angle was determined to be 41.18◦ via the methods
of Ref. [27], in which the structurally similar YbF molecule
was examined. We used the molecular constants for CaF listed
in Ref. [28].

When the pure J states are expressed in case (aβ) notation,
|�,S,�,�,J,I,F,MF 〉, the electric dipole transition matrix

FIG. 12. B ↔ X P11(1.5)/PQ12(0.5) system in CaF, showing
zero-field-energy spacings. The hyperfine splitting of the B levels is
taken to be negligible compared to the X state. The allowed transitions
for π -polarized light are indicated.

elements can be calculated as in Ref. [29] up to a shared
factor 〈�′,S,�′ = 1/2| T (1)

0 (d̂) |�,S,� = 1/2〉. Additionally,
the squared sum of matrix elements is normalized to this factor,∑

p

∑
J ′′,F ′′,M ′′

F

∣∣ 〈J ′,F ′,M ′
F | T (1)

p (d̂) |J ′′,F ′′,M ′′
F 〉 ∣∣2

= ∣∣ 〈�′,S,1/2| T (1)
0 (d̂) |�,S,1/2〉 ∣∣2

. (19)

We define a relative dipole transition element between states
|i〉 and |j 〉 as

κij =
∑

p 〈i| T (1)
p (d̂) |j 〉

〈�′,S,�′ = 1/2| T (1)
0 (d̂) |�,S,� = 1/2〉

. (20)

We calculate these relative dipole transition matrix elements,
following Ref. [29] with the exception that �� = 0 rather
than ±1, and then introduce the J mixing discussed above to
obtain the relative dipole transition matrix elements between
the eigenfunctions (Table I).

The normalization factor can be estimated by working back
from the measured radiative decay lifetime of the B state,

TABLE I. Electric dipole matrix elements for the B ↔
X P11(0.5)/PQ12(1.5) branch in CaF, in units of the total B ↔ X

dipole transition moment.

F ′ = 0 F ′ = 1

F ′′ m′′
F m′

F = 0 m′
F = −1 m′

F = 0 m′
F = 1

− 2 0 − 0.5774 0 0
− 1 0 0.4082 − 0.4082 0

2 0 0 − 0.2357 0.4714 − 0.2357
1 0 0 − 0.4082 0.4082
2 0 0 0 − 0.5774

− 1 − 0.5743 − 0.0421 − 0.0421 0
1+ 0 0.5743 0.0421 0 − 0.0421

1 − 0.5743 0 0.0421 0.0421
− 1 0.0595 − 0.4061 − 0.4061 0

1− 0 − 0.0595 0.4061 0 − 0.4061
1 0.0595 0 0.4061 0.4061

0 0 0 0.3333 0.3333 0.3333
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τB = 25.1 ± 4 ns [30]. The characteristic lifetime of a state
before it decays along a particular transition is given by the
inverse of the Einstein A coefficient,

τij = 1/Aij = 3hλ3ε0

16π3|dij |2 . (21)

The total lifetime of a state is the inverse of the sum of the
A coefficients for all possible decays. Outside of the channels
we are considering, other rotational decays on B ↔ X are
forbidden, but other vibrational decays are allowed, as are
decays to other electronic states. The Franck-Condon factor
for the B ↔ X (0-0) band has been calculated to be 0.999
[31]. The decay branching ratios to different electronic states
scale as |dij |2ν3

ij . The dipole transition moments have been
estimated via ligand field modeling [32] and the transition
frequencies are known [33], so the ratio of decay rates can be
estimated:


B→X : 
B→A

= (1.73ea0)2(18833 cm−1)3 : (0.58ea0)2(2307 cm−1)3

= 4840 : 1. (22)

Thus approximately 99.98% of radiative decays from the
B state produce molecules in the X state. Multiplying the
electronic, vibrational, and rotational factors, 99.8% of decays
from B, v = 0, N = 0 produce the X, v = 0, N = 1 state.

This allows an estimate of the total A coefficient for the
B ↔ X P11(0.5)/PQ12(1.5) branch,

A = 0.998

τB

= 16π3
∣∣ 〈�′,S,1/2| T (1)

0 (d̂) |�,S,1/2〉 ∣∣2

3hε0λ
, (23)

where λ = 530.9 ± 0.1 nm is the transition wavelength.
Rearranging, we can estimate that the matrix element is∣∣ 〈�′,S,1/2| T (1)

0 (d̂) |�,S,1/2〉 ∣∣ = 1.7(1)ea0, (24)

which is consistent with the value from Ref. [32] of 1.73ea0.
Combining Eqs. (4) and (20) with the irradiance of a
monochromatic plane wave gives practical units for the Rabi
frequency amplitude of a transition in this channel for a given
per-bichromatic-component irradiance I expressed in W/cm2,

�0
ij = κij

√
I (2π × 60 MHz), (25)

assuming that the light is optimally polarized to drive the
transition.

Assuming that magnetic remixing of dark states is used, the
response to a dc magnetic field must be understood as well.
The magnetic Hamiltonian in Eq. (15) can be evaluated using
Eqs. (8.183) and (8.184) of Ref. [34], with a few obvious
modifications to allow for the spherical components p �= 0.
These equations give the complete picture, but the six F states
can be generally characterized in a more intuitive way via their
g factors gF , which for the two F ′′ = 1 levels must take the J

mixing of the eigenstates into account (Table II).

B. Simulations

Previous treatments of the bichromatic force in multilevel
systems [9,20] have been restricted to analyses based on
two-level calculations combined with statistical arguments.

TABLE II. g factors for the six F levels involved in the B ↔
X P11(0.5)/PQ12(1.5) branch in CaF, scaled by the electron spin g

factor gs .

F ′′ = 0 F ′′ = 1− F ′′ = 1+ F ′′ = 2 F ′ = 0 F ′ = 1

gF /gs 0.0 0.320 −0.070 0.25 0.0 0.5

These treatments cannot account for multilevel coherent
effects such as those seen in Sec. III, which were included
along with detuning and line-strength considerations in a
poorly determined “force reduction factor,” η. Examining the
structure of the 2�+B ↔ 2�+X (0 − 0) P11(1.5)/PQ12(0.5)
transition in CaF (Fig. 12), it is easy to see that it cannot be fully
decomposed into two-level systems even for the simplest case
of π -polarized light. Each excited-state sublevel is coupled to
either two or three ground-state levels, and thus the coherent
effect contribution to η cannot be neglected.

However, Fig. 12 also suggests that some simplification
may be possible without giving up much accuracy. No ground-
state sublevel is laser coupled to more than one excited-state
sublevel, so that the entire system can be viewed as two
2+1 and two 3+1 subsystems which are weakly coupled
to each other by incoherent radiative decays, as seen in
Fig. 13, in addition to two dark ground-state levels. We start
by taking this simplified approach and modeling these four
subsystems independently, neglecting the radiative coupling
between them. Because the coherence terms of the density
matrix decay at a rate set by the total excited-state decay
rates, we proportionally increase the decay rates within each
subsystem to compensate for the neglected decays.

The levels in the X,N ′′ = 1 states span 146.4 MHz, or
23.1
 in units of the excited-state decay rate. As seen in
Sec. III, so long as the bichromatic detuning is larger than
the energy splitting, the optimal �tot will be

√
3/2 δ. Within

each of the four subsystems, the quadrature sum of the κij is
1/

√
3, so the same laser irradiance can drive every one of the

subsystems with the same �tot.
Using the optimal �tot at each of δ = 30
, 50
, and 100
,

each of the four subsystems was independently simulated for
a range of BCF carrier frequencies that spanned the entire set
of transitions. The results from each subsystem were then

FIG. 13. The four subsystems defined by isolating the �mF = 0
transitions of the B ↔ X P11(1.5)/PQ12(0.5) branches in CaF.
Relative dipole transition matrix elements are indicated for each
transition.
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FIG. 14. Weighted average of the force on isolated subsystems of
the B ↔ X P11(1.5)/PQ12(0.5) branches in CaF gives an estimate for
the optimal carrier frequency detuning from the transition center of
mass of the system and for the peak force. Resonances are indicated
with vertical dashed lines.

combined together with a weighting given by the fraction
of ground-state sublevels included in each subsystem. This
weighting is based on the assumption that the system begins
with a statistical distribution of population in the ground
states and that each subsystem will maintain that population
throughout the interaction with the BCF fields. As shown
in Fig. 14, the averaged force on molecules with near-zero
velocities peaks at a carrier frequency detuned somewhat from
the hyperfine center of mass, at a location between the F ′′ = 2
and F ′′ = 1+ components. Transitions from these two levels
are the strongest transitions in each of the four subsystems.

Using optimal parameter values, estimated values for the
key properties relevant to longitudinal slowing of a molecular
beam are summarized in Table III in the columns labeled as
Method (b). The table also includes estimates of these same
quantities based on the semiquantitative statistical method of
Ref. [9], where applicable, as well as estimates based on
the complete 16-level simulation that we describe next. The

subsystem approach must be regarded as an approximation
both because it relies on assumptions about the population
balance, and because it cannot include the effects of remixing
dark states. Instead it is assumed that on aggregate, a good
remixing scheme will keep the dark populations at about the
statistical fraction determined by the total number of states.
The results of Sec. V support this estimate, but the details are
revealed only by modeling the full system.

Using the optimal laser irradiance determined from
subsystem-based modeling at each bichromatic detuning, the
entire set of sixteen levels was then simulated for π -polarized
BCF fields and a skewed dc magnetic mixing field, using
a two-step process. First, the remaining parameter space
consisting of the magnitude and angle of the magnetic field and
the carrier frequency detuning was surveyed at each of several
small molecular velocities, in order to find optimal parameters.
Then, using those parameters, simulations across the full
velocity range were carried out. The resultant force profiles are
shown in Fig. 15 for each of three representative bichromatic
detunings, and the properties relevant to longitudinal slowing
of a molecular beam are listed in the columns of Table III
labeled as Method (c).

As seen previously for 2+1 systems in Sec. III for detunings
in the lower portion of the large-detuning regime, the force
increases slightly faster than linearly with δ. Comparing to
the results from the subsystem approach, it is clear that the
subsystem approach consistently overestimates the peak force
and the average excited-state fraction, and it underestimates
the velocity range of the force. However, all of these errors are
small, with less than 10% error in the force and less than 25%
error in the velocity range across all three simulated detunings.
In this example the subsystem-based calculations are not only
simpler, but they also required only 1/5 of the computational
time needed for the full sixteen-level calculation. These
considerations may make the simpler and more approximate
subsystem method preferable for calculations intended for
planning purposes.

Compared to both of our multilevel models, the statistical
approach of Ref. [9] is, of course, much less accurate. It slightly
underestimates the velocity range of the force at δ = 30
, but
this crosses over to a large overestimate at δ = 100
. This

TABLE III. Summary of results for three different methods of estimating the BCF for π -polarized light in the sixteen-level B ↔
X P11(0.5)/PQ12(1.5) system in CaF, assuming no repumping. The methods are (a) the statistics-based estimate described in Ref. [9], (b)
a weighted subsystem-based multilevel simulation, and (c) a full 16-level simulation of the complete system, including dark-state remixing by
a dc magnetic field. Some results for Method (a) include a “force reduction factor” η as in Ref. [9], discussed further in the text. In the final
row of the table, we consider the fraction of molecules remaining after slowing by 60 m/s, taking into account decays into distant dark states.

δ = 30
 δ = 50
 δ = 100


(a) (b) (c) (a) (b) (c) (a) (b) (c)

Irradiance (W/cm2) 45.2 45.2 45.2 125.6 125.6 125.6 503 503 503
Carrier detuning from c.o.m. (MHz) N/A −32 −38 N/A −30 −38 N/A −47 −38
Magnetic-field magnitude (G) 29.2 29.4 37.1
Magnetic-field angle 71◦ 61◦ 66◦

Force near zero velocity (�k
/2) 16.4 η 2.8 2.6 27.3 η 6.3 5.8 54.6 η 15.5 14.2
Velocity range (m/s) 100 110 120 170 130 170 340 190 250
Average excited fraction 0.14 0.23 0.18 0.14 0.21 0.15 0.14 0.18 0.14
Time to slow by 60 m/s (μs) 14/η 84 91 8.7/η 38 41 4.3/η 15 17
Fully slowed population fraction 0.21 0.27 0.53 0.61 0.80 0.83
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FIG. 15. Simulations of the bichromatic force for the sixteen-
level B ↔ X P11(0.5)/PQ12(1.5) system in CaF, with dark-state
remixing by a dc magnetic field. These forces far exceed the radiative
force of ∼0.024 �k
/2 realized in Ref. [6]. The strength and velocity
range of the force increase with the bichromatic detuning in the range
of detunings simulated.

can be attributed to the approximation that �v = δ/k that
does not account for destructive coherent effects that limit
the range of the force in the intermediate detuning regime.
There is also a substantial overall uncertainty due to the “force
reduction factor” η, which essentially lumps together all of the
effects not included in the effective two-level model. Rough
estimates in the spirit of Ref. [9] predict that η should be
about 0.57 at δ = 30
, increasing to about 0.8 at 100
. By
comparing the estimated force to our full 16-level simulations,
we can empirically evaluate the actual value of η in each
case, giving η = 0.16, 0.21, and 0.26 for δ = 30
, 50
, and
100
, respectively. This verifies that the statistical approach is
useful for making rapid order-of-magnitude estimates, and that
as expected the value of η gradually increases with detuning.
However, it also verifies that the actual numbers are not reliable
beyond this level of approximation. The method is useful
for determining feasibility, but is not necessarily reliable for
determining detailed experimental designs.

We conclude by comparing the multilevel BCF with the
radiative force, working from our sixteen-level simulation
results. Even for the lowest detuning simulated, the calculated
bichromatic force is already much greater than the largest
radiative force achieved in CaF to date. Using the same X-state
level in an A ↔ X rotationally closed transition, a radiative
force with a peak of 0.024(6) �k
/2 has been realized [6].
Our result of 2.6 �k
/2 at δ = 30
 is larger by more than
two orders of magnitude. This implicitly assumes that the
BCF scheme does not require the v10 repumping laser used in
Ref. [6]. Because the decay branching fraction to dark states is
low, the results of Sec. IV indicate that even with repumping,
the force would be reduced only by a statistical factor of at
most a single order of magnitude. However, we now take a
closer look to demonstrate that the BCF acts rapidly enough to
make repumping unnecessary for a practical decelerator that
operates on a buffer-gas-cooled molecular beam.

In Sec. VI A, we estimate that 0.2% of radiative decays
populate noncycling states. The characteristic out-of-system

decay time is thus τB/(0.002Pe), where Pe is the average
excited-state fraction. We find Pe by averaging the calculated
excited-state fraction over the velocity range in which the force
is large. The result is Pe ≈ 1/6, with variations of just a few
percent between the three simulations in Fig. 15. This value is
also quite close to the estimate of 1/7 provided by the statistical
approach of Ref. [9]. Thus we can estimate an out-of-system
decay time of about 75 μs.

In recent work elsewhere, radiative slowing was used to
slow a cryogenic beam of SrF by 60 m/s, and this proved
sufficient to load a molecular MOT [2]. A reasonable objective
for CaF is to slow it by a comparable amount. Using the
bichromatic force with a detuning of δ = 30
, we estimate
that 27% of the illuminated CaF molecules with N ′′ = 1 would
be slowed by 60 m/s without repumping, and this percentage
increases to 83% for δ = 100
. These results clearly indicate
that as long as the required laser irradiance is available to drive
the BCF with detunings of at least 30
, a repump-free optical
decelerator is feasible for CaF and other molecules with similar
near-cycling transitions.

VII. CONCLUSIONS

If the coherent optical bichromatic force is to be applied
to molecules or complex atoms, it is essential to prove that it
can work for an intricately coupled multilevel system, and to
have a reliable method for modeling such systems so that an
optimal BCF scheme can be devised. We have demonstrated
that direct numerical integration of the density matrix provides
stable and useful solutions for systems with up to 16 sublevels,
using only the computational capacity of an ordinary personal
computer.

In general, we find that the multilevel BCF differs from the
more familiar two-level BCF in several regards as follows.

(1) The force is generally reduced by averaging over
multiple cycling transitions, some of which contribute little.
Our detailed modeling has shown that in many cases, this
dilution of the force can be roughly but usefully estimated by
the simple statistical approach presented in our 2011 paper [9].
Similar statistical considerations also apply for radiative forces
in multilevel systems, although the details are different [1].

(2) When the bichromatic detuning δ is comparable to the
fine-grained structure of a multilevel state, our simulations
show that the BCF is generally ineffective due to quantum
interference. It can work well, though, both in the small-δ limit
and for large-δ, where the effects of quantum interference can
even be advantageous.

(3) Unwanted radiative decay into distant dark states
is usually possible, and must sometimes be addressed by
level-specific repumping. An important advantage of the BCF
is that it minimizes the need for such repumping, because
rapid stimulated cycling enhances the momentum transfer
prior to out-of-system radiative decay. On the other hand, if
repumping is necessary, it is more important to use the correct
power level than for incoherent radiative forces. Here multi-
level simulations are quite valuable for guiding experimental
design.

(4) In systems with a large ground-state multiplicity,
optical pumping into intrasystem coherent dark states must
be avoided. We show that either polarization switching or a
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skewed dc magnetic field can accomplish this, with the latter
usually preferred, and we can predict the optimal configuration
with our multilevel simulations.

(5) In two-level systems the BCF can exhibit substantial
cooling in addition to deceleration, because the force has
a sharply defined lower-velocity limit [11,35]. In multilevel
systems the force profile is broadened by averaging, as is
apparent in Fig. 15, so this cooling is expected to significantly
be less effective.

Turning more specifically to the cases we have studied in
detail, for three-level λ-type systems we have demonstrated
and quantitatively modeled a nonlinear dependence of the
bichromatic force on detuning at small detunings. We have
also shown that intra-ground-state coherences, which are
absent from two-level systems, can play a useful role at
large detunings, allowing lower laser power requirements
than would be estimated from individual transitions, with
the general prescription that the quadrature sum of the Rabi
frequencies of the addressed transitions should be equal to√

3/2 δ. Further, we have shown that the region of parameter
space where the bichromatic detuning is roughly equal to the
transition energy splittings is to be avoided, as it results in
severe reductions in the achievable force.

We have also used four-level and eight-level simulations
to evaluate schemes for destabilizing coherent dark states, a
necessity whenever the ground-state multiplicity exceeds the
excited-state multiplicity by at least two.

For the example of a molecular beam of CaF, we have
performed simulations with up to 16 levels, which show that
the required laser power is readily attainable and the magnitude
of the force is over two orders of magnitude larger than the
radiative force for the same system. Further, the momentum
transfer prior to out-of-system decay is large enough to allow
complete deceleration of a cryogenic beam of CaF without
the use of repumping lasers and over a distance scale of
just a single centimeter. We have also compared our full
simulations with a simplified version in which the system is
decomposed into individually evaluated coherent subsystems.
The simplified version provides significant computational
speedup with associated errors of less than 10% in the
predicted force.

Similar gains for the BCF relative to the radiative force can
be expected for other small molecules. In general, limited mo-
mentum transfer sufficient to produce state-selective transverse
deflection should be feasible for almost any small molecule.
By contrast, substantial longitudinal slowing requires a near-
cycling transition because the required momentum transfer
involves thousands of photons, but the requirements are still
much relaxed compared with the conventional radiative force.
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