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Symmetry-assisted resonance transmission of noninteracting identical particles
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We show that a “pileup” effect occurring for a train of noninteracting identical particles incident on the
same side of a resonance scatterer leads to significant interference effects, different from those observed in
Hong-Ou-Mandel experiments. These include characteristic changes in the overall transmission rate and full
counting statistics, as well as “bunching” and “antibunching” behavior in the all-particle transmission channel.
With several resonances involved, pseudoresonant driving of the two-level system in the barrier may also result
in a sharp enhancement of scattering probabilities for certain values of temporal delay between the particles.
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I. INTRODUCTION

Quantum statistical effects accompanying scattering of
noninteracting identical particles are among some of the
most intriguing predictions of quantum mechanics. Their
studies, both theoretical and experimental, now constitute
an extensive research field [1–23]. If two such particles,
prepared in wave-packet states, meet head on in free space,
they will eventually “pass through each other,” just like their
distinguishable counterparts. The situation is different if such
particles coincide inside a scatterer, with the possibility of
two (or more) distinct scattering outcomes for each particle.
In the celebrated Hong-Ou-Mandel (HOM) experiment [2],
the particles entering a scatterer from opposite sides are
seen to leave the barrier predominantly from the same side
(bosons) or from opposite sides (fermions). The HOM effect
has found important practical applications in quality testing
of single-photon sources [4], entanglement detection [5],
entanglement swapping [6], and quantum metrology [7]. Its
generalizations, to name a few, include observation of multiple
photon bunching effects [8–10], scattering of photons by
multiport beam splitters, and their use as interferometers
for identical particles in spatially separated modes [11–13],
Efforts to extend HOM interference experiments to bosononic
or fermionized cold atoms [14] are currently under way
[15,16].

Perhaps surprisingly, little studied to date remains the case
complementary to that of HOM, in which the particles enter
the barrier from the same side and “meet” there owing to a
“pileup effect,” if the barrier is capable of detaining the first
particle long enough for the following particle(s) to catch up
with it. The statistical effects are, in this case, quite different
from those predicted for the HOM interference and are most
pronounced in resonance tunneling, where a particle spends in
the barrier roughly the lifetime of the corresponding metastable
state, which can be long for sharp resonances.

In this paper, we give the general theory of the effect and
demonstrate how the said pileup alters the transmission rate
for initially correlated many-particle states. There are complex
interference effects in the scattering statistics of the incident
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particles, whose wave-packet modes do not overlap prior to
their arrival at the scatterer. A preliminary analysis of the
case of two fermionized atoms can be found in [24]. In [25]
it was demonstrated that interference effects of a similar kind
will arise whenever a particle simultaneously populates several
wave-packet modes. For brevity we use the term particles
(fermions or bosons) to refer to both cold atoms and photons,
equally amenable to our analysis.

The rest of the paper is organized as follows: in Sec. II we
discuss the correlation between initial particles. In Sec. III
we analyze the correlations acquired in scattering. In Sec. IV
we introduce a generating function for the scattering statistics.
In Section V we show how quantum statistical effects vanish
for particles well separated initially. Sections VI and VII
discuss the two- and N -particle cases, respectively. In Sec. VIII
we apply our general approach to resonance transmission
across a scatterer supporting one or more metastable states.
Section IX reportss our conclusions.

II. INITIAL CORRELATIONS BETWEEN THE PARTICLES

Consider, in one dimension, a source sending N identical
noninteracting particles of mass μ [26] in wave-packet states,
ψn(xn), as illustrated in Fig. 1,

ψn(xn,t) = (2π )−1/2
∫

An(p) exp[ipxn − iE(p)(t + tn)]dp,

E(p) = p2/2μ, (1)

towards a finite-width potential barrier at times 0 = t1 < t2 <

· · · < tN . Particles possessing intrinsic degrees of freedom
are assumed to be prepared in the same spin state, which
is unchanged by interaction with the barrier. To simplify the
notations, we omit the spin indices for the states, (1), as well
as for the operators a+

n and an, creating and annihilating an
incident particle in state ψn.

In the Heisenberg representation, these operators are given
by

a+
n (t) = (2π )−1/2

∫
An(p) exp[−iE(t + tn)]a+(p)dp,

an = (a+
n )†, (2)
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FIG. 1. Schematic showing a “train” of N wave packets incident
on a double barrier which supports two resonance levels.

where the superscript dagger denotes Hermitian con-
jugation, and the plane-wave creation and annihilation
operators a+(p) and a(p) obey the usual commuta-
tion relations, [a(p),a+(p′)]∓ ≡ a(p)a+(p′) ∓ a+(p′)a(p) =
2πδ(p − p′), with the upper and lower signs corresponding to
bosons and fermions, respectively (cf. also Ref. [27]). Their
(anti)commutators coincide with the overlaps between the
wave packets, (1),

[am,a+
n ]∓ =

∫
A∗

m(p)An(p) exp[iE(p)(tm − tn)]dp

≡ Imn, (3)

where Inn = 1 and Imn = I ∗
nm. The symmetry of the incident

state has no effect on the initial probability density provided
Inm = δnm, e.g., for the delays between emissions, |tm − tn|,
large enough for the rapid oscillations of the exponential in
(3) to destroy the integral for all m �= n. We refer to such
particles as initially uncorrelated. Alternatively, the particles
may be prepared in a correlated initial state, and below we
consider both these cases. It is readily seen that spreading of
freely moving wave packets does not alter the commutation
relations, (3). Thus, the symmetrized or antisymmetrized wave
function describing N incident particles is given by

|�in(t)〉 = K−1/2
N∏

n=1

a+
n (t)|0〉, (4)

where |0〉 is the vacuum state and K is the normalization
constant. Evaluating the norm 〈�in(t)|�in(t)〉 and using Wick’s
theorem [28] to bring the operator product to the normal
order, we have (the upper and lower signs are for bosons and
fermions, respectively)

K =
∑
σ (N)

(±1)p(σ (N))
N∏

i=1

Iiσi
≡ S±[Imn], (5)

where σ (N ) is a permutation of the indices (1, . . . ,N), σi

is the element in position i after reordering, and p(σ ) is its
parity [29].

III. CORRELATIONS BETWEEN SCATTERED PARTICLES

At long times, after all particles have left the barrier area,
each wave packet ends up split into the transmitted (t) and
reflected (r) parts. Thus, as t → ∞, the wave function has the

form

|�out(t)〉 = K−1/2
N∏

n=1

[t+n (t) + r+
n (t)]|0〉, (6)

where the corresponding creation and annihilation operators
are given by

t+n (t) =
∫

T (p)An(p) exp[−iE(t + tn)]a+(p)dp,

r+
n (t) =

∫
R(p)An(p) exp[−iE(t + tn)]a+(−p)dp,

tn = (t+n )†, rn = (r+
n )†, (7)

and T (p) and R(p) are the barrier transmission and reflection
amplitudes for a particle with momentum p. Since |T (p)|2 +
|R(p)|2 = 1, as t → ∞ we also have

Tmn ≡ [tm,t+n ]∓

=
∫

|T (p)|2A∗
m(p)An(p) exp[iE(p)(tm − tn)]dp,

Rmn ≡ [rm,r+
n ]∓ = Imn − Tmn, (8)

while all remaining commutators vanish. In Eqs. (8) Tmn =
T ∗

nm is a Hermitian matrix of the overlaps between the
transmitted parts of the wave packets, and its diagonal elements
Tnn coincide with the probabilities wn that the nth particle will
be transmitted on its own:

Tnn =
∫

|T (p)|2|An(p)|2dp ≡ wn. (9)

We note that even initially uncorrelated particles may be-
come correlated as a result of scattering. This will happen, for
example, if each transmitted one-particle state is significantly
broadened in the coordinate space (narrowed in the momentum
space), so that the integrals in Eq. (8) do not vanish, even if
the integrals in Eq. (3) did.

IV. THE GENERATING FUNCTION AND FULL
COUNTING STATISTICS

For N identical particles, there are N + 1 outcomes,
with n = 0,1, . . . ,N particles crossing in the barrier whose
probabilities, W (n,N ), we study next. It is convenient to
construct a generating function [30] G(α),

G±(α) = lim
t→∞〈�out(t)|�(t,α)〉, (10)

where |�(t,α)〉 ≡ K−1/2 ∏N
n=1[αt+n (t) + r+

n (t)]|0〉 and K is
defined by Eq. (5). By Wick’s theorem, we have

G±(α) = S±[�±
mn]/S±[Imn], (11)

where the matrix � is given by

�±
mn = Imn + (α − 1)Tmn, n,m = 1,2, . . . ,N. (12)

For the mean number of transmissions, nT ≡ ∑N
n=0 nW (n,N ),

we have

nT (N,t1,t2, . . . ,tN )=∂αG±(α)|α=1=
N∑

j=1

S±[
I (j )
mn

]
/S±[Imn],

(13)
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where I
(j )
mn is the matrix obtained from Imn by replacing the

elements in the j th row, Ij1, . . . ,IjN , with Tj1, . . . ,TjN . The
full counting statistics of an N -particle process are evaluated
by noting that

W±(n,N,t1,t2, . . . ,tN )

= 1

n!
∂n
αG±|α=0 =

N∑
j1<j2<···<jn

S±[
I (j1,j2,...,jn)
mn

]
/S±[Imn],

(14)

where I
(j1,j2,...,jn)
mn is the matrix obtained from Rmn by replacing

the elements in rows j1,j2, . . . ,jn, with the corresponding rows
in the matrix Tmn. Next we briefly discuss what would happen
if the particles were not identical.

V. THE DISTINGUISHABLE PARTICLES LIMIT

The appearance of correlations between initially uncor-
related particles can be explained in the following way.
The particles are well separated initially, and if they leave
the scatterer quickly enough, each scattering event occurs
independently. If, on the other hand, the scatterer detains
each particle for a significant period of time, Bose or Fermi
statistical effects become important while several (or all)
particles are still inside. This, in turn, may alter the measurable
probabilities for various outcomes, which is the effect we
seek to describe here. This is not possible if the particles
are distinguishable and do not interact with each other. Such
particles cannot “meet” in the scatterer (or anywhere else), they
are always transmitted independently, and it does not matter
whether they all arrive at the same time or their arrivals are
separated by long time intervals.

Assume, for simplicity, that the individual tunneling prob-
abilities in Eq. (9) are equal for all particles, wi = wj ≡ w.
Then the probability that n of N distinguishable particles (DPs)
will be transmitted is given by the binomial distribution,

WDP(n,N ) = CN
n wn(1 − w)N−n, (15)

where CN
n is the binomial coefficient. The mean number of

transmissions, also independent of the choice of t1,t2, . . . ,tN ,
is given by

nDP
T (n,N ) =

N∑
i=1

wi = wN. (16)

It is readily seen that the DP limit, (17), is reached if
identical particles arrive at the scatterer after long intervals,
|ti − tj | → ∞. Indeed, in this limit all operators in Eqs. (2)
and (7) commute, both Imn and Tmn are diagonal, and for
wi = wj ≡ w, Eqs. (14) yield

W±(n,N,t1,t2, . . . ,tN ) → WDP(n,N ). (17)

We are, however, more interested in the case where quantum
statistical effects do lead to measurable changes in in the
channel probabilities, W±(n,N,t1,t2, . . . ,tN ), and consider it
next.

VI. THE TWO-PARTICLE CASE (N = 2)

In the simplest case of just two particles, N = 2, Eqs. (13)
and (14) yield

W±(2,2) = w1w2 ± |T12|2
1 ± |I12|2 ,

W±(1,2) = w1(1 − w2) + w2(1 − w1) ± 2Re(T12R
∗
12)

1 ± |I12|2 ,

nT = w1 + w2 ± 2Re[T12I
∗
12]

1 ± |I12|2 , (18)

which coincides with the results in [24] if the particles have
the same momentum distribution, A1(p) = A2(p).

The last of Eqs. (18) shows that if one sends to the scatterer
initially correlated pairs of identical particles, (I12 �= 0), the
mean number of transmissions per pair may be different from
the result obtained for two DPs in the same wave-packet states.

If the pairs are not initially correlated, we always have
nT = nDP

T , but the bosons (fermions) are more (less) likely
to exit the scatterer on the same side. This behavior will be
observed if the two particles, initially well separated from each
other, meet in the scatterer, so that T12 �= 0.

VII. THE N-PARTICLE CASE

Equations (13) and (14) show that the results in the previous
section also hold for an arbitrary number of particles, N > 2.
The mean number of transmissions may be affected by the
symmetry of the initial state, nT �= ∑N

j=1 jwj , if and only if
the particles are correlated initially, Imn �= δmn.

For initially uncorrelated particles, Imn = δmn, the symme-
try changes the probabilities W (n,N ), but not n, provided
Tmn �= wnδmn. In this case, “bunching” and “antibunching”
types of behavior can be observed for bosons and fermions
in the probability that all N particles will be transmitted,
W (N,N ). Since the matrix Tmn is positive definite, the
Hadamard inequality for determinants [31] and its analog
for permanents [32] ensure that W±(N,N )><

∏N
i=1 wi (cf. also

Ref. [33]). Thus, N bosons (fermions) are more (less) likely to
be transmitted all together than DPs in the same one-particle
states. Note that this argument cannot be extended to the
probabilities W (n < N,N) or to initially correlated initial
states, Imn �= δmn.

VIII. RESONANCE TRANSMISSION

A system likely to show these effects is a resonance barrier,
where, due to the long delay in traversing it, even particles
that are well separated initially have a chance to “pile up” in
the scatterer. The transmission coefficient of such a barrier can
be written as a sum of narrow Breit-Wigner peaks (see, for
example, Ref. [34]),

|T (p)|2 =
∑

l


2
l(

p2/2μ − Er
l

)2 + 
2
l

, (19)

and even for initially uncorrelated particles, the shape of
|T (p)|2|A(p)|2 may be narrow enough to ensure that Tmn is
not diagonal even if Imn = δmn.
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(a)

(b)

FIG. 2. Mean number of transmissions for N particles in identical
Gaussian wave packets vs time T between emissions: (a) through a
single resonance level Er

1/E0 = 0.41, 
1/E0 = 0.0087, p0σ = 3.77,
and E0 ≡ p2

0/2μ; (b) through two resonance levels Er
1/E0 = 0.95,


1/E0 = 0.038, Er
2/E0 = 3.82, 
2/E0 = 0.28, and p0σ = 6.04.

Dashed horizontal lines correspond to the limit of distinguishable
particles. Insets: Momentum distribution |A(p)|2 and transmission
coefficient |T (p)|2.

Up to this point our treatment has been general. Throughout
the rest of the paper we consider the special case where the
particles are emitted after equal intervals, tn+1 − tn = T . We
examine the dependence of the quantities of interest on the time
T by evaluating numerically the determinants and permanents
in Eqs. (13) and (14). Figure 2 shows the mean number of
transmissions for N particles emitted in identical Gaussian
states of a coordinate width σ and a mean momentum p0:

A(p) ≡ An(p) = (σ 2/2π )1/4 exp[(p − p0)2σ 2/4]. (20)

The scatterer supports two resonant metastable states with
energies Er

1,2 and widths 
1,2, of which one or both can be
accessed by the incident particle, as shown in the insets in
Figs. 2(a) and 2(b). With only one level involved, the mean
number of transmissions nT (T ) for bosons increases to a
maximum value for some correlated initial state (illustrated
in Fig. 3 together with its fermionic counterpart) and then
returns to the DP limit for initially uncorrelated particles [see
Fig. 2(a)]. For fermions, the Pauli principle mostly reduces
nT to levels below the DP level, which, for the maximally
correlated states, obtained as T → 0 [35], is considerably
decreased.

With two metastable states involved, interference between
resonances reverses the effect: for 0.1 < p2

0/2μT < 0.25, nT

is suppressed for bosons and enhanced for fermions [see
Fig. 2(b)].

0

0,1

0,2

0,3

0,4

(x
)

fermions

bosons

x/

N=2

31 2-1 0

FIG. 3. One-particle density ρ(x) [36] (normalized to 2) for an
initially correlated two-particle Gaussian state, A1(p) = A2(p) ∼
exp[−(p − p0)σ 2/2], p0σ = 6, p0T/μσ = 1.5, p2

0 t/2μ = 4.5, and
T ≡ t2 − t1. Also shown by the dashed line is ρ(x) for two
distinguishable particles in the same one-particle states.

The scattering probabilities W (n,N,T ) for the single-
resonance case, plotted in Fig. 4 for N = 4, show smooth
deviations from the DP values in Eq. (17) before reaching
these values as the time between arrivals tends to ∞. We note
that the probabilities W (N,N ) never fall below (exceed) their
DP level for bosons (fermions), as discussed in the previous
section. We note also that the increase or decrease in nT results
from a similar increase or decrease in the probability of the
one-particle transmission channel, W (1,N ).

With two resonances accessible to the particles, the picture
is more interesting. For bosons, W (n,N,T ) exhibit maxima
whenever the time between emissions coincides with a
multiple of the difference in resonant energies, T ≈ Tk =
2πk/(Er

2 − Er
1), k = 1,2, . . .. The peaks are most pronounced

for the (N,N ) channel [cf. Fig. 5(a)] and, as shown in Fig. 6(a),
become sharper as N increases. This is another consequence
of the symmetrization of the initial state, which, with each

0,05

0,1

0,15

0,2

[W
(n

,N
)]

1/
N

Bosons N=4n=1

n=2

n=3 n=4 (a)

0

0,04

0,08

0,12

0,16

0 1 2 3 4 5
E

0
T

Fermions N=4

n=3

n=1

n=2

n=4 (b)

FIG. 4. (a) Probabilities that n = 1, 2, 3, 4 bosons will be
transmitted for N = 4 (single resonance); (b) same as (a), but for
fermions. Parameters are as in Fig. 2(a). Dashed horizontal lines
indicate the corresponding values for distinguishable particles given
by Eq. (17) Incident particles may be considered uncorrelated for
E0T � 0.4.
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n=1

n=4

n=3
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E
0
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[W
(n

,N
)]

1/
n

FIG. 5. (a) Probabilities that n = 1, 2, 3, 4 bosons will be
transmitted for N = 4 (two resonances); (b) same as (a), but for
fermions. Parameters are as in Fig. 2(b). Incident particles may be
considered uncorrelated for E0T � 0.4.

particle distributed between the wave packets in Fig. 1,
appears to produce quasiperiodic excitation of the metastable
two-level system supported by the barrier. With an increasing
number of particles, the excitation looks more periodic, and
the “resonance” condition T ≈ Tk needs to be satisfied with
ever greater accuracy. Note that similar (yet not identical)

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0 0,5 1 1,5 2 2,5

Bosons

N=2

N=4

N=6 (a)

[W
(N
,N
)]

1/
N

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0 0,5 1 1,5 2 2,5

E
0
T

N=6

N=4

N=2

(b)

Fermions

FIG. 6. (a) Probabilities that all bosons will be transmitted for
N = 2, 4, 6 (two resonances); (b) same as (a), but for fermions.
Parameters are as in Fig. 2(b).

interference effects have been predicted for scattering trains of
wave-packet modes representing a single particle (for details
see [25]).

For fermions, probing two resonance states, the peaks at
T = Tk are replaced by dips, which appear, for example in
the probability W (2,4) shown in Fig. 5(b). In contrast to the
bosonic case, these dips are never seen in the (N,N ) channel,
where W (N,N,T ) undergoes sinusoidal oscillations, no matter
how large the number of particles N is [see Fig. 6(b)].

Experimental observation of effects of the Pauli principle
on resonance tunneling would be possible for cold atoms
in the Tonks-Girardeau regime, injected into a quasi-one-
dimensional trap with laser-induced barriers [37]. An optical
realization of the bosonic experiment would consist in sending
identically polarized photons toward a Fabry-Perot interferom-
eter or injecting them in a waveguide with narrowing, imitating
a one-dimensional barrier. If required, a correlated initial state
can be produced by scattering several uncorrelated particles
off a long-lived resonance and selecting the outcome in one of
the n-particle transmission channels.

IX. DISCUSSION AND CONCLUSIONS

In summary, Bose or Fermi statistics can significantly
change the scattering outcomes for a train of noninteracting
identical particles impinged on the same side of a scatterer.
Physically, the effect requires the simultaneous presence of
several particles inside the scatterer. This may occur if the
initial state is already correlated or if the particles, well
separated initially, “pile up” inside, as a result of a scattering
delay. In the latter case, the statistics of the process are affected
in such a way that the mean number of transmissions per
train, nT , remains unaffected. For a correlated initial state, nT

may be larger or smaller than that for a train composed of
distinguishable noninteracting particles.

Mathematically, this is an interference phenomenon arising
from the presence of additional terms in the (anti)symmetrized
wave function, which disappears if the particles can be
distinguished. Its analysis is extremely simple, owing to the
commutation of the evolution and symmetrization operators:
it is sufficient first to solve the corresponding one-particle
problems and then to evaluate the asymptotic exchange
integrals as t → ∞. Interference plays the most fundamental
role in quantum mechanics, and we think it unlikely that a
more detailed or more “physical” explanation of the effect can
be provided.

To conclude, scattering of trains of identical particles
offers a variety of interference effects, very different from
those observed in the HOM experiments, some of which are
discussed in detail in Sec. VIII. Observation of such effects is
within the capability of modern experimental techniques.
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