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Calculation of antihydrogen formation via antiproton scattering with excited positronium
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The two-center convergent close-coupling method is used to calculate antihydrogen (H̄) formation via
positronium (Ps) scattering on antiprotons (p̄) at near threshold energies. For excited Ps of energy ε, the
1/ε behavior of the H̄ formation cross sections is valid strictly only at the respective threshold, as is the 1/

√
ε

behavior for Ps in the ground state. Simple equations are given for the H̄(n � 4) formation cross sections from
Ps(n � 3) from zero to around 0.1 eV above threshold. Some of the implications of using p̄-Ps collisions to form
antihydrogen in beams, and held in traps, are discussed.
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I. INTRODUCTION

The study of antimatter has been of great interest for
several decades, and typically involves comparisons of the
properties of particles and antiparticles as tests of symmetry
(see, e.g., [1]). More recently antihydrogen, the positron-
antiproton bound state, has become available for study (see
[2] for a topical review). While some antimatter properties
are well known, such as certain charge-to-mass ratios [1],
the quest to understand the apparent asymmetry implied by
the predominance of matter over antimatter in the Universe
has motivated continued study. In particular, spectroscopic
investigations of H̄ promise to provide sensitive tests of the
CPT symmetry [2–5], and there are also current efforts to
probe the gravitational properties of antimatter, including H̄
[6–11]. Within the framework of general relativity, the weak
equivalence principle states that if a particle is only submitted
to gravity, then the trajectory of that particle is independent of
its charge and internal structure [6]. Thus, it is assumed that the
gravitational behavior of matter and antimatter are equivalent,
but this has never been directly tested by experiment. Since
the strength of gravitational interaction is much lower than
that of electromagnetism the weak equivalence principle for
antimatter can only be accurately tested using neutral species,
with the simplest case being H̄. It is thus timely to consider
mechanisms by which H̄ may be produced in the laboratory in
a manner conducive to investigations of its properties.

One such mechanism arises from the interaction between
antiprotons and positronium (Ps; the e+-e− bound state) atoms.
A possible result of their interaction is the production of H̄ by
the reaction [3,12,13]

p̄ + Ps → H̄ + e−. (1)

From the point of view of theory this is entirely equivalent to
p + Ps → H + e+, and so cross sections are obtainable from
positron-hydrogen scattering.

The AEgIS H̄ group at CERN have plans to produce the
antiatom in Rydberg states by this method [9,10,14]. This is
largely because it is generally believed that the cross section
for this process scales by n4

Ps where nPs is the principal
quantum number of the Ps [13,15], implying that the use of

Ps in a Rydberg state in reaction (1) would efficiently produce
antihydrogen in a Rydberg state. Use of reaction (1) was also
proposed by Walz and Hänsch [16] with the resultant H̄ to
undergo further collisions with the Ps target to produce the
antimatter equivalent of the hydride ion, namely, H̄+. The ions
are then held in an ion trap where they are sympathetically
cooled (using cotrapped laser cooled ions), before the positron
is removed by photoionization, thereby allowing the remaining
H̄ to fall freely in the Earth’s gravitational field. This is the aim
of the GBAR group [7,8,17].

Both the AEgIS and GBAR experiments pose significant
technical challenges. Thus, it is useful to have accurate
scattering cross sections available for reaction (1) over as wide
an energy range, and for as many initial Ps and final H̄ states, as
possible. The exothermic nature of the reaction implies that the
H̄ formation cross sections for this mechanism increase as the
energy of the Ps atom is lowered. Therefore, if near-zero energy
Ps could be used for scattering on cold, trapped antiprotons,
then the yield of cold H̄ would be enhanced. According to
Wigner [18] the cross sections for such a process behave as
1/

√
ε as ε → 0 where ε is the energy of the Ps projectile,

and this is observed for the case of Ps(1s). However, for
excited Ps states, owing to the degeneracy of their energy
levels, the low-energy behavior is modified to 1/ε [19,20]. This
behavior was confirmed in our recent work [21]. Furthermore,
it was found that the concomitant dramatic rise in the cross
sections for reaction (1) occurred within an experimentally
viable range, thus motivating a more detailed presentation of
our data (see Sec. III).

A theory for determining the cross sections for energies
where the 1/ε relationship is valid must be developed to
produce reliable guideline data for experiment. An ideal
starting point would be the scattering of positrons on hydrogen
atoms, since Ps formation by this method is, as mentioned
above, simply the reverse of hydrogen formation by scattering
positronium on protons [22]. Various theoretical methods have
been used to determine the cross sections for (anti)hydrogen
formation by reaction (1). Benchmark results at low energies
involving only ground states were obtained using a variational
approach by Humberston et al. [23], and reported in full
by Kadyrov et al. [21]. Several other approaches involve
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expanding the total wave function in terms of H and Ps
states. There are time-independent close-coupling approaches
[24–28], time-dependent close-coupling (TDCC) [29], and the
continuum distorted wave–final state (CDW-FS) method [30]
to name a few. Mitroy [24] implemented both centers into
a close-coupling method for positron scattering on hydrogen
and later positronium scattering on protons [27]. Work was also
done on formation of antihydrogen [25,28] using a unitarized
Born approximation. The TDCC solves the scattering wave
function with a wave packet time dependently. The CDW-FS
method describes the states using Coulomb wave functions
with exact boundary conditions. Nevertheless, the challenge
of yielding accurate results for various initial states at low
energies of interest in experiment remains to be met.

The two-center convergent close-coupling (CCC) method
of Kadyrov and Bray [31] expands the total wave function
in terms of Laguerre-based atomic and Ps states of negative
and positive energies ε(H)

n and ε(Ps)
n , respectively (where here

n denotes, as appropriate, the Ps or H principal quantum
number). The key idea is to obtain convergence with systematic
increase of the size of the bases NPs

l and NH
l for l � lmax. One

of the remarkable aspects of the formulation is the capacity to
check for internal validation by ensuring consistency between
one- and two-center results for every partial wave of the
total orbital angular momentum [32]. Briefly, if we define
the “extended Ore gap” to be between the Ps formation and
the ionization thresholds, then for incident positron energies
E0 outside this gap the two approaches should yield the same
results. This is because the one-center calculation is formally
valid outside the extended Ore gap, with the positive-energy
atomic states corresponding to both the (inseparable in this
approach) Ps formation and break-up collision processes.
Specifically, denoting the corresponding calculated cross
sections as σ

(1)
f i and σ

(2)
f i , for E0 < 6.8 eV,

σ
(1)
ii = σ

(2)
ii , (2)

and for E0 > 13.6 eV,

σ
(1)
f i = σ

(2)
f i , where ε

(H)
f < 0,

and
∑

ε
(H)
f >0

σ
(1)
f i =

∑
ε

(H)
f >0

σ
(2)
f i +

∑
ε

(Ps)
f <0

σ
(2)
f i +

∑
ε

(Ps)
f >0

σ
(2)
f i . (3)

The latter is the statement that electron-loss (ionization)
cross sections in the one-state calculation should be the same as
those obtained in the two-center calculations, which are com-
posed of the three specified components. The first (ε(H)

f > 0)

and the third (ε(Ps)
f > 0) components correspond to the break-

up processes in two-center calculations. Nevertheless, due to
the unitarity of the close-coupling formalism there is no double
counting. However, as bases sizes increase, the two-center
equations become particularly ill-conditioned.

Checking the elastic, excitation and electron-loss cross
sections for each partial wave at energies outside the extended
Ore gap is a very valuable validation of both implementations.
It tells us when the one-center approach may be used to yield
accurate results such as given in [33–37], where the effect
of Ps formation (virtual or real) manifests itself with slow
convergence with increasing lmax. However, either within the
extended Ore gap, or whenever explicit Ps-formation results

are required, only the two-center calculations are capable of
yielding the required cross sections.

Here we are interested in the rearrangement collision
process, and so only two-center CCC calculations are ap-
plicable. From the self-consistency checks [32] we know
that they should be valid at all energies. Such calculations
produce accurate results down to 10−5 eV above the Ps(1s)
threshold for H(1s) formation using a relatively small basis
[38], and also for excited states requiring larger bases [21]. For
brevity of presentation, the latter gave results for the summed
(anti)hydrogen formation. We now take the opportunity to
present the full state-to-state cross sections, and provide simple
fitting formulas for ease of use at low energies.

II. THEORY

Details for positron scattering on atoms using the two-
center CCC method are given by Kadyrov and Bray [31].
Briefly, to represent the atomic and Ps states independently
the complete Laguerre basis

ξkl(r) =
(

λl(k − 1)!

(2l + 1 + k)!

)1/2

(λlr)l+1 exp(−λlr/2)L2l+2
k−1 (λlr)

(4)

is utilized, where L2l+2
k−1 (λlr) are the associated Laguerre poly-

nomials, l � lmax is the orbital angular momentum of the target
(H or Ps) state, λl is the exponential factor, and k ranges from 1
to the basis size Nl . A linear combination of the basis functions
is then used to diagonalize the target Hamiltonian HT:〈

φ
(T)
f

∣∣HT

∣∣φ(T)
i

〉 = ε
(T)
f

〈
φ

(T)
f

∣∣φ(T)
i

〉 = ε
(T)
f δf i . (5)

This is done for both H and Ps targets to obtain the pseudostates
used to expand the total wave function of the scattering system.
With increasing Nl the negative-energy states converge to
the true discrete eigenstates, while the positive-energy states
provide an increasingly dense discretization of the continuum.

Using these pseudostates, a set of momentum-space cou-
pled Lippmann-Schwinger equations are solved to determine
the transition matrix elements

Tγ ′,γ (qγ ′ ,qγ ) = Vγ ′,γ (qγ ′ ,qγ ) +
NH+NPs∑

γ ′′

∫
dqγ ′′

(2π )3

× Vγ ′,γ ′′ (qγ ′ ,qγ ′′ )Tγ ′′,γ (qγ ′′ ,qγ )

E + i0 − εγ ′′ − q2
γ ′′

/
(2Mγ ′′ )

, (6)

where E is the total energy, qγ is the momentum of the free
particle γ with respect to the center of mass of the bound pair
in channel γ (H or Ps), εγ is the energy of the bound pair, Mγ

is its reduced mass, and Vγ ′,γ is the effective potential. The
coupled equations are solved using the partial-wave expansion
in total orbital angular momentum.

The convergence of the results is checked against increasing
Nl and lmax for both H and Ps. With explicit Ps included large
lmax are not required, as they are in one-center calculations.
Here we have taken l(H)

max = 3 and l(Ps)
max = 2 (see below). Since

the Ps and H expansions are nonorthogonal, with a clear
overlap for the breakup process, the problem becomes highly
ill-conditioned as the number of states increases. Hence,
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FIG. 1. Energy levels of the positronium and hydrogen states used
in the two-center CCC calculations. They were obtained by solving
Eq. (5) for both H and Ps with Nl = 12 − l (see text).

arbitrarily high bases cannot be taken. To systematically
check the convergence we fixed λ

(H)
l = 1 and λ

(Ps)
l = 0.5,

and set Nl = N0 − l with N
(H)
l = N

(Ps)
l , leaving only one

parameter (N0) to vary. Calculations were performed with
N0 = 10,11,12, with the energies for the latter case presented
in Fig. 1.

For Nl = 12 − l, with above-mentioned λ, the H and Ps
states are accurate for n � 5. Our initial states are denoted
as Ps(nl). For Ps(1s) as the initial state we require a positron
energy in excess of 6.8 eV, leading to the Ps energy ε > 0.
At threshold, formation of only the lower energy H(1s) state
is possible. At the threshold of the Ps(n = 2) states only
formation of H(n � 2) states are possible, while for Ps(n = 3)
states formation of H(n � 4) are energetically allowed. The
additional H n level arises (see Fig. 1) due to the interplay
of the H and Ps eigenenergies, which vary, as is well known,
according to n−2 and n−2/2, respectively. For this reason we
chose l(H)

max = 3 and l(Ps)
max = 2 so that we could achieve accurate

Ps(n � 3) to H(n � 4) cross sections while keeping the size
of the calculations manageable to minimize ill-conditioning.

III. RESULTS

The data for (anti)hydrogen formation in the scattering of
Ps(1s) on (anti)protons are presented in Fig. 2 where, as is
evident from Fig. 1, the only hydrogen state available near zero
energy is H(1s). The remaining states do not open up until
around 5 eV of Ps kinetic energy. The excellent agreement
with the variational calculations of Humberston et al. [23]
(which are not shown in Fig. 1) has already been discussed
by Kadyrov et al. [21]. Here we concentrate on establishing

TABLE I. Cross sections σH(nl) = ε−1/2(a + bε1/2 + cε) (a.u.) for
near-zero energy ε (eV) Ps(1s) incident on (anti)protons, as shown by
the solid line in Fig. 2. These values were obtained by a least-squares
fit of the data up to 0.01 eV. The numbers in brackets indicate the
power of 10.

a b c

σH(1s) 7.087[−1] −1.958[+0] 7.926[+0]

a simple formula to fit the low-energy data. As discussed in
Sec. I, the cross sections for H(1s) near threshold behave as
1/

√
ε, in accordance with Wigner [18]. This is represented by

the solid line over the data points, obtained from a least-squares
fit to the function σH(nl) = ε−1/2(a + bε1/2 + cε) from zero to
0.01 eV, with the values of a, b, and c given in Table I. The
fact that b is comparable to a indicates that the threshold law
is valid strictly only at threshold. Nevertheless, the simple
formula can be used across the three orders of magnitude of
the presented low energies.

Whereas H(1s) formation from Ps(1s) is an exothermic
reaction, and so the cross section tends to infinity at threshold,
the formation of H(n > 1) requires a loss of Ps kinetic energy.
Consequently, their respective thresholds are nonzero and the
cross sections typically rise rapidly from zero to a maximum,
and then slowly fall again. Whereas we expect the actual
cross sections to vary smoothly as a function of energy we
occasionally find outlying points. This is a manifestation of
the ill-conditioned nature of the problem. Data obtained using
smaller values of N0 contain fewer examples of this behavior,
but show somewhat greater pseudoresonance structure. The
present results are generally at the ±5% level of convergence.

The data for Ps(2s) initial state are presented in Fig. 3.
For Ps(n = 2) the channels for formation of H(n � 2) are
open at zero energy. The H(n = 2) formation cross sections
(top and bottom left) are massively increased compared to
the Ps(1s) case of Fig. 2. Formation of H(1s) is two orders of
magnitude less likely than H(2s) and H(2p), which are broadly
similar. These enhancements can be attributed to a number of
sources: (i) the increased size and polarizability of the Ps and H
states, (ii) the lower energy difference between Ps(n = 2) and
H(n = 2) levels, and (iii) the emergence of the 1/ε threshold
behavior. The Ps(1s) data exhibited the 1/

√
ε behavior at low

energies, however, this is altered by the introduction of the
degenerate H(n = 2) states to 1/ε in agreement with Fabrikant
[19]. Accordingly, the solid lines in Fig. 3 are a least-squares
fit of the function σH(nl) = ε−1(a + bε + cε2) to the data from
zero to 0.1 eV, with the fitted coefficients given in Table II. The
quantitative similarity is immediately evident for the H(2s) and
H(2p) cross sections. Once more, the magnitude of the b coeffi-
cients indicates that the laws are only strictly valid at threshold.

The (anti)hydrogen formation cross sections for the Ps(2p)
initial state are given in Fig. 4, with the corresponding
least-square fits given in Table III. There are only quantitative
differences with the results for the Ps(2s) case. The low-energy
cross sections are somewhat smaller, as can be seen when
comparing the a coefficients in Tables II and III. Thus, the
overall qualitative behavior of the data for the Ps(n = 2) initial
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FIG. 2. The cross sections for positronium in the 1s state scattering on (anti)protons to form (anti)hydrogen. The data presented are for
transitions open near zero energies (top left), and then transitions across the full energy range of the calculation into s states (top right), p states
(bottom left), and d and f states (bottom right). The solid line for the near-zero energy results is a least-squares fit of the data up to 0.01 eV
(see text) with the fitting parameters given in Table I.

states appears to be quite similar, being dominated by the
effects of the degenerate n = 2 energies.

The results for Ps(n = 3) are considerably more detailed.
In these cases all of the H(n � 4) states are open at zero

TABLE II. Cross sections σH(nl) = ε−1(a + bε + cε2) (a.u.) for
near-zero energy ε (eV) Ps(2s) incident on (anti)protons, as shown by
the solid lines in Fig. 3. These values were obtained by a least-squares
fit of the data up to 0.1 eV. The numbers in brackets indicate the power
of 10.

a b c

σH(1s) 1.429[−1] 4.528[−1] −7.623[−1]
σH(2s) 1.154[+1] 2.452[+2] −2.197[+3]
σH(2p) 1.120[+1] 2.417[+2] −1.992[+3]

incident energy. We begin with Ps(3s) given in Fig. 5, with
the formulas for the fitted data shown in Table IV. We see
that there is another order of magnitude increase in the largest
cross sections, this time to the H(n = 4) states. From Fig. 1, it is

TABLE III. Cross sections σH(nl) = ε−1(a + bε + cε2) (a.u.) for
near-zero energy ε (eV) Ps(2p) incident on (anti)protons, as shown by
the solid lines in Fig. 4. These values were obtained by a least-squares
fit of the data up to 0.1 eV. The numbers in brackets indicate the power
of 10.

a b c

σH(1s) 4.927[−2] 6.586[−1] −3.663[+0]
σH(2s) 3.849[+0] 2.215[+2] −1.953[+3]
σH(2p) 3.772[+0] 2.672[+2] −2.188[+3]
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FIG. 3. The cross sections for positronium in the 2s state scattering on (anti)protons to form (anti)hydrogen. The left side data are for
scattering near-zero energies for formation of hydrogen in an s (top) or p state (bottom). The right side data are across a larger energy range
for formation in s (top) or p, d or f states (bottom). The solid lines for the near-zero energy results are least-squares fits of the data up to 0.1
eV with the fitted parameters given in Table II.

evident that the Ps(n = 3) energies are only marginally higher
than those for H(n = 4). Such a small difference contributes
to the enhanced cross sections, as well as the increased size
and polarizability of the incident Ps. There are only minor
quantitative differences between the cross sections for the
formation of H(n = 4) states, with those for H(4s) being
somewhat smaller than the others. Interestingly, the H(4d)
and H(4f ) cross sections are barely distinguishable at the low
energies, as is also apparent from Table IV. The threshold
relationships hold strictly at threshold, and the given formulas
are accurate up to 0.1 eV. The H(n = 3) cross sections are
an order of magnitude lower than those for H(n = 4), and
those for lower values of n seem to drop by a further order of
magnitude.

Figure 6 shows the H(n � 4) formation cross sections for
the Ps(3p) initial state, with details of the fitted formulas given
in Table V. The qualitative behavior of the data is much the

same as for the Ps(3s) results. Quantitative differences may be
readily extracted using the a coefficients in the corresponding
tables.

Finally, the cross sections for H(n � 4) formation for the
case of the Ps(3d) initial state are presented in Fig. 7, with
the corresponding formulas from least-square fits given in
Table VI. We see no qualitative change from the other n = 3
cases, though quantitatively the cross sections are somewhat
lower in magnitude.

This completes our presentation of H(n � 4) formation
cross sections from Ps(n � 3) initial states incident on
(anti)protons at the lower energies of interest to experiment.
It is clear from the trends exhibited in our data that transitions
between Ps and H states with near-matching energies for
as high values of n as possible will yield the largest cross
sections. However, the energy interplay makes extrapolation
procedures problematic. Clearly there is incentive to increase
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FIG. 4. The cross sections for positronium in the 2p state scattering on (anti)protons to form (anti)hydrogen. The left side data are for
scattering near-zero energies for formation of hydrogen in an s (top) or p state (bottom). The right side data are across a larger energy range for
formation in s (top) or p, d or f states (bottom). The solid lines for the near-zero energy results are least-squares fits of the data up to 0.1 eV
with the fitted parameters given in Table III.

the size of the calculations. It would be particularly inter-
esting to allow for Ps(n = 5) with H(n = 7). In this case
the energy difference is very small (0.0056 eV), and so
should yield particularly large cross sections. To achieve
this we have to run with N0 ≈ 20. This is not practical
with the present implementation of the CCC code; however,
there are currently two developments that should assist in
addressing this issue. First, following the successful analytical
treatment of the singularities in the CCC equations in a model
problem [39], we expect to reduce ill-conditioning when
implemented for the full (present) problem. The requirement
to yield results close to thresholds requires treatment of
principal-value singularities very close to zero. Eliminating
them would be advantageous. Secondly, implementation of
arbitrary precision numerical approaches [40], as has been
done for proton-hydrogen scattering [41], will also assist in that
regard.

IV. DISCUSSION

In this section we present analyses in which our calculated
cross sections are used to estimate the yields of H̄ atoms from
reaction (1) in geometries which result, broadly speaking, in
the production of (i) an H̄ beam, and (ii) trapped H̄. In both
cases the most relevant starting Ps states are the 1s, 2p, 3p,
and 3d states. The 2p and 3p states can be reached efficiently
from the ground state by single photon transitions at 243 nm
(see, e.g., [42,43]) and 205 nm [44,45], respectively, while the
3d level can be accessed via a transition involving two 410-nm
photons.

A. Antihydrogen beams

Atomic and molecular beams have had an important role in
the development of physics (see, e.g., [46,47]). Nowadays they
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FIG. 5. The cross sections for positronium in the 3s state scattering on (anti)protons to form (anti)hydrogen. The left side data are for
scattering near-zero energies for formation of hydrogen in s (top), p (middle), d , or f states (bottom). The right side data are across a larger
energy range. The solid lines for the near-zero energy results are the least-squares fits to the data up to 0.1 eV with the fitted parameters given
in Table IV.

are used routinely for many purposes, including the population
of optical and magneto-optical traps found in a wide variety of
investigations in contemporary atomic and molecular physics.
By contrast, in antihydrogen work to date there have been no

physics studies using directed fluxes of the antiatom, though
progress towards this goal is ongoing (see below). Currently,
H̄ atoms are created in Penning traplike environments in which
strong (typically of the order of tesla in magnitude) magnetic
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TABLE IV. Cross sections σH(nl) = ε−1(a + bε + cε2) (a.u.) for
near-zero energy ε (eV) Ps(3s) incident on (anti)protons, as shown by
the solid lines in Fig. 5. These values were obtained by a least-squares
fit of the data up to 0.1 eV. The numbers in brackets indicate the power
of 10.

a b c

σH(1s) 7.724[−3] −4.788[−2] 7.442[−1]
σH(2s) 3.218[−1] 3.566[+0] −2.728[+1]
σH(2p) 4.437[−1] 1.026[+0] 1.584[+1]
σH(3s) 5.220[+0] 4.519[+1] −4.769[+2]
σH(3p) 8.626[+0] 1.066[+2] −1.310[+3]
σH(3d) 3.664[+0] 4.252[+1] −2.182[+2]
σH(4s) 3.892[+1] −2.019[+2] 4.573[+3]
σH(4p) 1.178[+2] −7.584[+2] 1.164[+4]
σH(4d) 1.097[+2] 1.235[+3] −1.174[+4]
σH(4f ) 8.713[+1] 1.650[+3] 1.167[+4]

fields are present to confine the constituent antiparticles. Given
the well-known effects of such fields on the spectral properties
of atomic species (see, e.g., [48]) a major motivation to produce
H̄ beams is to facilitate measurements of its properties in a
field-free region to aid in mitigating, for instance, motionally
induced complexities.

Currently, at least two groups (see, e.g., [49,50]) envisage
using H̄ beams for studies of its gravitational properties, and for
hyperfine spectroscopy, respectively. In particular, ASACUSA
requires directed fluxes of low-energy ground state H̄ for their
intended measurements of the hyperfine splitting interval.
Recent work by this group [51] has shown that a modest
yield (80 H̄ atoms in total, at a rate of about 25 per hour
and determined to be in a quantum state below n = 29) can be
detected 2.7 m downstream from their cusp trap arrangement
[52] for e+-p̄ mixing cycles of 15 min duration, each involving
around 3×105p̄ and 3×107e+. In this experiment the H̄ was
produced at low (antiparticle cloud) temperatures to exploit
the three-body reaction e+ + e+ + p̄ → H̄ + e+ and the cusp
trap magnetic field configuration resulted in beamlike emission
from the production region by allowing low-field seeking H̄ to

TABLE V. Cross sections σH(nl) = ε−1(a + bε + cε2) (a.u.) for
near-zero energy ε (eV) Ps(3p) incident on (anti)protons, as shown by
the solid lines in Fig. 6. These values were obtained by a least-squares
fit of the data up to 0.1 eV. The numbers in brackets indicate the power
of 10.

a b c

σH(1s) 3.892[−3] 5.562[−3] 1.994[−1]
σH(2s) 2.829[−1] 2.184[+0] −9.661[+0]
σH(2p) 4.027[−1] 2.522[+0] 1.377[+0]
σH(3s) 3.628[+0] 1.289[+1] 6.323[+1]
σH(3p) 7.433[+0] 5.333[+1] −5.490[+1]
σH(3d) 4.759[+0] 2.311[+1] 1.052[+2]
σH(4s) 2.382[+1] 1.104[+2] −3.021[+2]
σH(4p) 7.705[+1] 8.548[+1] −3.670[+2]
σH(4d) 7.906[+1] 4.618[+2] 1.262[+2]
σH(4f ) 8.257[+1] 2.160[+3] 3.257[+3]

escape (and to some extent focusing it) along the axis of the
system.

As mentioned earlier, an alternative method to produce an
H̄ beam is to exploit reaction (1) by passing an antiproton
beam through a Ps target. This reaction will, due to momentum
considerations, be peaked in the original direction of the heavy
projectile such that the angular properties of the H̄ beam will
be governed by those of the incoming p̄. In this respect, the
cross-section data presented in Figs. 2–7 span the Ps kinetic
energy range from 10−5 eV to just over 10 eV, corresponding
to an equivalent p̄ kinetic energy from around 10 meV to
about 13 keV. The latter spans the range over which it should
be feasible to produce controlled, virtually monoenergetic, p̄

beams extracted from trapped clouds and plasmas. This field
has been pioneered by the ASACUSA collaboration that has
developed techniques to manipulate p̄, currently down as far
as the 100–200 eV range [53–55], with applications in the
keV region in atomic and molecular collision physics [56,57].
In what follows we will consider cross sections at a single
fixed Ps kinetic energy of 100 meV, which corresponds to
an effective p̄ kinetic energy of just under 100 eV, with a
speed of just over 105 ms−1, for an idealized stationary Ps
target. Thus we envision a collision geometry in which a
near-monoenergetic p̄ beam crosses a Ps target in a confined
gas-cell arrangement (see, e.g., [8] for further details). Our
work can be used to produce estimates of the intensity of H̄
beams derived from reaction (1). The examples we give are
illustrative, and meant to offer guidance to experiment, rather
than an attempt to predict the outcomes of what are likely to
be complex experimental systems.

The first point to note from Fig. 2 is that for the Ps 1s state,
formation into H̄(1s) is the only open channel at 100 meV,
where it has a collision cross section of around 6 a.u. The
cross sections for Ps(2p), Ps(3p), and Ps(3d) are given in
Figs. 4, 6, and 7, from which three trends are apparent: (i)
the cross sections for direct formation into the H(1s) state
become depressed for the excited Ps targets; (ii) the production
cross sections for excited H̄ states increase dramatically with
increasing Ps principal quantum number, and (iii) so does
the number of different final H̄ states. Thus, it is apparent,
in a gas-cell arrangement in which p̄ collide with excited Ps
atoms, that the yield of H̄(1s) will be dominated by the rapid
population enhancement due to radiative decay of the excited
H̄ states. For instance, at the H̄ kinetic energy of 100 eV, a
flight path of around 1 m is sufficient to ensure that almost all
of the H̄ produced will be in the ground state. Indeed, the only
unavoidable losses are due to direct production of H̄ in the
metastable 2s state, and decays to this level directly from the
4p and 3p states, and indirectly via 4s-3p-2s and 4d-3p-2s

cascades. From the known lifetimes of the relevant transitions
[58], it is straightforward to compute branching ratios for these,
such that around 12% of each of the 4p and 3p populations are
lost, together with 5% of the 4s and 3% of the 4d. For instance,
for the cross sections for the 3p Ps state shown in Fig. 6, this
amounts to about a 4% loss from an overall production cross
section of around 6000 a.u.

The production of excited state positronium atoms with
principal quantum numbers in the range n = 2–20 has been
achieved recently in several laboratories [42,43,45,59,60].
While absolute production efficiencies are difficult to extract,
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FIG. 6. The cross sections for positronium in the 3p state scattering on (anti)protons to form (anti)hydrogen. The left side data are for
scattering near-zero energies for formation of hydrogen in s (top), p (middle), d , or f states (bottom). The right side data cover a larger
energy range. The solid lines for the near-zero energy results are the least-squares fits to the data up to 0.1 eV with the fitted parameters given
in Table V.

the measurements are consistent with yields in the region of
20% of the ground state population, and higher conversion
rates (above around 30%) have been postulated [61]. Assuming
the latter, it might then be feasible to create, using a gas-cell

geometry of the type envisaged by GBAR [6–8], an excited
state (3p) Ps cloud with an effective density of around
1017 m−3 over a length of 1 cm. In this scenario, around 1.5%
of the p̄ flux crossing such a target (obviously in a pulse to
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FIG. 7. The cross sections for positronium in the 3d state scattering on (anti)protons to form (anti)hydrogen. The left side data are for
scattering near-zero energies for formation of hydrogen in s (top), p (middle), d , or f states (bottom). The right side data are across a larger
energy range. The solid lines for the near-zero energy results are least-squares fits of the data up to 0.1 eV with the fitted parameters given in
Table VI.
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TABLE VI. Cross sections σH(nl) = ε−1(a + bε + cε2) (a.u.) for
near-zero energy ε (eV) Ps(3d) incident on (anti)protons, as shown by
the solid lines in Fig. 7. These values were obtained by a least-squares
fit of the data up to 0.1 eV. The numbers in brackets indicate the power
of 10.

a b c

σH(1s) 1.048[−3] 5.107[−3] 7.025[−2]
σH(2s) 1.214[−1] 2.821[−1] 8.805[+0]
σH(2p) 1.813[−1] 1.274[+0] 4.103[+0]
σH(3s) 1.213[+0] 2.412[+0] 2.570[+2]
σH(3p) 2.733[+0] 1.364[+1] 5.353[+2]
σH(3d) 2.343[+0] 3.535[+1] −2.597[+1]
σH(4s) 8.463[+0] 7.395[+1] −5.959[+2]
σH(4p) 2.722[+1] 1.443[+2] −4.255[+2]
σH(4d) 2.662[+1] 2.549[+2] 3.892[+3]
σH(4f ) 3.996[+1] 2.852[+3] −6.547[+3]

coincide with the Ps and its finite lifetime against annihilation
and radiative decay) can be converted into a beam of 1s H̄
which, to first order, will retain the properties of the incident
antiprotons. Incidentally, a 2s H̄ flux of around 0.07% of the
incident antiprotons will be present in this beam. It is worth
noting that it may be possible to obtain even higher yields
using higher Ps principal quantum numbers, though there may
be a trade-off with the length of the flight path required to
ensure that the antiatoms have reached the ground state.

The ASACUSA collaboration [50] is hoping to perform
hyperfine spectroscopy on the 1s state of H̄ (which has
a splitting of approximately 1420 MHz [62]) to obtain a
linewidth of around 10 kHz, limited by the transit time of a
50 K beam (equivalent to around 5 meV) across a 10-cm-long
cavity. In fact this transit time broadening linewidth limit
is given (in kHz) by �ft ≈ 14

√
V /d for a beam of kinetic

energy (eV ) and a cavity length, d. In the case discussed
above, and assuming the 10 cm ASACUSA cavity length, we
find �ft ≈ 1.4 MHz. This is similar to the precision already
achieved by ALPHA [62], however, the intensity of the H̄
beam would likely be much higher than can be achieved from
the cusp trap arrangement (see above), with the prospect of
finer line splitting leading to a more precise determination.
Furthermore, if the p̄ (and thus the H̄) beam kinetic energy
could be reduced, there would be a double gain of a reduction in
the broadening of the transition coupled with an enhancement
in the H̄ flux, which should result in better line splitting.

The possibility, currently pursued by the GBAR col-
laboration [6–8], to study the gravitational interaction of
antihydrogen by exploiting the free-fall of ultracold antiatoms
was already briefly mentioned in Sec. I. In their scheme it is
envisaged that the H̄ will be produced via a charge exchange
scheme involving reaction (1) followed by the creation of the
positive antihydrogen ion via

H̄ + Ps → H̄+ + e−, (7)

with the H̄+ then captured and cooled before the positron is
photoionized [16]. Due to the energetics of reaction (7) and
the fact that H̄+ is expected to have only one state (as does
its matter counterpart H−) that is bound by around 0.75 eV
with respect to e+ + H̄, reaction (7) is only probable when the

colliding H̄ is in the ground state. The cross sections we have
presented here can be used to derive estimates for the H̄+ yield
[also given cross sections for reaction (7)], and in principle
a full analysis of various scenarios can be undertaken in the
manner described by Comini and co-workers [63], though this
is beyond the scope of the present work. What we do point out
is that if the enhanced rates of ground state H̄ are to be exploited
by lowering the p̄ kinetic energy (from that currently envisaged
in the few keV range), then due to threshold effects in heavy
particle collisions (see, e.g., [64]), the H̄ should collide with Ps
in the n = 3 state, a variant of reaction (7) which is borderline
exothermic. Thus, there is an urgent need for accurate cross
sections for reaction (7) for excited Ps states, especially in the
lower energy range covered by the present work.

B. Trapped antihydrogen

In other experiments (for example, ALPHA and ATRAP),
a major goal is to hold H̄ in a magnetic minimum neutral
atom trap to promote the detailed study of its properties. To
date antiatoms have been held, typically singly or in very low
numbers [65,66], in traps around 0.5 K deep and in some
instances for time periods in excess of 1000 s [67], which
is more than enough time to ensure that any H̄ formed in
an excited state from the aforementioned three-body reaction
decays to the ground state. Major challenges to increase the
yield of trapped H̄ are to cool the positrons and antiprotons
to temperatures as low as possible (preferably to a level
comparable to the neutral trap depth) before they are mixed
to form the antiatoms and to ensure that the low antiparticle
temperatures are maintained during mixing (i.e., that the
electrical manipulations required to overlap the species do not
result in heating). Use of reaction (1) may reduce the level of
difficulty, as only cold antiprotons are required. In this respect
the issue then becomes whether the resulting antihydrogen
kinetic energy is low enough to allow trapping.

Experimentally, the H̄ must be formed, as at present, in
a Penning-type charged particle trap which has a magnetic
minimum neutral atom trap superimposed. Currently the
Penning trap electrodes are cylindrical in nature and with a
typical radius of 1–2 cm. To exploit reaction (1) the Ps should
be formed at a surface as close as possible to the trapped
antiproton cloud, with attendant laser access to provide for
photoexcitation of the Ps prior to interaction. This is by no
means a trivial problem, as specialized structures (e.g., porous
silica [68]) are often used to create low-energy (typically
sub-100 meV) Ps and these must be integrated into the Penning
trap structure.

In what follows, we have assumed that this can be achieved
with modest losses of Ps flux such that useful yields of H̄ can
be obtained. It is noteworthy that, for trapping, only the total
H̄ formation cross section (i.e., not state specific) is needed, as
the trapped H̄ lifetime is sufficient to ensure that the ground
state will be reached, if the antiatom is held. In our previous
work [21] we made estimates of H̄ yields for the Ps(3p) case,
finding a few tens of antihydrogen atoms could be produced for
a Ps density of 1015 m−3 and for Ps kinetic energies (with the p̄

assumed stationary) in the 10–100 meV range. It is clear from
that work, and the data presented herein, that going to higher
Ps principal quantum numbers will dramatically increase the H̄
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production cross section, and hence the overall antiatom yield.
Indeed, if the factor of approximately 40 increase in cross
section when going from the 2p to the 3p state is maintained
to n = 10 Ps and above, then essentially all p̄ will interact to
produce H̄.

However, of paramount importance is not just the yield of
H̄, but also its kinetic energy, since this must be below the
neutral trap depth if it is to be held. In this respect we have
made some estimates of the H̄ recoil as a result of the p̄-Ps
reaction. We assume that the p̄ is stationary, and in one (ideal)
limit that so too is the Ps. In this case the recoil of the H̄ is a
result of the energy difference between the relevant Ps and H̄
energy levels, which we denote as Q = εH̄

nl − εPs
nl . It is easy to

show that, in this limit the effective H̄ recoil temperature, TH̄,
is given by [15]

TH̄ = 2Qme

3mH̄kB

= 2meR

3mH̄kB

(
1

n2
H̄

− 1

2n2
Ps

)
. (8)

Here me and mH̄ are the electron-positron and H̄ masses,
respectively, kB is Boltzmann’s constant, and R the Rydberg,
with nH̄ and nPs now explicitly distinguished by notation as
the H̄ and Ps principal quantum numbers. For the antihydrogen
to be held in a trap of effective wall temperature, TW , clearly
TH̄ � TW . From this requirement, and substituting values for
the constants, it can be shown that the antihydrogen state
constraint is given by

nH̄ �
√

2nPs

(
1 + n2

PsTW

28.7

)−1/2

, (9)

with TW in degrees Kelvin. The ALPHA neutral atom trap is
around 0.5 K deep [65], and by inserting this value into Eq. (9)
it is easy to show that for nPs = 3, antihydrogen states with
nH̄ � 4 will be trapped. If more highly excited states of Ps can
be produced then a larger selection of energy-allowed H̄ states
can be trapped: as an example, all states with nH̄ � 9 will be
trapped for nPs = 10. Bearing in mind that the H̄ states most
likely to be populated are those that are as close to energy
degenerate with the starting Ps states as possible (formally
satisfied when nH̄ = √

2nPs), then it is clear that, as nPs is
increased, a progressively larger fraction of the H̄ produced
has a low enough kinetic energy to allow trapping, when only
the magnitude of Q is considered.

Another limit is to presume that the Ps possesses a kinetic
energy, KPs, but that Q = 0; i.e., for the latter that the H̄
and Ps binding energy difference can be ignored, which will
become an approachable limit as nPs is increased. Here the
classical equations for the conservation of momentum and

energy yield somewhat cumbersome expressions that depend
upon the angle between the initial Ps velocity and that of
the H̄ in the final state (or that of the ejected electron).
However, it is straightforward to show that the maximum H̄
recoil kinetic energy, KH̄, is of the order of 10 × meKPs/mH̄
[15]. Equating KH̄ = 3kBTW/2, the effective value of KPs

which results in H̄ with a kinetic energy low enough to be
trapped is given, approximately, by KPs = 3kBTWmH̄/20eme,
with e the elementary charge. Again taking TW = 0.5 K and
inserting values for the constants, we find KPs ≈ 12 meV, or
an approximate temperature equivalent of 180 K. Though this
requires positronium at energies lower than room temperature,
Ps sources that operate in the cryogenic environments typical
of Penning traps have been developed [69–71], however, it is
likely that further work is required, perhaps involving laser
cooling [72], to ensure that the Ps interacts at correspondingly
low kinetic energies. When both TPs �= 0 and Q �= 0 the
situation is more involved, though the kinematics of the
collision outcome can be simulated [73], if the relevant
differential cross sections are known.

V. CONCLUSIONS

We have performed calculations of positronium scattering
on (anti)protons to produce (anti)hydrogen for various initial
n � 3 states to final n � 4 states. The largest cross sections
are obtained for the 3 → 4 transitions, with minor variation
across the different l. Threshold laws have been found to be
strictly valid at threshold, with simple formulas given to yield
accurate (±5%) results from zero to about 0.1 eV incident Ps
energy, which is of practical value to experiments attempting
to form antihydrogen, both in beams and held in traps. We
have discussed aspects of the impact of the present work on
those endeavours.

Presently, we are developing novel approaches to the
solution of the two-center CCC equations that will reduce the
ill-conditioning, and also implementing numerical approaches
that will manage even more ill-conditioned systems. If success-
ful, we hope to extend the calculations to states with higher
principal quantum numbers.
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