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Local spin dynamics with the electron electric dipole moment
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The local spin dynamics of the electron is studied from the viewpoint of the electric dipole moment (EDM)
of the electron in the framework of the quantum field theory. The improvements of the computational accuracy
of the effective electric field (Eeff ) for the EDM and the understanding of spin precession are important for the
experimental determination of the upper bound of the EDM. Calculations of Eeff in YbF (2�1/2), BaF (2�1/2),
ThO (3�1), and HF+ (2�1/2) are performed on the basis of the restricted active space configuration interaction
approach by using the four-component relativistic electronic structure calculation. The spin precession is also
discussed from the viewpoint of local spin torque dynamics. We show that a contribution to the torque density
for the spin is brought into by the EDM. Distributions of the local spin angular momentum density and torque
densities induced by external fields in the above molecules are calculated and a property related with large Eeff is
discussed.
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I. INTRODUCTION

The permanent electric dipole moment (EDM) of the
electron is a significant key to reveal a violation of the
time-reversal (T ) symmetry. With the CPT invariance, this
means the violation of the product of the associated charge (C)
and the spatial parity (P), and this CP violation may be a hint
of the mystery of the dominance of matter over antimatter in
our universe. The value of the electron EDM (de) predicted
by the standard model of particle physics (de ∼ 10−40 e cm)
is too small to be observed by present experiments. However,
some extensions of the standard model, such as low-energy
supersymmetric models [1], predict much larger de, for
example de ∼ 10−27–10−29 e cm in a supersymmetric model
[2]. Therefore, the existence of a nonzero electron EDM
provides the evidence of the T violation and judges some
extension theories. In the present experiments, the upper bound
of the EDM derived by using ThO and YbF molecules is
reported as de < 8.7 × 10−29 [3] and de < 1.05 × 10−27 e cm
[4], respectively. Hence these constraints are already in ranges
predicted by supersymmetric models and experiments in the
near future will find or rule out extension models of the
standard model.

Experiments for searching the EDM rely on observations
of spin precession induced by an electric field. Hence a larger
electric field is more efficient to determine the upper bound of
the electron EDM. Recently, heavy polar diatomic molecules
are chosen for experimental searches for the electron EDM,
since an internal electric field in polar molecules is much larger
than an external electric field in the laboratory (∼100 kV/cm).
Actually, the effective electric field is reported to be 1–
100 GV/cm for many polar molecules, for example YbF,
BaF, and ThO by numerical computations [5–8]. In this work,
we focus on the value of the effective electric field by using
these diatomic molecules. In order to determine the upper
bound of de, both the interaction energy of the EDM (EEDM)
and the effective electric field (Eeff = EEDM/de) are needed.
The former can be experimentally measured by observations
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of spin precession, while the latter needs to be predicted by
using ab initio calculations based on the relativistic quantum
theory because relativistic effects and correlation effects are
essentially important for the computation of heavy atoms.
For the relativistic effects, the four-component Dirac equation
should be solved to include relativistic interactions such as
the spin-orbit interaction. For the correlation effects, post
Hartree-Fock computations, such as configuration interaction
(CI), are required. These two treatments result in a very large
computational cost to calculate the effective electric field.
Although some works have already been reported on the
values of the effective electric field in diatomic molecules
[5–8] by ab initio calculations with some approximations,
the improvement of the precision of Eeff is important for the
accurate estimate of the experimental bound of the EDM.
Another key point is a treatment of spin precession. The
quantum mechanical approaches for spin dynamics are widely
used; however, these approaches cannot explain local spin
dynamics since a physical quantity in the quantum mechanics
is defined by the inner product, which is derived by the
integration over the whole region. In the quantum field theory,
local distributions of physical quantities such as the spin
angular momentum density and torque density for the spin
can be predicted. The equation of motion of the spin based
on the quantum field theory was proposed in Ref. [9], and our
group has already discussed the local contribution of the spin
torque by using numerical calculations particularly for a spin
stationary state of the diatomic system of alkali atoms [10],
transition element atoms [11], and allene-type molecules with
chiral and achiral structures [12].

In this work, we investigate the relation between the
electron EDM and the spin in the quantum field theory.
The relation between the interaction energy of the electron
EDM and the spin precession is explained by an approximate
description of time evolution originated from the existence of
the EDM. Using two approximation methods to evaluate the
effective electric field, we calculate the effective electric field
in YbF, BaF, ThO, and HF+ molecules by ab initio calculations
based on the relativistic quantum mechanics. We reconsider
the spin precession from the viewpoint of the local spin torque
dynamics described by the equation of motion of the spin
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angular momentum density in the quantum field theory. The
equation of motion of the spin is modified by the nonzero
electron EDM, and then the torque density contribution is
revealed. After a discussion of the calculation results of
the effective electric field, the local distribution of physical
quantities, the spin angular momentum density, and the EDM
torque density induced by external fields are calculated and
discussed. The reason that the effective electric field in YbF is
much larger than that in HF+ is discussed from the viewpoint
of the local physical quantities. This local distribution analysis
indicates that even light atomic molecules could have the large
effective electric field.

II. THEORY

A. Hamiltonian density with EDM

The Dirac Lagrangian density for the electron is written as

L̂e = c ˆ̄ψ(i�γ μD̂eμ − mec)ψ̂, (1)

where ψ̂ denotes the Dirac spinor of the electron, ˆ̄ψ = ψ̂†γ 0,
γ μ are gamma matrices, me is the electron mass, and c is the
speed of light in vacuum. Here, Greek indices run over 0 to
3. We adopt the Einstein summation convention. The gauge
covariant derivative is written as D̂eμ = ∂μ + i Zee

�c
Âμ, where

Âμ is the gauge field, e is the electron charge (e > 0), and
Ze = −1. By using the Euler-Lagrange equation, the equation
of motion is given as

i�cγ 0γ μD̂eμψ̂ − mec
2γ 0ψ̂ = 0. (2)

The Hamiltonian density is derived by the ordinary Legendre
transformation,

Ĥe(x) = c ˆ̄ψ(−i�γ k · D̂ek + mec)ψ̂ + ZeeÂ0ψ̂
†ψ̂, (3)

where Latin indices run over 1 to 3. To describe the interaction
of the relativistic electron EDM, we employ the gauge- and
Lorentz-invariant effective Lagrangian density for the electron
EDM,

L̂EDM = −de

i

2
ˆ̄ψσμνγ5F̂μνψ̂, (4)

where de is the electron EDM, σμν = i
2 [γ μ,γ ν], γ5 =

iγ 0γ 1γ 2γ 3, and the electromagnetic field strength tensor is
F̂μν = ∂μÂν − ∂νÂμ. This additional term in the Lagrangian
extends the Dirac equation [Eq. (2)] as follows:

i�cγ 0γ μD̂eμψ̂ − mec
2γ 0ψ̂ − de

i

2
γ 0σμνγ5F̂μνψ̂ = 0. (5)

The EDM Lagrangian density yields the EDM Hamiltonian
density,

ĤEDM(x) = de

i

2
ˆ̄ψσμνγ5F̂μνψ̂ (6)

= −de( ˆ̄ψ �� · �̂Eψ̂ + i ˆ̄ψγ 0 �γ · �̂Bψ̂), (7)

where �̂E and �̂B are the electric and magnetic fields, respec-
tively, and �� is the 4 × 4 Pauli matrix.

FIG. 1. Schematic pictures of ket states.

B. Spin precession with EDM

Next, we describe a relation between the interaction energy
of the EDM and spin precession. At first, neglecting the vector
potential term in Eq. (3), we begin with the Dirac-Coulomb
Hamiltonian density,

ĤDC = c ˆ̄ψ(−i�γ k∂k + mec)ψ̂ + ZeeÂ0ψ̂
†ψ̂, (8)

for the system Hamiltonian. Namely, we treat other contri-
butions, i.e., the effect of the internal vector potential and
the EDM interaction, in a perturbative manner. Then, we
assume that two time-independent degenerate state vectors,
|+〉 ≡ ĉ

†
+(t0)|0〉 and |−〉 ≡ ĉ

†
−(t0)|0〉 (see Fig. 1), are the

Heisenberg ground state of the system satisfying

∫
〈±| : ĤDC(�r,t = t0) : |±〉d3�r = E0, (9)

∫
〈±| : Ĵez(�r,t = t0) : |±〉d3�r = ±|
|, (10)

where Ĵez(x) is the total angular momentum density. Here,
we represent normal ordering with colons. By the interaction
of the EDM, these degenerate states are split into two energy
levels,∫

〈±| : ĤDC+EDM(�r,t = t0) : |±〉d3�r = E0 ± EEDM, (11)

where ĤDC+EDM = ĤDC + ĤEDM. Suppose the Hamiltonian
density does not depend on the time; then the electron field
can be expanded approximately as the following equation:

ψ̂(x) =
∑
α=±

ĉα(t)φα(�r), ĉα(t) = e−iωα (t−t0)ĉα(t0), (12)

where ω± = (E0 ± EEDM)/�. In this two-state system, a
general Heisenberg state vector can be written as |�〉 =
λ+|+〉 + λ−|−〉, where λα is the normalization constant which
obeys |λ+|2 + |λ−|2 = 1. The arbitrary operator of physical

quantities �̂O(x) such as the total angular momentum density
can be written as

�̂O(x) =
∑

α,β=±
�Oαβ(�r)ĉ†α(t)ĉβ(t)

=
∑

α,β=±
�Oαβ(�r)ĉ†α(t0)ĉβ(t0)e+i(ωα−ωβ )(t−t0). (13)

Therefore, the time evolution of the expectation value 〈�| :
�̂O(x) : |�〉 depends on the |ω+ − ω−| = 2EEDM/� approxi-
mately. This is why the interaction energy of the EDM can be
determined by the observation of the spin precession.
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C. The effective electric field for the electron EDM

While the observation of spin precession enables us to
determine the interaction energy of the electron EDM EEDM,
we must still evaluate the effective electric field for the electron
EDM Eeff = EEDM/de to determine the value of de. In heavy
polar diatomic molecules, which were recently chosen for
experimental searches for the electron EDM, it is known that
the magnetic term of the interaction energy of the electron
EDM, EB

EDM [contribution from the second term of Eq. (7)], is
much smaller than the electric term, EE

EDM [contribution from
the first term of Eq. (7)]. Hence, we can write Eeff ≈ EE

EDM/de,
and this is represented as the following form:

Eeff ≈ 1

de

∫
〈�| : ĤE

EDM(�r) : |�〉d3�r

≈
∫

〈�| : − ˆ̄ψ �� · �̂Eψ̂ : |�〉d3�r

≈
∫

〈�| : − ˆ̄ψ �� · ( �̂E ele + �̂E nuc)ψ̂ : |�〉d3�r, (14)

where �̂E ele(�r)[ �̂E nuc(�r)] is the electric field contributed by
electrons [nuclei]. To avoid time-consuming calculations about
the first term of Eq. (14), some approximations are used
for the internal electric field in a molecule. Two types of
approximations are often used. One is the approximation that

the internal electric field is replaced only with �̂E nuc(�r) as
follows:

Eeff ≈
∫

〈�| : −ψ̂†(γ 0 − 1
) �� · �̂Eψ̂ : |�〉d3�r

≈
∫

〈�| : 2ψ̂
†
S �σ · �̂Eψ̂S : |�〉d3�r

≈
∫

〈�| : 2ψ̂
†
S �σ · �̂Enucψ̂S : |�〉d3�r, (15)

where ψ̂S is the small component of the four-component dirac
spinor ψ̂ . At the first line, we use the Schiff’s theorem [13].
The deviation by the approximation in the last line is reported
to be within 3% for the computation of the effective electric
field in YbF [5]. This is because the small component of the
spin angular momentum density is concentrated on the Yb
nucleus.

The other approximation is a method which uses the so-
called effective one-body EDM operator [14] as follows:

Eeff ≈
∫

〈�| :
2i�c

Zee
ψ̂†γ 0γ5�ψ̂ : |�〉d3�r, (16)

where the equation is satisfied only if |�〉 is exactly an
eigenstate of

∫
HDCd3�r due to the Schiff’s theorem [13].

In later arguments, we discuss the parallel magnetic
hyperfine interaction constant defined as

A‖ = μK

I


∫
〈�| :

(
Zee

ˆ̄ψ
�γ × �r
|�r|3 ψ̂

)
z

: |�〉d3�r, (17)

where μK is the nuclear magnetic dipole moment, I is the
nuclear spin quantum number, and 
 is the quantum number
of the total electronic angular momentum projection onto the
internuclear axis. In addition, the molecular electric dipole

moment (DM) is introduced as

�μ =
∫

〈�| : �rρ̂(�r) : |�〉d3�r, (18)

ρ̂(�r) = Zeeψ̂
†ψ̂ +

NA∑
a=1

Zaeδ(�r − �Ra), (19)

where NA is the number of nuclei, and Za and �Ra are the
charge and the position of each nucleus, respectively. The DM
as well as A‖ is useful to estimate the accuracy of the electronic
structure.

D. Local spin torque dynamics with EDM

We reconsider the spin precession from the viewpoint of
the local spin torque dynamics. In the quantum field theory
without the interaction of the electron EDM, the spin angular
momentum density and its time derivative are given by [9,15]

�̂se(x) = ψ̂†(x)
�

2
��ψ̂(x), (20)

∂

∂t
�̂se(x) = �̂te(x) + �̂ζe(x), (21)

where Eq. (21) is derived by using Eq. (2). The first term
of the right-hand side of Eq. (21) is called the spin torque
density, which gives, by the integration over the whole region,
the spin torque in the Heisenberg equation of the spin in the
relativistic quantum mechanics [16]. The spin torque density
can be written as

t̂ ie(x) = t̂ ieN (x) + t̂ ieA(x), (22)

t̂ ieN (x) = − i�c

2
εijkψ̂

†(x)γ 0γ k∂j ψ̂(x) + H.c., (23)

t̂ ieA(x) = − Zeeεijkψ̂
†(x)γ 0γ kÂj (x)ψ̂(x), (24)

where εijk is the Levi-Civita tensor. We note that �̂teA is the

torque by the contribution proportional to �̂A. The second term
of the right-hand side of Eq. (21), which is named the zeta
force density, is given as

ζ̂ i
e (x) = −∂iφ̂5(x), (25)

φ̂5(x) = �c

2
ψ̂†(x)γ5ψ̂(x). (26)

The zeta force density �̂ζe is represented as the gradient
of the zeta potential φ̂5, which can be rewritten as φ̂5 =
�c
2 (ψ̂†

Rψ̂R − ψ̂
†
Lψ̂L) by using the right-handed and left-handed

spinors: ψ̂R = [(1 + γ5)/2]ψ̂ and ψ̂L = [(1 − γ5)/2]ψ̂ . The
zeta force density integrated over the whole region is zero, as
seen from Eq. (25). Hence when we consider the equation of
motion of the spin after the integration, the local contribution of
the zeta force density is lost and Eq. (21) can be identified with
the ordinary Heisenberg equation of the spin in the relativistic
quantum mechanics [16]. Note that Eq. (21) is known to be
derived naturally by the “quantum spin vorticity principle”
[17–21].

The contribution of the electron EDM to the torque for the
spin is considered. The EDM Lagrangian [Eq. (4)] gives the
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TABLE I. Bond length for each molecule.

Species (state) Bond length (Å)

YbF (2�1/2) 2.073
ThO (3�1) 1.840
BaF (2�1/2) 2.253 (DZ)

2.189 (TZ)
2.182 (QZ)

HF+ (2�1/2) 0.991 (DZ)
0.987 (TZ)
0.986 (QZ)

additional local spin torque density �̂tEDM(x),

�̂tEDM(x) = �̂t E
EDM(x) + �̂t B

EDM(x), (27)

�̂t E
EDM(x) = de

ˆ̄ψ(x)[ �� × �̂E(x)]ψ̂(x), (28)

�̂t B
EDM(x) = dei

ˆ̄ψ(x)γ 0[ �γ × �̂B(x)]ψ̂(x), (29)

where we separate the EDM torque density �̂tEDM into the
electric term �̂t E

EDM and the magnetic term �̂t B
EDM. We note that

the EDM torque has a component perpendicular to both the
electric and magnetic fields. Finally, the equation of motion of
the spin angular momentum density with the contribution of
the electron EDM is summarized as

∂

∂t
�̂se(x) = �̂te(x) + �̂ζe(x) + �̂tEDM(x). (30)

For example, in recent experiments for the electron EDM,
using heavy polar diatomic molecules, the spin precession of
the state |�〉 = (|+〉 + |−〉)/√2 (see Fig. 1) is observed. The
torque accelerating spin by the EDM effective electric field
corresponds to

∫ 〈�|�̂tEDM(x)|�〉d3�r . However, our Eq. (30) can
explain even local distributions of the physical quantities in a
molecule. If one could estimate the spin angular momentum
density and the local torque densities in a local region, it would
present a different way to observe the electron EDM. In a later

TABLE II. Nuclear magnetic dipole moment for each atom in
Ref. [25]. The uncertainty in the experimental result is given in
parentheses.

Species I μK
a (nm)

171
70 Yb 1/2 0.4937
229
90 Th 5/2 0.46(4)
137
56 Ba 3/2 0.9374

aμK is the K’s nuclear magnetic dipole moment in units of the nuclear
magneton μN (nm).

section, we calculate the local distribution of such quantities
as a demonstration.

III. COMPUTATIONAL DETAILS

We calculate the effective electric fields for the purpose of
checking the accuracy of the electronic state by comparing
the other groups’ results of the effective electric field in order
to prepare the electronic states for calculations of the local
physical quantities. All of the effective electric fields are
consistently calculated at the configuration interaction with
all single and double excitations (CISD) level to serve as
useful references. We calculate the effective electric fields
in YbF (2�1/2), BaF (2�1/2), and ThO (3�1) under the two
types of approximations, Eqs. (15) and (16). In order to
investigate the origin of large effective electric fields, we also
calculate the effective electric field in HF+ (2�1/2), which
also has a large molecular electric dipole moment. We use
four-component wave functions of these molecules in the
relativistic quantum mechanics as a substitution of those in the
quantum field theory. The four-component wave functions are
derived by using the DIRAC13 program package [22]. We use
the uncontracted Dyall’s four-component double zeta (DZ),
triple zeta (TZ), and quadruple zeta (QZ) basis sets, which have
correlating functions for all shells [23]. After Dirac-Hartree-
Fock computations with the Dirac-Coulomb Hamiltonian, CI
computations are performed in the restricted active space

TABLE III. Effective electric field in YbF. The uncertainty in the experimental result is given in parentheses.

YbF(2�1/2)
Method/Basis Active orbitals Vert. orb. cutoff (Hartree) Eob

eff ( GV
cm ) Enuc

eff ( GV
cm ) |AYb

‖ | (MHz) DM (D)

31e-CISD/DZ 25–80 1.82 21.0 21.7 6207 3.49
31e-CISD/TZ 25–80 0.92 19.7 20.1 5674 3.59
31e-CISD/QZ 25–80 0.60 19.8 20.2 5727 3.59
31e-CISD/QZ 25–109 1.30 20.8 21.2 5992 3.45
31e-CISD/QZ 25–127 2.00 20.3 20.7 5885 3.38
79e-CISD/QZ 1–109 1.30 20.8 21.2 6002 3.44
Experiment 7822(5)a 3.91(4)b

GRECP/RASSCF/EOc 24.9 7842
31e-RASCId 24.06
79e-CCSD/QZe 23.1 3.60

aReference [27].
bReference [28].
cReference [29].
dReference [30].
eReference [6].
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TABLE IV. Effective electric field in BaF. The uncertainty in the experimental result is given in parentheses.

BaF(2�1/2)
Method/Basis Active orbitals Vert. orb. cutoff (Hartree) Eob

eff ( GV
cm ) Enuc

eff ( GV
cm ) |ABa

‖ | (MHz) DM (D)

17e-CISD/DZ 25–92 8.00 4.62 4.87 1647 3.08
17e-CISD/TZ 25–92 2.20 4.58 4.67 1580 2.20
17e-CISD/QZ 25–92 0.80 4.51 4.58 1552 2.36
65e-CISD/DZ 1–92 8.00 4.32 4.56 1589 3.11
Experiment 2453(9)a 3.1702(15)b

RASSCF/EOc 7.51 2224
17e-RASCId 7.28 3.203

aReference [31].
bReference [32].
cReference [33].
dReference [7].

(RAS) method by using the DIRRCI module. We carry out
various CISD calculations to investigate the effect of a basis
set and the importance of core correlation effects. We refer to
the name of CI wave-function models as ne-CISD or ne-MRK -
CISD, where n represents the number of active electrons.
Models of ne-MRK -CISD are used only for calculation of
the ThO molecule, and MR is the multireference CI. The
reference states are generated by average-of-configuration
open-shell calculations for averaging with two electrons in
the Th(7s,6dδ) Kramers pairs. The subscript K represents the
number of active valence spinor spaces. When K = 3, only
the Th(7s,6dδ) spinors are used in the RAS2 space. In another
case, K = 10, the Th(7s,6d,7p,8s) spinors are used in the
RAS2 space. For YbF and ThO, we performed only a single
geometry calculation with the bond length shown in Table I,
whose values are reported in Refs. [24] and [8] for YbF and
ThO, respectively. For BaF and HF+, their bond lengths are
determined by geometrical optimization computations at the
Hartree-Fock level.

The nuclear-spin quantum numbers I and the nuclear
magnetic dipole moments μK used in the calculations of the
nuclear magnetic hyperfine coupling constant are listed in
Table II. Although the experimental value μTh does not have
even two significant digits, we adopt the center value μTh =
0.46 as the face value for calculations of |ATh

‖ |, by neglecting
its accuracy. In addition, we investigate the distributions of the
electron density and the local spin angular momentum density

in these molecules to investigate the origin of large effective
electric fields.

We also investigate the distributions of the local spin torque
density and the local EDM torque density of YbF as a demon-
stration. For the demonstration, we use the normalized external
electric field and magnetic field to make the demonstration
simple. Namely, we consider a situation that the external static
electric field �Eext = (1,0,0) and magnetic field �Bext = (1,0,0)
(in atomic units) are applied at t = 0 on YbF. Then, the external
vector potential is set to �Aext = 1

2
�Bext × �r . Even if the external

fields are multiplied by a constant number, the distribution
pattern of the torque density does not change. If we investigate
the spin precession used in present EDM experiments, the state
|�〉 = (|+〉 + |−〉)/√2 (see Fig. 1) should be used. However,
it is hard to calculate the EDM torque term induced by the
internal electric field for its state. Therefore, we choose the
state |�〉 = |−〉, which is the same one used for the calculation
of the effective electric field. The electric field induced by
the internal particle is not included in our computations of
local torque density for this state, since the direction of the
integration of the internal electric field over a molecule is the
same as that of the spin and the contribution to the EDM
torque is considered to be small, as seen from Eq. (28). The
computations of the effective electric field and local physical
quantities are performed by the QEDynamics program package
[26] developed in our group.

TABLE V. Effective electric field in ThO. The uncertainty in the experimental result is given in parentheses.

ThO(3�1)
Method/Basis Active orbitals Vert. orb. cutoff (Hartree) Eob

eff ( GV
cm ) Enuc

eff ( GV
cm ) |ATh

‖ | (MHz) DM (D)

18e-MR3-CISD/DZ 41–109 2.00 68.8 71.1 1154 3.47
18e-MR3-CISD/TZ 41–134 2.00 67.2 69.4 1330 3.53
18e-MR3-CISD/TZ 41–185 2.00 66.5 68.6 1151 3.66
18e-MR10-CISD/DZ 41–109 2.00 75.6 78.1 1280 3.86
18e-MR10-CISD/TZ 41–134 2.00 71.3 73.6 1156 3.86
Experiment 4.098(3)a

18e-MR12-CISD/TZb 75.2 1369
38e-2c-CCSD(T)c 81.5 1357 4.23

aReference [34].
bReference [8].
cReference [35].
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TABLE VI. Effective electric field in HF+.

HF+(2�1/2)
Method/Basis Active orbitalsa Eob

eff ( GV
cm ) Enuc

eff ( GV
cm ) DM (D)

9e-CISD/DZ 1–42 2.16 × 10−3 3.65 × 10−3 2.66
9e-CISD/TZ 1–80 2.53 × 10−3 3.16 × 10−3 2.60
9e-CISD/QZ 1–140 2.64 × 10−3 3.04 × 10−3 2.59

aAll of the virtual orbitals are included into the active space.

IV. RESULTS AND DISCUSSION

The calculation results of the effective electric field with
two approximations are shown in Tables III (YbF), IV (BaF), V
(ThO), and VI (HF+). In these tables, Enuc

eff is the approximation
using only the nuclear electric field [Eq. (15)] and Eob

eff
is the approximation using the effective one-body operator
[Eq. (16)]. In our results, the difference between the two
approximations is not large and is within a few percents,
except for HF+ which is computed only for a comparison
with heavy polar diatomic molecules. This confirms that the
large contribution to Eeff arises from electrons near a nucleus,
and hence the difference between the two approximations may
become large for lighter molecules. For this reason, we also
show the parallel magnetic hyperfine interaction constant A‖,
which is sensitive to the electronic structure near the nucleus.

It is known that a post Hartree-Fock computation is efficient
for large basis sets, i.e., triple zeta or larger. Actually, the
dependence on basis sets can be clarified from the results
of YbF in Table III. The effect of the change from DZ to
TZ on calculation results is much larger than that of the
change from TZ to QZ. The same feature can be seen in
the results of BaF (Table IV). Focusing on the number of
active orbitals in Table III, we can find that the number of
virtual orbitals included in the CISD calculation is a more
influential one than the number of core orbitals in the active
space. Although our best result of YbF, 79e-CISD/QZ, is not
in sufficient agreement with the experimental data A‖, it would
be improved by including more virtual orbitals in the CI active
space. Nevertheless, the value of the effective electric field is
consistent with other theoretical works, though our result is
slightly smaller.

Our best result of the dipole moment in BaF (3.11 Debye) is
very close to the experimental value (3.1702(15) Debye [32]),
whereas the parallel magnetic hyperfine interaction constant
(1589 MHz) is far from the experimental value (2453(9) MHz
[31]). In addition, our result Enuc

eff = 4.56 GV/cm is much
smaller than Nayak’s result 7.28 GV/cm [7] and Kozlov’s
result 7.51 GV/cm [33]. The reason seems to be the differences
of the number of orbitals in the active space and reference
states.

From the results of ThO shown in Table V, the improvement
from MR3-CISD to MR10-CISD brings a notable increase of
Eeff . Detailed discussions about correlation models of ThO
have already been reported in the work of Fleig and Nayak
[8]. They mentioned that the addition of σ -type spinors to
the active space brings a significant change of the electronic
structure of ThO. Our best result Eob

eff = 71.3 GV/cm is close
enough to the result of Fleig and Nayak, 75.2 GV/cm [8].

TABLE VII. Summary of Eeff for each molecule.

Species (state) Method/Basis Eob
eff (GV/cm) Enuc

eff (GV/cm)

YbF (2�1/2) 79e-CISD/QZ 20.8 21.2
BaF (2�1/2) 65e-CISD/DZ 4.32 4.56
ThO (3�1) 18e-MR10-CISD/TZ 71.3 73.6
HF+ (2�1/2) 9e-CISD/QZ 2.64 × 10−3 3.04 × 10−3

As shown in Table VI, the effective electric field in HF+ is
quite small compared to the other molecules, though HF+

has a large molecular electric dipole moment. The reason
is discussed later from a viewpoint of local distribution of
physical quantities. Our best results of each molecule are
summarized in Table VII. The electronic states of these
correlation models are used for the later discussion about local
physical quantities.

FIG. 2. The distributions of (a) the electron density, (b) the norm
of the spin angular momentum density, and (c) the norm of the
small component of the spin angular momentum density on a plane
including the internuclear axis in YbF. All values are shown in atomic
units.
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FIG. 3. The distributions of (a) the electron density, (b) the norm
of the spin angular momentum density, and (c) the norm of the
small component of the spin angular momentum density on a plane
including the internuclear axis in BaF. All values are shown in atomic
units.

Let us now investigate the distribution of local physical
quantities defined by the quantum field theory. The distri-
butions of local physical quantities on a plane including the
internuclear axis in YbF, BaF, ThO, and HF+ are shown in
Figs. 2–5, respectively. Panels (a)–(c) in these figures show,
respectively, the results of the electron density, the norm
of the spin angular momentum density, and the norm of
the small component of the spin angular momentum density
|〈ψ̂†

S
�

2 �σψ̂S〉|, all in atomic units. The electron density distri-
butions of YbF, BaF, and ThO have a very similar pattern. The
distribution patterns of the spin angular momentum density
are quite different from those of the electron density. The
distribution patterns of the spin angular momentum density
and its small component contribution of YbF are similar
to those of BaF, since both of them are in the same state
2�1/2. A remarkable feature of the spin angular momentum
density distribution in YbF is that its distribution is not
symmetric for both sides of internuclear axis around nuclei
and is concentrated at a little distance away from nuclei. This

FIG. 4. The distributions of (a) the electron density, (b) the norm
of the spin angular momentum density, and (c) the norm of the
small component of the spin angular momentum density on a plane
including the internuclear axis in ThO. All values are shown in atomic
units.

feature is common with that of YbF, BaF, and ThO, which
have the large Eeff , while it is not seen in HF+. In Figs. 6(a)
and 7(a), we compare the distribution patterns of the spin
angular momentum density in YbF and HF+, respectively.
This feature is highlighted in these figures. However, for
the effective electric field, 〈ψ̂†

S
�

2 �σψ̂S〉 is more important than
the spin angular momentum density itself. The norm value of
〈ψ̂†

S
�

2 �σψ̂S〉 in HF+ is as large as that in YbF. Since Eq. (15)
indicates that the value of the effective electric field depends

on the scalar product of ψ̂
†
S

�

2 �σψ̂S and �̂E nuc, one may presume
that the effective electric field in HF+ is as large as that of
YbF; however, this presumption is seen to be wrong from
Table VII. As shown in Figs. 5(c) and 7(b), the distribution
pattern of 〈ψ̂†

S
�

2 �σψ̂S〉 in HF+ is nearly antisymmetric to a
plane which intersects orthogonally with the internuclear axis
on the F nucleus, while the electric field of a nucleus is
distributed almost spherically and the direction is radial from
the F nucleus. On the other hand, the distribution pattern in
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FIG. 5. The distributions of (a) the electron density, (b) the norm
of the spin angular momentum density, and (c) the norm of the
small component of the spin angular momentum density on a plane
including the internuclear axis in HF+. All values are shown in atomic
units.

YbF shown in Fig. 6(b) is asymmetric, though its magnitude of
symmetry breaking is smaller than the spin angular momentum
density itself. These features can be seen more clearly from

the distributions of 〈ψ̂†
S

�

2 �σψ̂S · �̂E nuc〉 in YbF and HF+ shown

FIG. 6. Distributions of (a) the spin angular momentum density
〈�̂se〉 and (b) the small component of the spin angular momentum
density 〈ψ̂ †

S
�

2 �σψ̂S〉 in YbF. The red sphere represents the Yb nucleus
and the blue one represents the F nucleus. The color shows the value
of densities in atomic units.

FIG. 7. Distributions of (a) the spin angular momentum density
〈�̂se〉 and (b) the small component of the spin angular momentum
density 〈ψ̂ †

S
�

2 �σψ̂S〉 in HF+. The red sphere represents the F nucleus
and the blue one represents the H nucleus. The color shows the value
of densities in atomic units.

in Fig. 8. This means that not only the large nucleus charge
but also the asymmetric pattern of |〈ψ̂†

S
�

2 �σψ̂S〉| are important
features of the large effective electric field. As a result,
although |〈ψ̂†

S
�

2 �σψ̂S〉| in HF+ is as large as that in YbF, the

integration of the inner product of ψ̂
†
S �σψ̂S and �̂E nuc over the

whole region is much smaller than that in YbF. In other words,
it can be predicted that even light atomic molecules could
have the large effective electric field if the small component
of the spin angular momentum density has an asymmetric
distribution pattern.

Next, the vector potential term of the spin torque density
〈�̂teA〉 and the EDM torque densities in YbF are shown in Fig. 9.
In this article, we adopt atomic units for torque. Among three
heavy molecules, we choose YbF for a demonstration, since
this molecule is very consistent with other works and is a
familiar one due to many works reported by many groups,
while the other two molecules have the same features discussed
below. The magnetic term of the EDM torque density 〈�̂t B

EDM〉 is
perpendicular to the magnetic field, as seen from Eq. (29), and
its distribution is concentrated around the nuclei. On the other
hand, the electric term of the EDM torque density 〈�̂t E

EDM〉 is also
perpendicular to the electric field and its distribution pattern
is almost the same as that of the spin angular momentum
density, where both features are seen from Eq. (28). We
also calculate the integration of each torque contribution over
the whole region. The value of the vector potential term
of the spin torque is

∫ 〈�̂teA〉d3�r ≈ (0.0, − 1.8 × 10−3,0.0),
which is perpendicular to both magnetic field and spin angular
momentum. The integrated value of the electric term of EDM

FIG. 8. The distributions of 〈ψ̂ †
S

�

2 �σψ̂S · �̂E nuc〉 in (a) YbF around
the Yb nucleus and (b) HF+ around the F nucleus (in atomic units).
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FIG. 9. Distributions of (a) the vector potential term of the spin torque density 〈�̂teA〉, (b) the electric term of the EDM torque density 〈�̂t E
EDM〉,

and (c) the magnetic term of the EDM torque density 〈�̂t B
EDM〉 in YbF. The red sphere represents the Yb nucleus and the blue one represents the

F nucleus. The color shows the value of the torque in atomic units.

torque density is (0.0,1.0 × de,0.0), which is much larger than
that of the magnetic term, (0.0,7.3 × 10−6 × de,0.0). This
difference between their integrated values can be explained
by the difference of their distribution patterns. Since the
distribution of 〈�̂t B

EDM〉 forms vortices around the nuclei,∫ 〈�̂t B
EDM〉d3�r is averaged out drastically.
These results confirm that the equation of motion of spin

[Eq. (30)] based on the quantum field theory enables us to
estimate the integrated value and even to visualize the local
pictures of spin torque dynamics, which give us a different
perspective of local spin dynamics.

V. CONCLUSIONS

In this paper, we have studied the spin dynamics of
the electron from the viewpoint of the electron EDM in
the framework of the quantum field theory. The relation
between the interaction energy of the electron EDM and the
spin precession is described approximately by time evolution
originated from the existence of the EDM. We have calculated
Eeff for YbF (2�1/2), BaF (2�1/2), ThO (3�1), and HF+ (2�1/2)
by CI computations based on RASCI. From the viewpoint of the

local spin torque dynamics, the modification of the equation
of motion of the spin angular momentum density has been
discussed and we have shown the spin angular momentum
density and the EDM torque density for the above molecules.
We have demonstrated that the local pictures of the spin and
torque help us to understand some of the physical origin of
spin phenomena. We have predicted that even light atomic
molecules could have the large effective electric field if the
small component of the spin angular momentum density has
an asymmetric distribution pattern. In a future work, we will
investigate the distribution of the local physical quantities
for other molecules and explore new prediction methods of
the spin precession. We also study the relation between the
local distributions of the torque for the spin and the internal
electric field, which is used for experiments in the search for
the electron EDM.
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