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State flip at exceptional points in atomic spectra
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We study the behavior of nonadiabatic population transfer between resonances at an exceptional point in the
spectrum of the hydrogen atom. It is known that, when the exceptional point is encircled, the system always
ends up in the same state, independent of the initial occupation within the two-dimensional subspace spanned
by the states coalescing at the exceptional point. We verify this behavior for a realistic quantum system, viz., the
hydrogen atom in crossed electric and magnetic fields. It is also shown that the nonadiabatic hypothesis can be
violated when resonances in the vicinity are taken into account. In addition, we study nonadiabatic population
transfer in the case of a third-order exceptional point, in which three resonances are involved.
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I. INTRODUCTION

In many cases a very effective way of investigating open
quantum systems with a reasonable effort, in particular, to
avoid expensive time-dependent calculations, is made possible
by non-Hermitian Hamiltonians [1]. A typical example is
resonances, i.e., decaying unbound states. With appropriate
methods used as the complex scaling approach [1–5] reso-
nances can be uncovered in a time-independent calculation as
complex eigenvalues of the stationary Schrödinger equation.
It is well known that resonances show characteristic effects
not observable in Hermitian quantum systems. This is true, in
particular, close to exceptional points (EPs) [1,6–8], isolated
points in a physical parameter space, at which two or even
more eigenstates coalesce.

The appearance of EPs has theoretically been shown
in unstable lasers [9], optical waveguides [10], and res-
onators [11,12]. In quantum systems their existence has
been proved in atomic [13–16] and molecular [17] spectra,
in the scattering of particles at potential barriers [18], in
atom waves [19–22], and in non-Hermitian Bose-Hubbard
models [23]. Their relation to Fano resonances has been
pointed out [24–26]. Experimental verification of their phys-
ical nature was achieved in microwave cavities [27–29],
electronic circuits [30], metamaterials [31], a photonic crystal
slab [32], and exciton-polariton resonances [33].

A simple example is the two-dimensional matrix

M(λ) =
(

1 λ

λ −1

)
(1)

with a one-dimensional complex parameter λ. The eigenvalues
are given by ε1 = √

1 + λ2 and ε2 = −√
1 + λ2. It is obvious

that these eigenvalues share a common degeneracy for λ = ±i

and the same holds for the eigenvectors; i.e., λ = λc = ±i is
an EP. The example demonstrates one of the most striking
features of an EP, which can be seen from a power-series
expansion of the eigenvalues for a circle λ(ϕ) = i + �eiϕ with
a small radius � around an EP:

ε1 =
√

2�ei(π/4+ϕ/2), ε2 =
√

2�ei(5π/4+ϕ/2). (2)
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Evidently the eigenvalues interchange their positions in energy
space when the EP is encircled in a closed loop, i.e., ϕ =
0 . . . 2π . Only after two circles do the eigenvalues return
to their original positions, but the eigenvectors pick up a
geometric phase, which is expressed by a sign change, e.g.,
[ψ1,ψ2]

circle−−→ [ψ2,−ψ1].
This is an example of a second-order exceptional point

(EP2), but higher-order EPs are also possible [6]. The simplest
extension is a third-order exceptional point (EP3), at which
three resonances coalesce, i.e., have identical eigenvalues and
eigenvectors [20,21,34–37].

Uzdin et al. [38] as well as Berry and Uzdin [39] have
shown that the adiabatic exchange of the states mentioned
above will not be observable for the true temporal evolution
of an occupied resonance state. Only one of the states behaves
according to the adiabatic expectation. The reason is that
nonadiabatic effects can never be neglected in the decay
dynamics of resonances and the adiabatic connections [40]
are no longer fulfilled. When an EP is encircled the oc-
cupation always ends up in the same state, independent of
the initial occupation within the two-dimensional subspace
of the resonances forming the EP [38,39,41–44]. Recently a
careful analysis of the dynamics revealed that it is strongly
nonintuitive [45]. Note that the adiabatic expectation with
the exchange of two resonances can always be extracted
from evaluations of their complex eigenvalues if the physical
parameters are changed in small steps on a closed loop in
the parameter space and the eigenvalues are then connected
continuously, which has been shown in numerical studies and
experiments [7,14,16,18,20,21,27–29,33].

It has been shown that EP2s can be exploited for the
controlled occupation of a single quantum state [17,42,43].
However, in these considerations the two resonances coalesc-
ing at the EP have always been assumed to be isolated from all
other states. This is very often not the case in physical systems.
Leclerc et al. [46] have shown that the existence of further
resonances in the vicinity of an EP can significantly influence
the nonadiabatic temporal evolution and the exchange behavior
of states at an EP.

In this paper we address this question in detail. We do
this by investigating the resonances of the hydrogen atom in
crossed electric and magnetic fields. It is especially suited
for this investigation since numerically exact calculations
of resonance states are feasible, a large number of EPs is

2469-9926/2016/93(1)/013401(8) 013401-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.93.013401


MENKE, KLETT, CARTARIUS, MAIN, AND WUNNER PHYSICAL REVIEW A 93, 013401 (2016)

known, and their properties are clearly observable [16,35,47].
In particular, examples of EPs with additional resonances in
their neighborhood are available. Some possess neighboring
resonances in their close vicinity; others are very isolated. In
addition, a case of two adjacent EP2s has been discovered,
where the permutation behavior of the resonances is exactly
that of an EP3 if both EPs are encircled together. This gives
us the opportunity to study nonadiabatic state transfer at
EP3s.

The remaining sections of this article are organized as
follows. In Sec. II we introduce our system, viz., the hydrogen
atom in crossed static electric and magnetic fields, the
numerically accurate method to calculate the resonances of
the system, and the evaluation of the temporal evolution of
occupation probabilities of the resonances. The nonadiabatic
evolution of the resonance states is then investigated in
Sec. III for the case of an EP2 and an EP3. A discussion
and conclusions are given in Sec. IV.

II. THE HYDROGEN ATOM IN CROSSED ELECTRIC
AND MAGNETIC FIELDS

A. Resonances of the hydrogen atom

In atomic Hartree units without relativistic corrections or
finite-nuclear-mass effects the Hamiltonian of the hydrogen
atom in crossed static electric and magnetic fields reads

H = 1

2
p2 − 1

r
+ 1

2
γLz + 1

8
γ 2(x2 + y2) + f x, (3)

where Lz is the z component of the angular momentum,
and γ = B/B0 and f = F/F0, with B0 = 2.35 × 105 T and
F0 = 5.14 × 109 V/cm, are the dimensionless field strength
parameters of the magnetic and electric fields, which are
oriented along the z and x axis, respectively. The total energy
and the parity with respect to the (x,y) plane are the constants
of motion. The parity is the only remaining symmetry of the
system and is exploited in the calculations. All subsequent
studies are done in the symmetry subspace of states with
even z parity. To calculate the resonances of the Hamiltonian
the complex rotation method is applied [1–5]. By replacing
the spacial coordinates r in the Hamiltonian and the wave
functions with b2r , where b is a complex scaling parameter, we
obtain a complex symmetric Hamiltonian, in which resonances
appear as discrete complex energy eigenvalues. The real part
of these complex eigenvalues represents the resonance energy;
its imaginary part, the width.

With the introduction of semiparabolic coordinates a
complex symmetric matrix representation of the Schrödinger
equation can be set up in an oscillator basis [48]. This leads to
the generalized eigenvalue problem

A(γ,f )φ = 2|b|4ECφ , (4)

where A(γ,f ) is a complex symmetric matrix, C is a real
symmetric positive definite metric, and E is the complex
energy eigenvalue. The appropriate normalization of the
eigenvectors in the complex extended system has to be done
with the c-product [1] and reads, for the generalized eigenvalue
problem, (4), φi Cφj = δij .

B. Temporal evolution of the occupation probabilities
of the resonances

In our scheme the field strengths γ (t) and f (t) are varied
time dependently such that closed loops are traversed in the
parameter space. This results in a time-dependent matrix A(t)
and, thus, also time-dependent resonance energies Ei(t) and
eigenstates φi(t). To study population transfer during the
traversal of a closed loop around an EP we split the state by
means of spectral decomposition into these time-dependent
eigenstates φi(t) of the Hamiltonian; i.e., the expansion
coefficients ai(t) define the occupation of a resonance state
φi(t) which is an eigenstate of the Hamiltonian with the current
field strengths γ (t) and f (t),

ψ(t) =
∑

i

ai(t)φi(t). (5)

This corresponds to the instantaneous basis used in Ref. [38]
to study nonadiabatic transfer in a matrix model. In the
instantaneous basis the temporal evolution of the expansion
coefficients following from the Schrödinger equation (4)
reads

ȧi(t) = −iE(t)ai(t) −
∑

j

aj (t)φi(t)Cφ̇j (t). (6)

The dominant effect is the decay of the resonances, which
leads to a fast decrease in the occupation coefficients ai .

For a better and more intuitive interpretation of the occupa-
tion transfer during a path around an EP we introduce weighted
coefficients, for which the overall decay of the probability
amplitude is removed. They are meant to illustrate the relative
gain and loss. The weighted coefficients are denoted by an
overbar and are given by

āi = |ai |2
⎛
⎝ N∑

j=1

|aj |2
⎞
⎠

−1

, (7)

where N is the total number of states taken into account.
If there were no couplings between the eigenstates, i.e.,

φi Cφ̇j = 0, all populations would evolve independently and
only the decay of the resonances with a time-dependent decay
rate Im (Ei(t)) would be observed. This adiabatic expectation
can be formulated as

ȧad(t) = −iE(t)aad(t). (8)

We use it to compare the full temporal evolution given by
Eq. (6) with the adiabatic approximation.

III. STATE EXCHANGE FOR CIRCLES AROUND
EXCEPTIONAL POINTS

A. Second-order exceptional point

In the following we study the population transfer at
previously determined EPs [35]. First, we observe the behavior
at a second-order EP, whose physical parameters are listed
in the first row of data in Table I. To encircle the EP the
parameters γ and f have to be varied in a specific way. They
need to perform a closed loop; hence a good choice is a circle
described by

γ (ϕ) = γ0(1 + δ cos ϕ), f (ϕ) = f0(1 + δ sin ϕ), (9)
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TABLE I. Coordinates of some exceptional points in the spectrum
of the hydrogen atom in crossed magnetic (γ ) and electric (f ) fields.
All values are given in atomic Hartree units.

γ f Re(E) Im(E)

0.005388 0.0002619 −0.02360 −0.00015
0.00611 0.000256 −0.01593 −0.00024
0.00615 0.000265 −0.0158 −0.000374

where the pair (γ0,f0) represents the circle’s center and δ is a
radius chosen relative to the field strengths. The trajectories of
the resonances in energy space for a relative radius δ = 10−2

are depicted in Fig. 1(a). The center was chosen exactly at
the EP. The plot shows two resonances interchanging their
positions during a traversal of the loop in the parameter space,
which is shown in the inset. Two other resonances with a
smaller modulus of the imaginary part are plotted alongside.
There are even more resonances in the vicinity with greater
moduli of the imaginary parts. Calculations also taking these
into account were carried out, and it turned out that they do
not influence the result.

We proceed to investigate how well the statement given
by Uzdin et al. [38], viz., that the final distribution of the
populations is independent of the initial state, is visible in the
case of the hydrogen atom with its large number of highly
coupled states. Therefore we prepare the system with the full
population starting in one of the two resonances belonging
to the EP. In the first step we neglect all further states and,
thus, effectively reduce the Hilbert space to two dimensions.
In Fig. 2 the evolution is displayed. The line styles of the
respective coefficients ai (excluding aad, of course) correspond
to those shown in the map in Fig. 1. We find that the adiabatic
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FIG. 1. (a) Two resonances interchanging their positions in the
complex energy plane for a parameter-space circle (inset) around the
exceptional point listed in the first row of data in Table I. The center
of the parameter-space circle is identical to the exceptional point and
δ = 10−2 was chosen. The initial point in the parameter plane and
the corresponding energy values of the resonances are represented by
symbols on the lines. (b, c) Dynamics of two nearby resonances with
small imaginary parts, which are visible only as filled symbols in (a)
and are marked by the labels 3 and 4.
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FIG. 2. Temporal evolution of the populations. Only the two
resonances connected with the exceptional point were taken into
account. (a, b) The actual populations are plotted for an initial popu-
lation a1(0) = 1 and a2(0) = 1, respectively. The overall evolution is
dominated by the decay emergent from the nonzero imaginary parts
of the eigenvalues. (c) and (d) Weighted coefficients according to
Eq. (7) are shown (c) for the initial condition of (a) and (d) for the
initial condition of (b). Results of the adiabatic approximation (aad)
are shown for comparison.

hypothesis is perfectly met for the case of the population
being fully prepared in a2, which can be graphically verified in
Fig. 2(b). The final state is, in both cases, a majority population
of the state labeled a2 and a minority of that identified as a1.

However, this behavior changes completely if we take into
account the resonances with smaller moduli of the imaginary
parts in the vicinity of the two states. An example is depicted
in Fig. 3, where all four resonances shown in Fig. 1 have
been used for the calculation of the temporal evolution. Due
to nonadiabatic couplings among all four resonances the states
represented by a3 and a4 gain in population even though no
population was initially prepared in them. It is even more
surprising that resonance a4 dominates in the end. In principle,
one would expect the majority to end up in the resonance a3, as
this is a nearly bound state with the lowest imaginary part. This
is indeed what is going to happen, but not on the time scales we
used in the calculations. Since the time is not sufficient for the
occupation in a4 to vanish, the stronger coupling of that state
to a1 and a2 determines the final population. The important
statement holds in spite of this, viz., that the populations of the
states performing the exchange vanish, while the populations
of the states with small imaginary parts persist.

B. Importance of exceptional points for the exchange behavior

We have seen that the decay rates, i.e., the imaginary parts
of the complex energy eigenvalues, basically determine which
nearby resonance of an initially occupied state survives at
the end of the parameter-space loop. This raises the question
whether the EP really is important for the exchange behavior
since nonadiabatic couplings and strongly unequal decay rates
can appear without the existence of EPs for any pair of
resonances with similar energies as well. To address this
question we move the center of the parameter-space circle

013401-3



MENKE, KLETT, CARTARIUS, MAIN, AND WUNNER PHYSICAL REVIEW A 93, 013401 (2016)

10-16
10-12
10-8
10-4
100

 0  50000  100000

|a
i( t

)|2  [a
.u

.]

t [a.u.]

a1 a2 a3 a4 aad

10-16
10-12
10-8
10-4
100

 0  50000  100000

|a
i( t

)|2  [a
.u

.]

t [a.u.]

0.0
0.2
0.4
0.6
0.8
1.0

 0  50000  100000

|- a i(
t)|

2  [a
.u

.]

t [a.u.]

0.0
0.2
0.4
0.6
0.8
1.0

 0  50000  100000

|- a i(
t)|

2  [a
.u

.]

t [a.u.]

(a) (b)

(c) (d)

FIG. 3. Temporal evolution of the populations with all four
resonances taken into account. (a) The initial population was
exclusively in the resonance described by the coefficient a1;
(b) only a2 was initially populated. In (a) and (b) it is already visible
that the resonances with smaller moduli of the imaginary parts decay
much more slowly. Eventually the resonance with a smaller modulus
of the imaginary part dominates. (c, d) This is especially clearly
visiblehere, where the weighted coefficients for the cases in (a) and
(b), respectively, are shown. The whole surviving population transfers
into the resonance represented by a4.

as shown in Fig. 4(a). The first circle is, as before, exactly
centered at the EP. Then it is shifted in small steps to larger
values of γ via the shift parameter s. The modified circle reads

γ (ϕ) = γ0[1 + δ(s + cos ϕ)], f (ϕ) = f0(1 + δ sin ϕ).

(10)

To get an intuitive insight we reduce the calculation, again, to
the two resonances involved in the EP. This removes the overall
effect of the unavoidable transition to the slowest decaying
nearby resonance and helps us to focus on the effect of the EP.

The temporal evolution of the resonances in this case is
shown in Fig. 4(b), and the representation with weighted
coefficients in Fig. 4(c). In all cases the initial population was
exclusively in the state labeled with the coefficient a1. This is
the nonadiabatic case from above. As long as the EP is located
inside the parameter-space loop there are only slight changes
in the temporal evolution. In particular, the final majority
population of coefficient a2 remains unchanged. As soon as
the EP lies outside the parameter-space circle the evolution
of the occupations changes suddenly. One can observe that
for s = 1.1 the dominating population is in the coefficient a1,
a result which agrees with the adiabatic expectation. Since
there is no longer a permutation of the resonances even in the
purely adiabatic case if the EP is not encircled, the switch of
the majority population from one state to the other is not
very surprising. However, the influence of the EP is even
stronger. It is additionally expressed in the total difference
of the occupation of both states. If an EP is encircled, it is
much more pronounced as in the case in which there is no EP
within the circle.

For an even stronger shift of the circle the difference in
the final populations of a1 and a2 is reduced further and the
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FIG. 4. The center of the circle in parameter space is shifted in
the positive γ direction to study the transition from an interchange
scenario to a noninterchange case. (a) Circles for different values
of s as introduced in Eq. (10). The time evolution of the absolute
(b) and weighted (c) coefficients demonstrate a significant qualitative
change as soon as the exceptional point is no longer located within
the parameter-space loop. The line styles of the circles correspond to
those used in the temporal evolution. For nonweighted coefficients
the adiabatic expectation is plotted alongside.

majority population switches again. This happens in a smooth
way and can be traced back to the different decay rates.

The whole scenario can be understood even better by
viewing Fig. 5, in which the final population of both resonances
is shown in dependence on the shift parameter s. The dramatic
influence of the EP becomes immediately clear due to the
sudden jump of both populations at the value s = 1, for which
the parameter-space circle crosses the EP. Thus, the total
behavior revealed in Figs. 2 and 3 cannot be explained by
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FIG. 5. Final values of the coefficients after a full traversal of the
circle in parameter space as a function of the shift parameter s, where
the absolute coefficients (a) and their weighted counterparts (b) are
shown. The (red) plus symbols represent a1; (green) X’s, a2; and
black circles, the adiabatic approximation. The shaded area (left half)
denotes that the circle for this value of s encircles the exceptional
point.
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FIG. 6. Weighted coefficients |ai |2 from Fig. 5 as a function of
the shift parameter s and the evolved time t . (a, b) Two views of the
(s,t) plane. One clearly recognizes the dramatic change as soon as
the exceptional point is within the parameter-space circle, indicating
the switch from one Riemann surface to the other.

the nonadiabatic couplings and the different decay rates alone.
The presence of the EP is essential.

The relevance of the EP also becomes clear in Fig. 6, in
which the two weighted coefficients are plotted in dependence
of the shift parameter s and the evolved time t . It is shown
that those paths which encircle the EP lead to a dramatic
change in the occupation probabilities. For values s � 1, i.e.,
close to the EP, the switch from one Riemann surface to the
other becomes observable. However, for larger shifts, s ≈ 2,
nonadiabatic processes lead to a change in the final result.

C. Third-order exceptional point

The hydrogen atom does not possess just EP2s. A structure
identical to that of an EP3 has also been detected [16]. It is
uncovered by encircling the two EPs in the last two rows
of data in Table I simultaneously. An energy map of the
resulting scheme of interchange is depicted in Fig. 7 for
γ0 = 0.00609, f0 = 0.000261, and a radius δ = 3.0 × 10−2.
One can see that all three resonances are permuted. In this
case a closed loop of a single resonance in the complex energy
plane is only achieved by three circles in the parameter space.

As in the case of the EP2 we first perform calculations
which take into account only the three resonances connected
to the EP3 structure. This allows us to study the nonadia-
batic temporal evolution of an unperturbed EP3. For each
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FIG. 7. Map of the energy space of a structure identical to that of
a third-order exceptional point for a parameter-space circle around the
two exceptional points from the last two rows of data in Table I (see
inset). The plot shows three resonances interchanging their positions
and some nearby resonances in the energy space. Energy eigenvalues
for the initial point in the parameter-space circle are represented by
symbols on the lines.

calculation we prepare the initial population fully in one of
these states. The results are plotted in Fig. 8. To facilitate the
comparison the line styles correspond to those in the map in
Fig. 7. Figures 8(a) and 8(d) correspond to the system being
initially prepared in the state a1. Until about halfway through
the circle in parameter space the system evolves adiabatically
as shown in Fig. 8(a); i.e., the line of a1 is exactly on top of
that for the adiabatic case. However, then the lines separate and
the state associated with a3 exceeds the a1 curve in amplitude.
Figure 8(d) shows essentially the same situation, but for the
coefficients weighted according to Eq. (7). Here we see that
the population of the state associated with a1 is transferred to
the state associated with a3, whereas the state with a2 is not
involved in the population transfer at all.

Figures 8(b) and 8(e) depict the situation for the initial
population being prepared in a2. Even though there is some
transition to a1 at first, the coefficient a3 soon dominates. After
a3 ascends to the population leader, a2 no longer contributes
to the population. If the system is prepared with the initial
population in a3 it evolves adiabatically until the end of the
present cycle time [cf. Figs. 8(c) and 8(f)]. As observed above
for the other cases the system also starts off adiabatically but
eventually deviates from this behavior. Hence for the initial
population in a1 or a2 a state flip occurs. This is particularly
visible in the weighted coefficients in Figs. 8(c)–8(f). With
these results we can extend the statement given by Uzdin
et al. [38] to the scenario of three permuting resonances.
Also in this case the final distribution of the populations is
independent of the initial state. In the example considered it
always ends up in a3.

Of course, the three resonances forming the EP3 are not
isolated in the spectra of the hydrogen atom as we observed
for the EP2. Here the closest three resonances have to be taken
into account to obtain a realistic temporal evolution. All of
them are included in Fig. 7. Considering the imaginary parts
of the resonances during the whole parameter-space loop we
have one that is strictly larger, one that is strictly smaller, and
one that lies somewhere in between those of the interchanging
resonances. The time evolution is depicted in Fig. 9 in the
same way as in Fig. 8.

Starting from the left Fig. 9(a) corresponds to the initial
population being prepared fully in the state represented by a1.
Here, the system evolves adiabatically at first, but eventually
a5 exceeds all others in terms of magnitude. This is even
more visible in the plot for the weighted coefficients shown
in Fig. 9(d), where a5 rapidly approaches unity after about a
quarter of the traversal time and then does not change for the
rest of the evolution. A similar behavior is observed for an
initial population of only the state represented by a2, though
a5 approaches unity even faster in the weighted representation
shown in Fig. 9(e). While the population prepared fully in the
state corresponding to a3 evolved adiabatically when nearby
resonances were neglected, we again observe a transition to
a5 in the extended case as shown in Figs. 9(c) and 9(f).

We conjecture that the transition from all other resonances
to a5 is induced by nonadiabatic couplings. This is certainly
an effect of the close distance between the resonance of a5 and
the interchanging resonances in energy space (cf. Fig. 7). One
could now claim that the other resonances taken into account
are also at a close distance and should acquire a considerable
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FIG. 8. Temporal evolution of the populations for a circle around a third-order exceptional point. Initial populations were set up in (a, d) a1,
(b, e) a2, and (c, f) a3. In the case of the initial population being prepared in a3 the system evolves adiabatically. In all cases the nondissipated
population ends up in a3. This is clearly shown by the weighted coefficients āi .

occupation during the traversal of the loop. However, this is not
the case. They are even invisible in the diagram of the weighted
coefficients. This happens because their imaginary parts are
substantially larger than that of the resonance belonging to a5,
which results in a faster decay of their population.

IV. DISCUSSION AND CONCLUSIONS

In summary, we were able to show that the nonadiabatic
state flip at an EP2 is also observable in the temporal evolution
of occupied resonances of the hydrogen atom in crossed

electric and magnetic fields. If only the two resonances
connected to an EP are taken into account, the system always
ends up in the same state independent of the initial condition
as in all previous studies [38,39,42–46] if a parameter-space
loop around the EP is performed. However, the spectra
of the hydrogen atom always exhibit further resonances in
the vicinity of those forming the EP, which can drastically
influence the final occupation [46]. A coupling to these states
cannot be neglected and eventually the state with the lowest
decay rate dominates. This was verified in numerically exact
calculations for the hydrogen atom.
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FIG. 9. Temporal evolution of the populations for the same parameter-space circle as in Fig. 8 but with six resonances taken into account
in the calculation. Again, initial populations were set up in (a, d) a1, (b, e) a2, and (c, f) a3. The population always ends up in the resonance
with the least modulus of the imaginary part, here a5.
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Even though the nonadiabatic couplings in combination
with different decay rates basically determine which resonance
is occupied after the traversal of a parameter-space loop, they
are not the only relevant information. The temporal evolution
is strongly influenced by the presence of an EP. If it is located
within the parameter-space loop, the difference in the final
occupation is exchanged and increases drastically.

Similar relations hold for EP3s. If couplings to further
resonances can be neglected and the traversal time is long
enough, the final population always ends up in the same state
and does not depend on the initial population of the three states
forming the EP3. As in the EP2 case for a realistic scenario
in an atomic system further resonances have to be considered
and lead to a change in the behavior in favor of the exclusive
population of a nearby resonance in energy space with the
lowest decay rate.

The calculations reported in this work clearly show that
the observation of the characteristic nonadiabatic population

transfer at EPs will only be possible if sufficiently isolated
resonances are accessible. In an atomic or molecular quantum
system this will be a big challenge. For the hydrogen atom
we have to remark that the parameter range we used in the
calculations was chosen due to the numerical capabilities
and includes a basis with approximately 10 000 states. This
makes accessible relatively low-lying energies which have to
be influenced by strong fields (magnetic field ≈1000 T, electric
field ≈106 V/cm), resulting in short decay times. Even though
extremely low surviving probabilities were accepted in the
calculations the traversal time of the parameter-space loop
is of the order of 10−11 s. In an experiment this could be
overcome by aiming at resonances states at higher energies,
which additionally increases the probability of the appearance
of EPs since the density of states is higher, or by investigating
an almost-equivalent system. Hydrogen-like excitons in semi-
conductor structures would lower the physical parameters to
accessible values and could be studied in experiments [49].
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