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Casimir-Polder force on a V-type three-level atom near a structure containing left-handed materials
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The Casimir-Polder (CP) force acting on a V-type three-level atom which is initially prepared in two different
kinds of superposition states, i.e., subradiant and superradiant states, is investigated. The influence of quantum
interference on force evolution due to two-dipole transitions is analyzed in detail. It is found that the orientation
of the atomic dipole moment has significant influence on the Casimir-Polder force and consequently its evolution.
For the ideal degenerate V-type atom with two parallel dipoles, quantum interference leads to population trapping
as well as the cancellation of the CP force when the atom is prepared initially in a subradiant state. However, the
result changes when we consider the practical Zeeman V-type atom whose two dipole moments are perpendicular
to each other. Since quantum interference in such an atom must occur in an anisotropic environment, it is possible
to trap atomic population and enhance the CP force simultaneously by preparing the atom initially in sub-radiant
states. In principle, our results can be found in an arbitrary anisotropic environment, and here we describe a
structure containing left-handed materials to highlight our findings.
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I. INTRODUCTION

The Casimir-Polder (CP) force refers to the force between
neutral atoms and bulk materials [1]. It originates from the
quantum fluctuation of both the electromagnetic field and
the atomic dipole moment. With the development of cavity
quantum electrodynamics, it is feasible under the present
technology to trap, manipulate, and detect either few atoms
or even a single atom [2]. Therefore, the CP force can be
detected and no longer be ignored in research that is related to
atom optics. Several applications of the CP force in atom optics
have been extensively carried out in recent decades [3–7]. For
example, it can be used to realize atomic Mach-Zehnder-type
interferometers [3], flat quantum reflective mirrors accompa-
nied by gravitational force [4], and evanescent-wave elements
for atom guiding [5]. Unpleasantly, the CP force is a disturbing
factor in nanodevices, which leads to undesired sticking of
small objects to surfaces [6] and diminishes the depth of
magneto-optical traps when near the surface [7]. The CP
potential of an atom near a monolayer made by periodically
arranged metallic and dielectric nanospheres has also been
analyzed [8]. Recently, it was proposed to excite a Rydberg
atom through a close-by oscillating mirror mediated by the CP
force [9]. All the aforementioned applications are based on the
CP force acting on atoms in the ground state. Nevertheless, the
force acting on excited atoms has attracted plenty of interest
in recent years [10–17]. In general, the CP force on an excited
atom is much stronger than that on the ground state, and varies
sinusoidally with distance from the surface [14], and even
becomes repulsive [10]. The reason is that the CP force on the
excited atom originates from real photon emission, and mainly
relates to the electromagnetic mode at the atomic transition
frequency. Therefore, it is easy to control the CP force on an
excited atom by tailoring the electromagnetic properties of the
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environment. For example, in a structure made of left-handed
metamaterials and a metal, the CP potential of an excited atom
can form a barrier away from surface to levitate particle [16].
Furthermore, when the atom is close to a surface made of
left-handed metamaterials and zero-index metamaterials [17],
the CP force acting on an initially excited two-level atom can be
not only significant for a longer time, but also nearly indepen-
dent of dipole orientation, even if the atom is far away from the
surfaceIn addition to papers on two-level atom systems, there
are several concerning the force acting on multilevel systems,
including molecules [14,15,18] and multilevel atoms [15].
However, the influence of quantum interference in multilevel
atoms was not much discussed before due to the discretely
separated levels [14,15,18]. Quantum interference among
different decay channels of the atom is an important issue
of quantum optics and has attracted a great deal of attention
for a long time. It is behind many fascinating phenomena in the
fields of lasers and quantum information, such as coherence
trapping of a population, lasing without inversion, electromag-
netically induced transparency, ultranarrow spectral lines, and
gain without inversion [19]. In addition, quantum interference
of V-type three-level atoms has been extended to affect the
evolution of entanglement between two atoms [20,21].

Here the influences of quantum interference on the CP force
acting on V-type three-level atoms are studied in detail. There
are two kinds of three-level atoms that we investigated and
compared with each other; One is the ideal degenerate V-type
atom with two parallel dipole moments, and the other is the
Zeeman V-type atom whose two dipole moment are left rotated
and right rotated respectively. To achieve significant quantum
interference, one has to consider two kinds of initial states,
i.e., one is a subradiant state and the other is a superradiant
state. The atom is assumed to be placed near a structure made
of left-handed metamaterials (LHMs) and a metal, which had
been adopted in previous papers [16,17].

This paper is organized as follows: In Sec. II we introduce
the model and theory needed to explore the Casimir-Polder
force. In Sec. III, we analyze the CP force on two kinds
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FIG. 1. Scheme of a three-level atom near a structure which is
made of a left-handed material (LHM) slab mounted on a metal.

of V-type three-level atoms. In Sec. IV, we draw the
conclusions.

II. MODEL AND FORMULAS

A three-level atom near a double-layer structure is con-
sidered, shown in Fig. 1. The right layer is a left-handed
metamaterial slab with permittivity εA, permeability μA, and
thickness dA. The left substrate is metal with permittivity εM .
The atom at position ra = (0, 0, za) has two upper levels |1〉
and |2〉, and one ground level |3〉. The corresponding transition
frequencies and dipole moments are ωi3 and di3 with i = 1,2,
respectively.

The system Hamiltonian is [22]

H =
∑

λ=e,m

∫
d3r

∫ ∞

0
dω�ω f̂

+
λ (r,ω) · f̂ λ(r,ω)

+ �ω13|1〉〈1| + �ω23|2〉〈2| − d̂ · Ê(ra). (1)

f̂ λ(r,ω) and f̂
+
λ (r,ω) are the fundamental operators of

the structure-assisted fields which satisfy the commutation re-
lationship of [ f̂

+
λ (r,ω), f̂ λ′(r ′,ω′)] = δλλ′δ(r − r ′)δ(ω − ω′)

and the rules f̂
+
λ (r,ω)|{0}〉 = |1λ(r,ω)〉 and f̂ λ(r,ω)|{0}〉 =

0. Here |{0}〉 is the vacuum state, and d̂ = d13σ̂13 + d31σ̂31 +
d23σ̂23 + d32σ̂32 is the atom dipole operator, in which σ̂ij is the
atomic transition operator between |i〉 and |j 〉. The transition
between |1〉 and |2〉 is dipole forbidden.

The operator of the electric field is expressed in terms of
the fundamental operators as

Ê(r) =
∑

λ=e,m

∫
d3r ′

∫ ∞

0
dω

↔
Gλ(r,r ′,ω) · f̂ λ(r ′,ω) + H.c.

(2)
In this paper, we just consider the initial state as

|ψ(0)〉 = (c1|1〉 + c2|2〉) ⊗ |{0}〉. (3)

It refers to the fact that the structure-assisted field is in the
vacuum state |{0}〉 while the three-level atom is in the coherent
superposition state between |1〉 and |2〉 initially.

The measurable CP force is the expectation value of the
operator of the electromagnetic force acting on the atom, which

has the expression under the long-wavelength approximation
as [12]

F =
〈
∇[d̂ · Ê(r)] + d

dt
[d̂ × B̂(r)]

〉
r=ra

. (4)

The right two terms refer to the dipole force and the
Lorentz force respectively. It should be noticed that because
the transition between |1〉 and |2〉 is forbidden, there are
only five matrix elements 〈σ̂11(t)〉, 〈σ̂22(t)〉, 〈σ̂33(t)〉, 〈σ̂12(t)〉,
and 〈σ̂21(t)〉 which take part in the dynamical evolution of
force (shown later). Considering the case of ω13 ≈ ω23, the
Lorentz force is nearly canceled [12]. So we ignore the Lorentz
force and consider only the dipole force in this paper. In
the Heisenberg picture, we reach the mean force after some
deductions as [12,17]

F(t) = i
μ0

π

∫ ∞

0
dωω2

∫ t

t0

dτe−iω(t−τ )

×{∇〈d̂(t) · Im
↔
G(r,ra,ω) · d̂(τ )〉}r=ra

+ c.c. (5)

Here c.c means complex conjugation. The remaining task is
to determine the dipole-dipole correlation function in Eq. (5)
as

〈d̂(t)d̂(τ )〉 =
∑
mn

∑
m′n′

dmndm′n′ 〈σ̂mn(t)σ̂m′n′(τ )〉,
(6)

m,m′,n,n′ = 1,2,3.

Assuming that Lamb shifts are already included in the tran-
sition frequencies, and adopting the transformations σ̂

′
ij (t) =

σ̂ij (t)e−iωij t with ωij = ωi3 − ωj3, the simultaneous master
equations of atomic operators are as follows:

˙̂σ ′
11(t) = −γ1σ̂

′
11(t) − κ12

2
[σ̂ ′

12(t)eiω12t + σ̂ ′
21(t)e−iω12t ], (7)

˙̂σ ′
22 = −γ2σ̂

′
22(t) − κ21

2
[σ̂ ′

21(t)e−iω12t + σ̂ ′
12(t)eiω12t ], (8)

˙̂σ ′
12(t) = −1

2
(γ1 + γ2)σ̂ ′

12(τ ) − 1

2
κ12σ̂

′
22(τ )e−iω12t

− 1

2
κ21σ̂

′
11(t)e−iω12t , (9)

˙̂σ ′
13 = −1

2
γ1σ̂

′
13(t) − 1

2
κ12σ̂

′
23(t)e−iω12t , (10)

˙̂σ ′
23(t) = −1

2
γ2σ̂

′
23(t) − 1

2
κ21σ̂

′
13(t)eiω12t . (11)

Here, γ1 (γ2) is the spontaneous decay rate from level |1〉
(|2〉) to ground level |3〉, and κ12 and κ21 are the collective
damping rates due to quantum interference. They have the
following expressions:

γ1 = 2
μ0

�
ω2

13d13 · Im
↔
G(r,r,ω13) · d31, (12)

γ2 = 2
μ0

�
ω2

23d23 · Im
↔
G(r,r,ω23) · d32, (13)

κ12 = 2
μ0

�
ω2

23d13 · Im
↔
G(r,r,ω23) · d32, (14)

κ21 = 2
μ0

�
ω2

13d23 · Im
↔
G(r,r,ω13) · d31. (15)
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According to the simultaneous Eqs. (7)–(11), the atomic
operator σ̂ ′

ij (t) can be written as the product of a slowing evolu-
tion operator σ̂ ′′

ij (t) and a time-dependent exponential function,
such as σ̂ ′

ij (t) = σ̂ ′′
ij (t)e−γij t with γij = (γi + γi)/2 and γ3 = 0.

Therefore, the approximation σ̂ij (t) ≈ σ̂ij (τ )eiωij (t−τ )e−γij (t−τ )

can be adopted. Inserting this approximation and the equal-
time correlation 〈σ̂ij (τ )σ̂nm(τ )〉 = 〈σ̂im(τ )〉δjn into Eq. (6), we
get the dipole-dipole correlation function as

〈d̂(t)d̂(τ )〉 = 〈σ̂11(τ )〉d13d31e
(iω13−γ13)(t−τ ) + 〈σ̂22(τ )〉d23d32e

(iω23−γ13)(t−τ ) + 〈σ̂12(τ )〉d13d32e
(iω13−γ13)(t−τ )

+〈σ̂21(τ )〉d23d31e
(iω23−γ13)(t−τ ) + 〈σ̂33(τ )〉d31d13e

(−iω13−γ13)(t−τ ) + 〈σ̂33(τ )〉d32d23e
(−iω23−γ13)(t−τ ). (16)

Therefore the force can be deduced as

F(t) =
∑
mn

〈σ̂mn(t)〉Fmn(rA), m,n = 1,2,3. (17)

Five density matrix elements [i.e., 〈σ̂11(t)〉, 〈σ̂22(t)〉, 〈σ̂33(t)〉, 〈σ̂12(t)〉, and 〈σ̂21(t)〉] as well as five time-independent force
amplitudes [i.e., F11(rA),F22(rA), F12(rA), F21(rA), and F33(rA)] contribute to the CP force on a V-type three-level atom. The
time-independent force amplitudes have the expressions

F11(rA) = −�μ0

2π

∫ ∞

0
dξξ 2∇Tr{[α11(ra,iξ ) + α11(ra, − iξ )] ·

↔
G(r,ra,iξ )}

+ {
μ0ω

2
13[d13 · ∇ ↔

G(r,ra,ω13) · d31](ω13) + c.c.
}
, (18)

F22(rA) = −�μ0

2π

∫ ∞

0
dξξ 2∇Tr{[α22(ra,iξ ) + α22(ra, − iξ )] ·

↔
G(r,ra,iξ )}

+ {
μ0ω

2
23[d23 · ∇ ↔

G(r,ra,ω23) · d32](ω23) + c.c.
}
, (19)

F12(rA) = −�μ0

2π

∫ ∞

0
dξξ 2∇Tr{[α12(ra,iξ ) + α12(ra, − iξ )] ·

↔
G(r,ra,iξ )}

+ {
μ0ω

2
13[d13 · ∇ ↔

G(r,ra,ω13) · d32](ω13) + c.c.
}
, (20)

F21(rA) = −�μ0

2π

∫ ∞

0
dξξ 2∇Tr{[α21(ra,iξ ) + α21(ra, − iξ )] ·

↔
G(r,ra,iξ )}

+ {
μ0ω

2
23[d23 · ∇ ↔

G(r,ra,ω23) · d31](ω23) + c.c.
}
, (21)

F33(rA) = −�μ0

2π

∫ ∞

0
dξξ 2∇Tr{[α33(ra,iξ ) + α33(ra, − iξ )] ·

↔
G(r,ra,iξ )}. (22)

The force amplitude can be divided into two parts: the
dispersion part and the resonant part. In the above five force
amplitudes, there always exists the dispersion part which is
characterized by the integration over ξ (αij is the susceptibility
as a function of frequency and position [12]). Except F33 the
other four force amplitudes contain a resonant part which
is characterized by the  function. The reason for F33(ra)
containing only the dispersion part, i.e., Eq. (22), is that there
is no real photon process when the atom is in the ground level
|3〉. However, compared with the resonant parts, the dispersion
part is ignored when the atom is away from the surface. Thus,
we focus on the resonant part of the CP force in this work,
and find that such a resonant force is sensitive to the quantum
interference.

Among these force amplitudes, F12(ra) and F21(ra) relate to
the quantum interference because they originate from the cross
coupling between d13 and d23. We call them cross-coupling
forces. Therefore, quantum interference not only affects the
population evolution through κ12 but also contributes to the
amplitude of the Casimir-Polder force due to F12(ra) and

F21(ra). The combination of these two facts can achieve a
meaningful way to make Casimir-Polder force controllable.

III. ANALYSIS

Before discussing the influence of quantum interference
on the CP force, we start by reviewing the case of an initially
excited two-level atom for comparison. This case can be easily
retrieved by setting d23 = d32 = 0. There are only two force
amplitudes involved, i.e., F11(rA) and F33(rA). The evolution
of the force is determined by the matrix elements 〈σ̂11(t)〉 and
〈σ̂33(t)〉, in which 〈σ̂11(t)〉 decays exponentially with rate γ1,
as does the Casimir-Polder force.

According to previous work [17], when the atom is located
at a position leading to the inhibition of spontaneous decay, the
resonant part of F11(rA) becomes strong. In physics, inhibition
of a decay rate is the result of destructive interaction between
the reflected photon and the atom itself [22]. In an open
environment, the decay rate is deeply inhibited when such
interaction gets much stronger, which reflects significantly on
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the force acting on the atom. Hence, the atom can suffer a
strong resonant CP force and last for a long time. A conclusion
can be inferred that if we design an environment where atomic
spontaneous decay can be inhibited, the resonant force acting
on the atom is more significant than in free space. An example
is when the atom is located directly at the surface of an
ideal metal without dissipation. It is known that the atom
with parallel dipoles is inhibited totally form decay when it
is located on an ideal metal surface, while the CP force at
such a position has an infinite value at least theoretically [16].
Although in real experiments, the decay rate of an atom near a
real metal always increases due to the additional near-field
interaction between the atom and absorbing surfaces, the
decay channel through the propagating wave mode is indeed
inhibited.

Now a question of interest will be, if we can inhibit atomic
decay through other means, does it also improve the resonant
Casimir-Polder force acting on atom? The alternative method
to control atomic decay is of course quantum interference be-
tween different decay channels in a multilevel atom [19,20,21].
For an ideal degenerate V-type three-level atom, the atomic
decay is totally inhibited through quantum interference, if it
is initially prepared in the subradiant state; meanwhile the

atomic decay can be enhanced by preparing the atom in the
superradiant state [19]. Valid quantum interference has two
prerequisites: First is the neglect of the detuning ω12 compar
to the decay rate, so that the approximation ω13 ≈ ω23 = ω0

is reasonable. Second is the equivalent value between the
collective damping rate κ12 and the decay rates γ1 (γ2).

In the following we will discuss two kinds of V-type three-
level atom to explore the influence of quantum interference on
the CP force.

A. Quantum interference with d13||d32 = d0

In this ideal case, the two dipole momenta d13 and d32

are equal to each other, i.e., d13||d32 = d0. We call this kind
of atom “the ideal V-type three-level atom.” This atomic
model had been adopted in many previous works concerning
quantum interference [19,20,21]. Since these two degenerate
transition dipoles interact with the same electromagnetic
mode, the corresponding decay rates and collective damping
are the same, i.e., γ1 = γ2 = κ12 = κ21 = γ , despite the
environmental involvement. Similarly, the time-independent
force amplitudes can be simplified as

F11(rA) = F22(rA)

= −�μ0

2π

∫ ∞

0
dξξ 2∇Tr{[α11(rA,iξ ) + α11(rA, − iξ )] ·

↔
G(r,rA,iξ )} + μ0ω

2
02Re[d0 · ∇ ↔

G(r,rA,ω0) · d0](ω0), (23)

F12(rA) = F21(rA)

= −�μ0

2π

∫ ∞

0
dξξ 2∇Tr{[α12(rA,iξ ) + α12(rA, − iξ )] ·

↔
G(r,rA,iξ )} + μ0ω

2
02Re[d0 · ∇ ↔

G(r,rA,�0) · d0](ω0), (24)

F33(rA) = −�μ0

2π

∫ ∞

0
dξξ 2∇Tr{[α33(rA,iξ ) + α33(rA, − iξ )] ·

↔
G(r,rA,iξ )}. (25)

Notice that F11(rA), F22(rA), F12(rA), and F21(rA) are the
same for both the resonant parts as well as the dispersion parts
because d13 = d32 = d0 and ω13 = ω23 = ω0.

When the atom is prepared, initially, in the subradiant
state as |ψ(t = 0)〉 = (|1〉 − |2〉)/√2, the initial density matrix
elements are

〈σ̂11(0)〉 = 〈σ̂22(0)〉 = 1/2,

〈σ̂12(0)〉 = 〈σ̂21(0)〉 = −1/2, (26)

and the others are zero.

By inserting them into the master equations (7)–(9), it is
found that matrix elements do not evolve anymore due to
the destructive interference. Therefore, the CP force is time
independent according to Eq. (17). However, the force is also
canceled due to quantum interference as follows:

F (t) = 〈σ̂11(t)〉F11(rA) + 〈σ̂22(t)〉F22(rA) + 〈σ̂12(t)〉F12(rA)

+〈σ̂21(t)〉F21(rA) + 〈σ̂33(t)〉F33(rA)

= [〈σ̂11(0)〉 + 〈σ̂22(0)〉 + 〈σ̂12(0)〉 + 〈σ̂21(0)〉]F11(rA)

= 0. (27)

This means that the force disappears when the atom is
prepared in the subradiant state. Quantum interference leads
to population trapping and force cancellation simultaneously.
Therefore, an atom prepared in the subradiant state will
pass through a waveguide without any perturbation. Without
quantum interference, there always exist the CP force on
either a multilevel atom or molecule regardless of the state
preparation [12,14,15,18], even if the atom is in the ground
state.

The situation switches when the atom is prepared initially in
the superradiant state, i.e., |ψ(t = 0)〉 = (|1〉 + |2〉)/√2. The
initial density matrix elements are

〈σ̂11(0)〉 = 〈σ̂22(0)〉 = 〈σ̂12(0)〉 = 〈σ̂21(0)〉 = 1/2,
(28)

and the others are zero.

It is easy to see that matrix elements evolve in phase under
the formation of 〈σ̂ij (t)〉 = 0.5e−2γ t , i, j = 1,2, and the CP
force acting on the atom then would be

F (t) = 2F11(rA)e−2γ t + F33(rA)(1 − e−2γ t ). (29)

From Eq.(29), the initial force amplitude is 2F11, while
the force decays exponentially with rate 2γ if we ignore the
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force on the ground state F33. As a comparison, for an initially
excited two-level atom, its force follows the relation F (t) =
F11(rA)e−γ t + F33(rA)(1 − e−γ t ) [17]. That means the force
amplitude of an excited two-level atom is one-half of that of
a three-level atom in the superradiant state. Consequently, the
decay rate of the force on an excited two-level atom is also
one-half of that of the three-level atom. Therefore, the three-
level atom prepared in the superradiant state suffers doubled
forces due to the constructive interference, but its lifetime is
slashed in half when compared to the excited two-level atom.

Hence, for the ideal three-level atom with two parallel
dipole momentums, quantum interference can modify both
the population and the amplitude of the CP force. Furthermore,
these two modifications are in phase. One needs to prepare an
atom in the subradiant state in order to get population trapping
but CP force cancellation, and vice versa.

Actually the ideal three-level atom with two parallel dipole
moments is more of an academic model and has rarely been
met in real atomic systems until now. The realistic V-type
three level atom usually possesses two perpendicular dipole
moments, whose quantum interference should result in an
anisotropic vacuum [23]. So in the next section we will discuss
such an alternative three-level atom system and find that it can
achieve the more exciting scenario in which the enhancement
of the CP force is accompanied by simultaneous trapping of
population.

B. Quantum interference with d13 ⊥ d32

Naturally, applying a magnetic field on a two-level atom
results in Zeeman splitting which produces two nearlydegen-
erate dipole moments with ω13 ≈ ω23 = ω0. Such a pair of
dipole moments are perpendicular to each other; one is left
-rotating polarized and the other is right-rotating polarized.
They are represented by d13 = d0ε+ and d23 = d0ε−, in
which ε+ = (ez + iex)/

√
2 and ε− = (ez − iex)/

√
2 refer to

right-rotating and left-rotating unit vectors, respectively. We
call such a three-level atom “the Zeeman atom.” Because its
two dipole moments are perpendicular to each other, there is
no quantum interference in free space.

However, an anisotropic environment can revive the quan-
tum interference of the Zeeman atom [23]. Here the anisotropy
means that the diagonal elements of the Green tensor are not

the same. For the structure shown in Fig. 1,
↔
Gxx(ra,ra,ω0) is

different from
↔
Gzz(ra,ra,ω0). The corresponding decay and

collective damping rates defined in Eqs. (12)–(15) now are
transformed into

γ1 = γ2 = μ0

�
ω2

0d
2
0 [Im

↔
Gxx(ra,ra,ω0) + Im

↔
Gzz(ra,ra,ω0)]

= (�|| + �⊥)/2, (30)

κ12 = κ12 = μ0

�
ω2

0d
2
0 [Im

↔
Gzz(ra,ra,ω0) − Im

↔
Gxx(ra,ra,ω0)]

= (�⊥ − �||)/2. (31)

Here, �⊥ = 2μ0ω
2
0d

2
0 Im

↔
Gzz(ra,ra,ω0)/� is the sponta-

neous decay rate of the dipole moment d0 perpendicu-
lar to the interface, i.e., along the z axis, while �|| =

2μ0ω
2
0d

2
0 Im

↔
Gxx(ra,ra,ω0)/� is the spontaneous decay rate of

the dipole moment d0 parallel to the interface, i.e., along the x

axis. Concerning the atomic population, quantum interference
works significantly when κ12 approaches γ1. Therefore, if the
atom is located in an environment such that �|| = 0, we get
γ1 = γ2 = κ1 = κ2 = �⊥/2. It means that the Zeeman atom
equivalently possess two parallel dipoles both perpendicular
to the surface. Up to now now several anisotropic environments
have been designed to revive the quantum interference in
Zeeman atoms [24–32]; for example, placing the atom in a
photonic crystal [24,25], in left-handed materials in waveg-
uides [26,27,28,29], near metal nanoshells [30],near single
negative metamaterials [31], and near metasurfaces [32].

The resonant part of the CP force can also be divided into
two components, of which one originates from the dipole
component that is parallel to the surface, and the other from
the component that is perpendicular to it, as follows:

F r
11(ra) = F r

22(ra)

= μ0ω
2
0d

2
0∇Re[

↔
Gxx(r,ra,ω0) +

↔
Gzz(r,ra,ω0)]r=ra

= (F|| + F⊥)/2, (32)

F r
12(ra) = F r

21(ra)

= μ0ω
2
0d

2
0∇Re[

↔
Gzz(r,ra,ω0) −

↔
Gxx(r,ra,ω0)]r=ra

= (F⊥ − F||)/2. (33)

When a Zeeman atom is placed in an anisotropic environment

with
↔
Gxx �=

↔
Gzz, the collective damping rate κ12 as well as the

cross-coupling forces F r
12(ra) and F r

21(ra) survive. According
to Eq. (27), if the cross-coupling force F r

12(ra) has a direction
opposite to F r

11(ra), we can get the trapping of population and
the enhancement of the CP force simultaneously.

We take the structure of Fig. 1 as an example. The
permittivity and permeability of the LHM slab are

εA = 1 + (0.8ω0)2

(0.8246ω0)2 − ω2 − i(0.001ω0)ω
,

(34)

μA = 1 + (0.8ω0)2

(0.8246ω0)2 − ω2 − i(0.001ω0)ω
.

Therefore, at the atomic transition frequency ω = ω0,
the slab has negative indices εA(ω0) = μA(ω0) ≈ −1.001 +
i0.006. The permittivity of the metal is chosen as

εM = 1 − (4ω0)2

ω2
. (35)

Hence, its permittivity is negative and its refractive index
is purely imaginary at ω = ω0.

The thickness of the LHM slab is set to be dA = 2λ with
λ = 2πc/ω0. The time-independent force amplitudes F||(za)
and F⊥(za) are plotted in Fig. 2(a). The decay rates �||(za)
and �⊥(za) are shown in Fig. 2(b). The unit of force is B =
μ0|d0|2ω4

0/4π2c2, while �0 = d2
0ω3

0/(3πε0�c3) is the decay
rate in free space.

Due to the phase compensation of the LHM slab, both
the force and decay rates near the position za = 2λ clearly
vary. We call the position za = 2λ the focal position. From
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FIG. 2. (a) The forces acting on dipole components that are
parallel and perpendicular to the interface, F||(za) and F⊥(za), as
functions of position. (b) Spontaneous decay rate of the dipole
components that are parallel and perpendicular to the interface, �||(za)
and �⊥(za), as functions of position. The Zeeman atom is situated
near a single LHM-metal structure with dA = 2λ; indices are given
by Eqs. (34) and (35).

Fig. 2(b), at the position za = 2λ, �||(za) is deeply inhibited,
while �⊥(za) is enhanced. According to Eqs. (30) and (31),
κ12 and γ1 are both positive. On the other hand, from
Fig. 2(a), at the position za = 2λ, F||(za) and F⊥(za) have
opposite directions, and furthermore F||(za) is much stronger
than F⊥(za). According to Eqs. (32) and (33), F r

11(ra) is
positive while the cross-coupling force F r

12(ra) is negative.
Here, quantum interference on the atomic population and
the amplitude of the force are out of phase. For clarity, the
amplitudes of the force Fij (za), i,j = 1,2, as functions of
position are plotted in Fig. 3(a), while the decay rates γ1,γ2

and the collective damping rates κ12,κ21 are plotted in Fig. 3(b).
From Fig. 3, all the quantities are significant at the focal

point za = 2λ which means the quantum interference works at
such position. In Fig. 3(a), at the focal point, the amplitudes of
the cross-coupling forces F12 and F21 are attractive and have
the value of −0.38B, while the diagonal forces F11 and F22 are

FIG. 3. (a) The time-independent force amplitude Fij (za) and (b)
γ1, γ2, κ12, and κ21 as functions of position. The V-type three-level
atom is situated near a single LHM-metal structure with dA = 2λ;
indices are given by Eqs. (34) and (35).

FIG. 4. The force evolution when an atom is placed at the focus
point za = 2λ of the structure shown in Fig. 1. The black solid curve
refers to the case of an initially subradiant state, while the red dash-
dotted curve refers to that of initially superradiant state.

repulsive and have the value of 0.16B. In Fig. 3(b), at the focal
point za = 2λ, both the decay and collective damping rates are
positive and approach each other.

Now, we look into the three-level atom prepared initially
in the subradiant state as |ψ(t = 0)〉 = (|1〉 − |2〉)/√2, taking
the initial matrix elements to be the same as Eq. (26). At the
initial time, the force amplitude acting on the atom is 0.54B.
After that the force evolves and is determined by population
evolution. Due to the initial subradiant state, the population
willl decay slowly compared to that in free space as, γ =
0.82�0 and κ = 0.45�0. The force shows up for a longer time
compared with the free-space case. The force evolution is
clearly indicated by the solid line in Fig. 4.

When the three-level atom is initially prepared in the
superradiant state of |ψ(t = 0)〉 = (|1〉 + |2〉)/√2 with initial
matrix elements as in Eq. (28), the force is absorptive and has
the value of −0.22B at the initial time. Due to the superradiant
state, the atomic population decays much more quickly than
in free vacuum, and so does the CP force evolution. The force
evolution in this case is shown by the red dashed curve in
Fig. 4.

Comparing the black solid curve with the red dashed
curve in Fig. 4, it is apparent that the force with the initially
subradiant state has a stronger amplitude, and lasts for a longer
time, while the force of the initially superradiant state is weaker
and lasts for a shorter time. This is opposite to the case of
the ideal three-level atom with parallel dipoles. Therefore,
considering the realistic Zeeman three-level atom, quantum
interference based on an anisotropic environment is helpful
for approaching a stronger resonant force with a longer action
time.

To improve our result, we give an extreme example although
it is not practical, and that is the LHM slab possessing
ideal indices with εA = μA = −1 as well as an ideal metal
mirror with rT E = −rT M = −1. The amplitudes of the force
Fij (za),i,j = 1,2, as functions of position are plotted in
Fig. 5(a), while the decay and collective damping rates are
plotted in Fig. 5(b).

In this ideal case when the atom is placed at za = 2λ, the
collective damping rate κ12 (κ21) equals the decay rate γ1 (γ2)
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FIG. 5. (a) The time-independent force amplitude Fij (za) and
(b) γ1, γ2, κ12, and κ21 as functions of position. The Zeeman atom
is situated near a single LHM-metal structure with dA = 2λ; the
index of the LHM at atomic frequency is assumed to be εA(ω0) =
μA(ω0) = −1.

with values of �0, i.e., Fig. 5(b), and therefore, the atomic
population can be trapped completely by destructive quantum
interference [23]. In addition, the amplitude of the force Fij

is enhanced a little in Fig. 5(a) compared with the case in
Fig. 3(a). The maxima of F12 and F21 reach −0.63B, while
F11 and F22 decrease to 0.12B at the focus point za = 2λ.

If the Zeeman atom is prepared initially in the subradi-
ant state as |ψ(t = 0)〉 = (|1〉 − |2〉)/√2 and also the force
amplitude acting on the atom is 0.75B, one will undoubtedly
have population trapping, and of course the repulsive force
will exist for a much longer time due to the subradiant state.
This is the way to achieve atomic population trapping as well
as a repulsive CP force. However, since ideal LHMs cannot
yet be fabricated, we can just approach the result shown in
Fig. 4.

Essentially, our result is also valid for other anisotropic
environments, as shown in Refs. [24–26,30,31]. Anisotropi-
cally induced quantum interference can inhibit the decay of
an atomic population. Meanwhile, the anisotropy leads to a
difference between the cross-coupling force and the diagonal
force defined in Eqs. (32) and (33) because neither F|| nor F⊥
is null. Therefore, with the initially subradiant state, atomic

population is trapped, and meanwhile the resonant CP force
will last for a long time.

IV. CONCLUSIONS

The Casimir-Polder force on a real excited three-level
atom has been discussed in this paper. The role of quantum
interference, between different transition channels, and its
influence on the CP force is analyzed in detail.

The evolution of the CP force depends clearly on the atomic
population and the amplitude of the force shown in Eq. (17).
Nonetheless, quantum interference can modify both the atomic
population and the amplitude of the resonant CP force. The
effect of quantum interference on CP force evolution depends
on the details of the atomic system.

For the ideal three-level atom with two degenerate parallel
dipoles, and when the atom is initially prepared in the
subradiant state, atomic population is trapped but the CP
force is canceled. However, whenthe Zeeman atom with two
circular polarized dipoles is considered, quantum interference
can play an important role particularly due to an anisotropic
environment. Such anisotropic-environment-induced quantum
interference can lead to the trapping of atomic population.
Additionally, it leads to significant amplitude of yje CP force
when the atom is initially prepared in the subradiant state.
Therefore, this is evidence that one can possibly maintain a
stronger CP force for a long time through quantum interfer-
ence. In this paper, we adopted an anisotropic environment
made of left-handed materials mounted on metal to perform
the calculation. However, our result can be generalized to other
anisotropic structures.
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