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B.P. 11201, Zitoune, Meknes, Morocco
4Department of Physics and Technology, Allégaten 55, University of Bergen, N-5007 Bergen, Norway

(Received 16 March 2015; published 27 January 2016)

It has been known for more than 15 years that the differential cross section of electrons emitted from diatomic
molecules during interaction with energetic charged particles oscillates as a function of electron momentum. The
origin of the phenomenon is two-center interference, which naturally relates it back to the Young double-slit
experiment. In addition to a characteristic frequency which can be described by lowest-order perturbation theories,
the observation and origin of higher-order harmonics of the basic oscillation frequency has been much discussed.
Here, we show that high harmonics of the fundamental Young-type oscillation frequency observed in electron
spectra in fast ion-molecule collisions can be clearly exposed in numerical solutions of the time-dependent
Schrödinger equation within a one-dimensional model. Momentum distribution of the ejected electron is analyzed
and shows that the phenomenon emerges when the charged particle beam collides with diatomic molecules with
substantial large internuclear distance. Frequency spectra from nonperturbative calculations for electron emission
from Rb2

+ and Cs2
+ exhibit a pronounced high-order oscillation in contrast to similar close-coupling calculations

performed on H2 targets. The electron emission from these heavy molecules contains second- and third-order
harmonics which are fully reproduced in an analytic model based on the Born series. Extending to triatomic
molecular targets displays an increased range of harmonics. This suggests that electron emission spectra from
new experiments on heavy diatomic and linear polyatomic molecular targets may provide a unique insight into
competing coherent emission mechanisms and their relative strength.

DOI: 10.1103/PhysRevA.93.012713

I. INTRODUCTION

Few experiments have had a deeper footprint in the
history of science than Young’s double-slit experiment [1].
About 150 years later, Cohen and Fano [2] proposed a
quantum-mechanical analog of this famous experiment where
the light scattering from two slits is replaced by electronic
photoionization from diatomic molecules. With the advance of
new light sources, accelerators, and detector technologies since
then, the coherent electron dynamics involving the two-center
nature of the target has grown to be a hot topic within
photon [3–5], electron [6,7], and ion impact [8] communities:
Independent of the nature of the perturbing source, the
diatomic target molecule generates electron emission spectra
showing oscillatory structures due to two-center interference.
The first experimental observations of the oscillations in the
cross sections for electron emission induced in ion-molecule
interactions, 60 MeV/nucleon Kr34+ colliding with H2, were
reported by Stolterfoht et al. [9] and sparked off intense further
experimental and theoretical efforts to understand the complete
nature of the phenomenon.

The basic oscillatory structure has been rather well de-
scribed theoretically using a range of approaches, from
first-order semiclassical treatment [8], distorted wave theo-
ries [7], and direct numerical solution of the time-dependent
Schrödinger equation [10,11]. However, in the original ex-
periment [9] and in a further investigation on Kr33+-H2

collisions [12], indications of additional oscillatory structures
were observed. These were attributed to multiscattering
phenomena of the electron within the molecule prior to

emission. Independent measurements reported for electron
emission by 1–5 MeV H+ + H2 collisions [13,14] showed
a similar frequency doubling as well as additional even higher
frequencies. An improved version of the original experiment
of Stolterfoht et al. [9] was then carried out by Tanis et al. [15].
Their Fourier analysis of the spectrum did not exhibit evidence
for high-frequency oscillations. More recent experiments with
F9+ ions on H2 [16] and H+ on N2 [17] have revealed
signatures of frequency doubling indicating the observation
of double-scattering mechanisms.

On the theoretical side, the distorted wave calculations [7]
have in general improved the agreement with experiments
as compared to the first-order semiclassical approach [8].
Second-order Born calculations, which result in frequency
doubling, showed a qualitative improvement in comparison
with results from H+-H2 collisions [18]. However, discrepan-
cies remain at an absolute quantitative level. In contrast, time-
dependent nonperturbative calculations in one-dimensional
(1D), two-dimensional (2D) [10], and three-dimensional
(3D) [11] models of highly charged ions colliding with
H2 could not identify any frequency doubling. The absence
of signatures of frequency doubling in the nonperturbative
calculations performed so far represents an unsettled issue.

It is the purpose of the present work to investigate
the existence of second- and even higher-order oscillations
in simple but robust nonperturbative simulations of model
collisions between ions and diatomic systems. For this reason
we consider a 1D collision system which to some extent can
model a full 3D collision event with zero impact parameter and
where both molecular orientation and direction of the ejected
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electron are parallel to the projectile direction. The simplified
1D model approach is here relevant for the real 3D case in two
aspects: Ionization occurs dominantly when the projectile is
close to the target, regardless of the molecular alignment, and
the additional features associated with the higher-frequency
oscillations are independent of the ejected electron observation
angle [12]. Apart from that a 1D model clearly has severe
limitations. The main goal remains, nevertheless, to search
for conditions for the absence or emergence of second-
order frequencies in the electron emission spectrum of a
full numerical solution of the time-dependent Schrödinger
equation within a consistent model.

Our model, as well as its numerical implementation, is
presented in the next section, which is followed by the
discussion of the results and the comparison with an analytical
model based on the Born series. The essence of the study
is that clear signatures of higher harmonics on top of the
dominant first-order “double-slit” oscillation emerge only for
internuclear distances significantly larger than those of H2.
This is in agreement with the absence of visible second-
order mechanisms in previous nonperturbative calculations
for H2 targets. We also propose new experiments with heavy
molecular targets or even with polyatomic strings since these
systems, according to our model, will magnify the high-
order mechanisms. Atomic units, e = me = � = 4πε0 = 1,
are applied unless otherwise stated.

II. THEORETICAL MODEL AND NUMERICAL
SIMULATIONS

Within the semiclassical approach we solve the 1D time-
dependent Schrödinger equation (TDSE)[

He(x,t) − i
∂

∂t

]
ψ(x,t) = 0 (1)

for a diatomic molecule with fixed internuclear distance,
keeping otherwise the projectile energy and charge within
the parameter region of previous experiments and calcula-
tions [19]. The electronic Hamiltonian He(x,t) is expressed
as

He(x,t) = −1

2

d2

dx2
+ V (xa) + V (xb) + Vp(x,t), (2)

where xa/b = x − Xa/b and Xa/b locates the target nucleus a/b

so that the internuclear distance is Rab = Xb − Xa . V (xa/b) is
the interaction potential between the electron and each target
nucleus and takes the form

V (x) = −1 + (Z − 1)e−c1|x| + c2xe−c3|x|
√

x2 + α
, (3)

where Z is the nuclear charge and c1,c2,c3 are empirical
parameters, which have been chosen as in [20]. Vp(x,t) is
the Coulomb interaction between the target electron and the
projectile of charge Zp [located at X(t) = vt with v the relative
target-projectile velocity]:

Vp(x,t) = − Zp√
[x − X(t)]2 + β

. (4)

Furthermore, for both potentials V and Vp, we use the
regularized Coulomb soft-core form in terms of the parameters

α and β, respectively. Here β = 2.0 and α = 0.64 (0.85) have
been chosen to reproduce the ionization energies 0.1909 a.u.
(0.1536 a.u.) for Rb2

+ (Rb) [20,21].
Equation (1) is solved by expanding the time-dependent

wave function on a basis of Lagrange functions

ψ(x,t) =
N∑

n=1

an(t)fn(x), (5)

where an is the expansion coefficient and fn represent the
Lagrange functions which are expressed on a set of N

orthonormal basis functions ϕk(x) [22]:

fn(x) = λ1/2
n

N∑
k=1

ϕ∗
k (xn)ϕk(x). (6)

In such a (Lagrange-mesh) method, the mesh is defined by a
set of N points xn (spanning a large region of space, the box)
and weights λn, connected with the Gauss quadrature scheme
at N points:

∫ b

a

F (x)dx ≈
N∑

k=1

λkF (xk). (7)

Within the framework of this approximation, the Lagrange
functions fn(x) satisfy [22]

fn(xm) = λ−1/2
n δnm (8)

and the orthonormality condition
∫ b

a

f ∗
n (x)fn′ (x)dx = δnn′ . (9)

Once the Lagrange functions are constructed, the matrix
related to the Laplacian of Eq. (2) can be expressed ana-
lytically; those representing the potential terms are diagonal
and can be evaluated directly on the mesh points xn. The
Lagrange-mesh method has been shown to be very efficient
with high accuracy for many kinds of eigenvalues problems.
Additionally, its application for solving the time-dependent
problems was reported by Melezhik and Baye [23], where its
fast convergence is observed and discussed.

The variational basis functions ϕk used in the present work
are defined as

ϕk(x) =
√

2 sin(kπx) (10)

and the Lagrange functions can be deduced from Eqs. (6)
and (10) [24]. Then the kinetic energy operator matrix has the
compact expression

Tnm =
⎧⎨
⎩

(−1)n−m π2

4

{
1

sin2( n−m
2

π
N+1 )

− 1
sin2( n+m

2
π

N+1 )

}
, n �= m

π2

4

{ 1+2(N+1)2

3 + 1
sin2(m π

N+1 )

}
, n = m.

(11)
Using this method the amplitudes an(t) of Eq. (5) are

propagated numerically using a predictor-corrector algorithm
with an adaptive step scheme due to Shampine and Gor-
don [25]. After propagation the ionization wave function
φioni is extracted by projecting out the contribution of bound
states of the diatomic target from the total scattering wave
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function

φioni(x) = ψ(x,t → ∞)

−
∑

n

∫
ψ∗

n (x ′)ψ(x ′,t → ∞)dx ′ψn(x), (12)

where the sum runs over the important target bound states
ψn. In the present case this sums covers the three lowest
bound states to reach sufficient convergence of the results.
The results presented in the following section are carefully
checked for convergence concerning box sizes, mesh sizes,
and propagation times. We note that a mask function was used
to remove reflections from box boundaries, avoiding spurious
perturbations of the inner part of the wave function at the cost
of a weak probability leak (from less likely fast electrons). In
closing, we emphasize that, contrary to perturbative low-order
treatments, our close-coupling calculations do not exclude any
mechanisms or processes which can give rise to a specific final
state.

III. RESULTS AND DISCUSSION

The processes to be discussed in the following are schemati-
cally displayed in Fig. 1. From top to bottom the first-, second-,
and third-order scattering mechanisms leading to coherent
electron emission from nucleus a (left) and nucleus b (right)
are illustrated. The top diagram represents first-order effect:
Here the electron is ejected from either atom a or atom b

directly to the continuum with a final momentum vector 	kf .
The first-order treatment of ion-molecule scattering gives an
expression for the oscillations very similar to that obtained
by Cohen and Fano in the case of photoionization [2,8].
When performing a first-order analysis within a 1D model, the
scattering wave can be expressed as a coherent superposition
of two plane waves of fixed momentum px emitted from both
centers (see [10]):

φ±
ioni(px) ∝ e±i|px |(x−Rab/2)−iEt + e±i|px |(x+Rab/2)−iE(t−δt),

(13)

kf

Va Vb

Va Vb

Va Vb

kf
k1

kf

k1

kf

Va Vb

Va Vb

Va Vb

kf
k1

k1

kf k2 k2

FIG. 1. Diagrams showing interference mechanisms of increas-
ing order: (top) first order, (middle) second order, and (bottom) third
order.

where ± refers to forward (+) or backward (−) electron
ejection. The latter expression can be brought to the simple
form

|φ±
ioni(px)|2 ∝ 1 + cos(±|px |Rab + Eδt), (14)

where E is the energy of the ejected electron and δt = Rab/v

corresponds to the phase shift between the waves emitted by
a and b. In the high impact velocity domain considered in the
following the phase has a rather small effect but it explains the
asymmetry between forward and backward scattering [10].

The second-order effect is schematically represented in
the middle panel. This is a contribution from two separate
processes: The primary electronic wave stemming from the
center a (b) propagates along the interatomic axis with the
electron momentum 	k1 (having the energy E1) and then it gets
scattered off by the center b (a) with the final momentum vector
	kf . Finally, an example of a third-order process is given in the
bottom panel: It contains an additional elastic intramolecular
scattering event of the active electron which at the point of
returning to the origin nucleus will scatter off with the final
momentum 	kf .

In order to test our numerical calculations, we revisit the
H+-H2 (Rab = 1.4 a.u.) collision to investigate high-order
interferences of the electron prior emission. The process under
consideration is dealt with in the nonperturbative approach
presented above. As in the previous calculations [10], we
consider high impact energy collisions (∼63 MeV/nucleon,
i.e., v ∼ 50 a.u.).

The convergence of the results constitutes a crucial step for
the meaningful analysis of the (tiny) oscillations superimposed
on the clear Young-type (first-order) ones which may be
present in the momentum distribution of the ejected electron
[i.e., the squared modulus of the Fourier transform of the
ionization wave function of Eq. (12) to the momentum space]
shown in Fig. 2(a). We have therefore performed extensive
numerical tests and we are confident on the convergence of the
data presented below with respect to the effects that we want to
analyze: These data stem from calculations with N = 32 768
mesh points within a box of size 6400 a.u. and a propagation
time tf = 200 a.u.

As observed in [10], the results of Fig. 2(a) demonstrate
quantum interferences related to the coherent electron emis-
sion induced by a proton in the vicinity of the two atomic
centers of H2, as described in Fig. 1 (top).

The frequency spectra resulting from Fourier transforma-
tion of the ratio between the momentum distributions in
backward scattering of H2 and H after the collision, i.e., at
the time tf = 200 a.u., are shown in Fig. 2(b). The single peak
in the spectrum reveals the primary frequency of Young-type
interference, in agreement with Eq. (14). Apart from this
structure, no additional structure in frequency spectrum can
be observed.

A critical parameter for the second- and higher-order
mechanisms to be pronounced is the internuclear distance,
Rab; cf. Eq. (14). As Rab = 1.4 a.u. for H2 compares to the
de Broglie wavelength of the emitted electron in the observed
range of electron velocities (1.5–6 a.u.), we may suspect that
the dimension of the hydrogenic molecular target is too small to
accompany significant (observable) double-scattering events.
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FIG. 2. 1D calculations for electron emission from H2 by
63 MeV/nucleon H+ impact. (a) Momentum distribution of the
ejected electron:; black line, H+-H2; green line, H+-H. (b) Magnitude
of the Fourier transform of the ratio of distributions for backward
scattering.

The situation could be changed by analyzing oscillations at
higher electron energies but here ionization is weak, with
a four-order-of-magnitude decrease when scanning up to a
few hundred eV [9]: First-order interferences can hardly be
observed in experimental spectra and data from simulation
may reach background numerical noise so that the analysis
of additional oscillations may become questionable. The
remaining alternative is to consider molecules with larger
internuclear distance.

Therefore, we consider the solution of the TDSE for a
molecular target with significantly larger internuclear distance.
In Fig. 3(a) we show the momentum distribution of the
ejected electron as a function of time and momentum in the
forward and backward direction for collision between a proton
and the Rb2

+ molecular ion, characterized by Rab = 9.2
a.u. In Fig. 3(b) we show the corresponding results from a
“2Rb” pseudomolecular model where the amplitudes from
two ion-atom calculations are coherently added and shifted
in amplitude, by the same interatomic distance. Although both
calculations exhibit the characteristic Young-type oscillatory
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FIG. 3. Momentum distribution as a function of time and
ejected electron momentum following 63 MeV/nucleon (v ≈ 50 a.u.)
H+-Rb2

+ collisions (a) from the model taking into account molecular
effects for the target and (b) from the 2Rb model, i.e., the coherent
sum of ionization wave functions from two independent Rb atoms.
In both models, the internuclear distance is fixed at Rab = 9.2 a.u.
(c) 1D momentum distribution of the ejected electron at the time of
propagation tf = 82 a.u.: black line, H+-Rb2

+; blue dash-dotted line,
H+-Rb; red dashed line, H+-2Rb.
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momentum distributions, we note some distinct molecular
effects, in particular at low momenta. In the case of Rb2

+, we
observe the extinction of the first minimum located around
|px | � 0.3 a.u. after 15 a.u. collision time. We note that
a similar suppression has been observed experimentally in
the ionization of N2 by 1–5 MeV/nucleon protons [17].
These minima remain present in the 2Rb model even at long
propagation times. Moreover, an additional tiny pattern can be
seen on both sides of the central line for Rb2

+, as indicated by
the white arrows, while such side structures do not appear for
2Rb.

The observed differences in Figs. 3(a) and 3(b) become
obvious when the electron energy spectra are plotted after the
collision; see Fig. 3(c). The full molecular treatment displays
additional structures at low momenta while the momentum
distribution from the two-atom model becomes similar only at
high electron energies.

To analyze the interference pattern with higher visibility,
we plot the momentum distributions of the ejected electron
of the dimer Rb2

+ divided by those of the monomer Rb.
The results are presented in Fig. 4(a) together with the
two-independent-center 2Rb model and compared with the
first-order oscillations given by Eq. (14). The strongest
departure from the first-order theory is seen to be most
pronounced at small backward and forward momenta in the
full Rb2

+ calculation. Additionally, the results reveal a small
but clear asymmetry between forward-backward emission, in
concordance with Eq. (14).

When analyzing the frequency distribution, by taking the
Fourier transform of the distribution ratio [26] displayed in
Fig. 4(a) for backward momenta, we observe in Fig. 4(b) clear
second and third harmonics of the fundamental frequency from
the full molecular treatment. In contrast, the two-atom model
displays only the characteristic first-order frequency, i.e., that
of the cosine function of Eq. (14).

Let us now compare these results with the calculated
spectra from selected first-, second-, and third-order Born
series amplitudes. The full transition amplitude up to second
order can be written as

a(k1,kf ) = a(1)(kf ) + a(2)(k1,kf ), (15)

where the first term corresponds to the first-order amplitude;
its expression is given by

a(1)(kf ) ∼
∫ ∞

−∞
dtei�Et 〈ψkf

|Vp(t)|ψi〉. (16)

The contribution of the second-order amplitude contains
elements on the form [27] a(2)(kf ) = ∫

d3k1[a(2),+(k1,kf ) +
a(2),−(k1,kf )], where the two partial amplitudes relate to
forward (+) and backward (−) interatomic scattering and
describe precisely the mechanisms sketched in Fig. 1 (middle).
It can be expressed as

a(2),±(k1,kf ) ∼
∫ ∞

−∞
dt2e

i�E2t2〈ψkf
|Vs(x)|ψ±

k1
〉

×
∫ t2

−∞
dt1e

i�E1t1〈ψ±
k1

|Vp(t1)|ψi〉, (17)

where Vs(x) = V (xa) + V (xb) describes the electron target.
�Ei (i = 1,2) is the energy transfer to the electron.
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FIG. 4. Electron emission in 63 MeV/nucleon H+-Rb2
+ colli-

sions. (a) Ratio of the momentum distributions for molecular (Rb2
+)

and atomic (Rb) targets: black line, full calculation; red dashed line,
results from the two-independent-atoms (2Rb) model; green (light
gray) line, model of the first order given by Eq. (14). (b) Magnitude
of the Fourier transform of the distribution ratios for backward
scattering, convoluted with Gaussian functions [black and red dashed
lines, same as in (a)].

To evaluate the amplitude in Eqs. (16) and (17), we assume
that the terms Vp in Vs are screened Coulomb (or Gaussian,
see below) potentials describing approximately the interaction
between the electron and the two centers of the molecular target
[see Eq. (3) for the form used in the numerical calculations].
The perturbation Vp is set constant, and the initial state is
expressed as a linear combination of two atomic centers a and
b, respectively,

ψi = N (ϕ(xa) + ϕ(xb)), (18)

where N is a normalization factor. The final and intermediate
wave functions for electrons of momenta kf and k1, respec-
tively, are approximated by plane waves and can be written as

ψkf
= (2π )−3/2eikf x (19)
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and

ψ±
k1

(x) = (2π )−3/2e±ik1x. (20)

This plane-wave approximation allows us to get a simple
analytic expression for the amplitudes in Eqs. (16) and (17);
after integration over the time t and the electronic coordinate
x, we thus get, for the first-order amplitude,

a(1)(kf ) ∼ cos(kf Rab/2)ϕ̂(kf ), (21)

and for the contribution of the second-order amplitude,

a(2),±(k1,kf ) ∼ cos(Q±Rab/2) cos(k1Rab/2)V̂ (Q±)ϕ̂(k1),
(22)

where the momentum transfer Q± = kf ± k1,

V̂ (Q±) =
∫

dxa/bV (xa/b) exp(−iQ±xa/b), (23)

and

ϕ̂(k1/f ) =
∫

dxa/bϕ(xa/b) exp(−ik1/f xa/b). (24)

In order to perform analytically the integrals in Eqs. (23)
and (24), we make use of a Gaussian form to describe
both the electron-target interaction and the initial state.
These approximations lead to an analytic expression for the
contribution of the second-order scattering probability term,
|a(2)|2∼|a(2),+|2 + |a(2),−|2 + 2Re(a(2),+,∗a(2),−), where the
last term represents the interference between the two processes.
Considering elastic processes only in the continuum (k1 = kf ),
the probability takes then the form

|a(2)(kf )|2 ∼ |a|2[3 + 3 cos(kf Rab) + 4 cos(kf Rab)

+ 6 cos(kf Rab) cos(kf Rab) + cos(2kf Rab)

+ cos(kf Rab) cos(2kf Rab)]. (25)

This expression contains the fundamental frequency, the first
harmonics in the second and third term, a component with the
second harmonics, and finally a third harmonics originated
from the interference between the final and intermediate
waves. Therefore, the full second-order scattering probability
is |a|2 = |a(1)|2 + |a(2)|2 + 2Re(a(1),∗a(2)), where the last term
represents the interference between the first-order amplitude
and the contribution of the second-order amplitude. In the
following, we neglect this term, and only the contribution of
the second-order amplitude is analyzed. This is valid only as
long as the nature and the origin of the high-order oscillations
are explored.

In Fig. 5 the Fourier transform of expression (25) is
plotted together with the similar relation for the contribution
of the third-order probability. We note that the third-order
term gives an additional fourth harmonics of the basic
oscillation frequency. These harmonics are seen to be in
complete concordance with the dominant frequencies of the
TDSE results for the Rb2

+ target. The close agreement
between our analytical Born series model and the molecular
TDSE calculation demonstrates the origin of the calculated
oscillations in the spectrum.

The key to the emergence of clear harmonics has been
the substitution of the “standard” target molecule H2 with a
heavier molecule of much larger internuclear separation. In
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FIG. 5. Frequency distributions of the second- (red dashed curve),
Eq. (25), and third-order (blue dash-dotted curve) Born amplitudes
with selected intermediate states with k1 = k2 = kf ; cf. Fig. 1.
The frequency distributions stemming from the TDSE from the
63 MeV/nucleon H+-Rb2

+ system (same as in Fig. 4) are shown
by a black line with an offset.

Fig. 6 we show the results of calculations for the additional
molecules H2+ (Rab = 2.0 a.u.) and Cs2

+ (Rab = 10.1 a.u.).
The results for the latter show again distinct signatures of
high-order oscillations at slightly higher frequencies than in
Rb2

+, as expected. In contrast only the basic frequency appears
for the H2

+ molecular ion.
In order to support our suggestions regarding the significant

role of the molecular internuclear distance to highlight the
predicted high-order interferences, we have performed ad-
ditional calculations for four values of Rab (1.4, 5, 6, and
7 a.u.). In these calculations, we have used a short range
potential with a Gaussian form [− exp(−α|x − Rab/2|2) −
exp(−α|x − Rab/2|2] to describe the electron-molecule inter-
action. Here the nuclear charge of the molecular target is fixed
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FIG. 6. Frequency distributions from calculations for
63 MeV/nucleon H+ impact on H+

2 (blue dash-dotted curve),
Cs+

2 (red dashed curve), and Rb2
+ (black curve with offset).
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FIG. 7. Frequency distributions of the higher-order harmonics
stemming from the TDSE, for four molecular internuclear distances
Rab at 63 MeV/nucleon proton impact. For all Rab, we use the same
potential, which is given in a Gaussian form, to describe the electron-
molecule interaction: Rab = 1.4 a.u. (red dash-dotted curve), Rab =
5 a.u. (black curve), Rab = 6 a.u. (green curve), and Rab = 7 a.u.
(blue dashed curve).

as for H+
2 (Z = 1 for each center), and the only parameter to

be varied is the molecular internuclear distance. This allows
us to rule out any effect due to the nuclear charge to observe
high-order oscillations. The results, displayed in Fig. 7, show
that the high-order oscillations appear as the internuclear
distance becomes about four to five times the one of H2. Once
again, the observed frequencies of the high-order harmonics
agree with second- and third-order Born calculations.

Finally we point out that high-order emission harmonics can
become even more pronounced for similar linear three-center
molecules (or longer chains). In the TDSE results for the Rb2+

3
trimer shown in Fig. 8 one can observe up to five distinct
harmonics due to an interplay between a much larger range of
scattering possibilities from three centers. The “3Rb” model,
obtained by adding three independent atomic amplitudes at
three fixed atomic distances of 9.2 a.u., exhibits only the two
basic frequencies expected. Again, the second-order model
applied to the trimer reproduces the spectrum.

IV. CONCLUSIONS

In this work we have demonstrated high-order interference
in coherent electron emission from dimers induced by fast
ions based on TDSE 1D calculations. The results stemming
from this approach are supported by an analysis in terms of
second- and third-order Born series. The main observation is
that harmonics of the basic frequency Rab/2π may appear
when the internuclear distance becomes sufficiently large,
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FIG. 8. Frequency distributions from calculations of H+-Rb3
2+

(black curve) and H+-3Rb (red dashed curve) collisions compared
with the Fourier spectrum from the second Born model of Eq. (25)
applied to a trimer (blue dash-dotted curve). Inset: Initial electronic
probability density vs spatial coordinate x (|x| < 20 a.u.).

i.e., four to five times that of H2, so that electronic wave
packets between the target centers can develop, resulting in
multiscattering processes. This is in agreement with a naive
picture of the dimension of the electron de Broglie wavelength
as compared to the molecular internuclear distance. The
high harmonics are clear signatures of coherent contributions
from second- and higher-order processes to the final electron
emission amplitude. Extension to triatomic linear molecules
with corresponding large distances reveals additional and
stronger harmonics.

In addition to an extension of this work towards a full
3D treatment, the present results call for more experimental
work towards systematic investigations of various heavy
diatomic or polyatomic linear molecules and molecular ions.
If experiments can detect a pronounced spectrum of high
harmonics it may lead to new applications of electron emission
interference spectroscopy, such as extended x-ray absorption
fine structure spectroscopy [28] in solid-state physics. The
fundamental aspects of such experiments will not cast light on
the “eternal” quantum mechanics dilemma of which slit the
particle goes through, but they may display with clarity the
more precise question regarding which processes take place
before the particle emerges from the two slits.
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