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Hyperspherical approach to a three-boson problem in two dimensions with a magnetic field
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We examine a system of three-bosons confined to two dimensions in the presence of a perpendicular magnetic
field within the framework of the adiabatic hyperspherical method. For the case of zero-range, regularized
pseudopotential interactions, we find that the system is nearly separable in hyperspherical coordinates and that,
away from a set of narrow avoided crossings, the full energy eigenspectrum as a function of the two-dimensional
(2D) s-wave scattering length is well described by ignoring coupling between adiabatic hyperradial potentials. In
the case of weak attractive or repulsive interactions, we find the lowest three-body energy states exhibit even-odd
parity oscillations as a function of total internal 2D angular momentum and that for weak repulsive interactions,
the universal lowest energy interacting state has an internal angular momentum of M = 3. With the inclusion of
repulsive higher angular momentum we surmise that the origin of a set of “magic number” states (states with
anomalously low energy) might emerge as the result of a combination of even-odd parity oscillations and the
pattern of degeneracy in the noninteracting lowest Landau level states.
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I. INTRODUCTION

The discovery of the fractional quantum Hall effect (FQHE)
[1] provided an important impetus to investigate the physics
of low-dimensional systems wherein particle-particle inter-
actions play a fundamental role in the resulting dynamics.
Since the original work of Laughlin [2], many theoretical
approaches have been employed both to explain the observed
collective behavior in the FQHE regime, and to expand the
tools utilized for, and make connections between, a variety of
strongly correlated many-body problems. In particular, model
wave functions (building upon the original variational ground
state proposed by Laughlin) have been employed to study
the ground-state and elementary excitations [3,4], as well
as composite-particle models [5–7], exact diagonalization for
few-body systems [8–11], and special conformal field theories
[12–14]. The problem is extremely rich; although much early
work focused on interacting fermions, the generalization of
the problem to other systems has been ongoing.

The richness associated with the fundamental dynamics
of the FQHE regime [i.e., a system of two-dimensional
(2D) charged particles under a large transverse dc magnetic
field] may be traced to the dynamic bound states resulting
from the interplay of the interparticle interactions and the
external magnetic field. In 2D, any repulsive interaction
will serve to separate the constituent particles to lower the
energy, and the resulting separating motion will couple to
the magnetic field, turning the particle trajectories back on
themselves. The resulting dynamic many-particle bound state
(in the absence of additional confining potentials) is a rich
problem, even classically, wherein a primary feature is that the
bound system is dominated by rotation, and thus the system
angular momentum is a key feature [15–17]. A useful tool for
connecting the classical problem to the quantum many-body
problem is the study of the two-body FQH problem [18]; here,
the problem is separable, and the precise role of the relative
angular momentum is evident.

In the absence of interparticle interactions, the spectrum of
a 2D charged gas under transverse field is comprised of a set

of highly degenerate Landau levels [19]. In the FQHE regime,
the dynamic bound states described above are responsible for
creating gaps in the energy spectrum within the Landau levels,
and it is the origin and structure of these gaps, as well as the
elementary excitations associated with them, that has garnered
significant attention.

It was originally pointed out by Laughlin [20], and later
studied in detail for few-body systems, that in the ground
state of the interacting system in the lowest Landau level
the angular momentum for small clusters goes up in integer
multiples of the particle number [8]. In addition, exact
diagonalization studies of few-body clusters interacting via
Coulomb potentials exhibit “magic numbers” in ground-state
energy of the system as a function of the total angular
momentum [8,11]; at specific values of total angular momenta,
local minima appear in the ground-state energy, and at specific
values of the “magic” angular momenta, a corresponding
maxima in the the excitation gap from the ground state appears
[8]. The magic angular momenta for which the gaps appear are
precisely those given by the trial ground-state wave function,
and may be interpreted via the observation [11] that in the
FHQE ground state, the relative angular momentum for each
pair of particles is the same, and the total angular momentum is
therefore found via M = ∑

mij = [N (N − 1)/2]q, the usual
result for the thermodynamic limit of large systems. Here,
M is the total angular momentum, mij is the relative angular
momentum quantum number for particles i and j, N is the total
number of particles, and q is an odd integer (Fermi statistics).
The origin of this remarkable result, and its dependence upon
the form of the interactions, is an interesting question.

A further interesting question is whether or not the features
of the FQHE regime generalize in a straightforward manner.
In particular, can the structure of the vector potential and the
particle interactions be projected in order to illuminate physical
reasons for some of the fundamental structures? Recently,
separation of the Schrödinger equation in hyperspherical coor-
dinates in the FQHE regime demonstrated that the appearance
of the FQHE may be associated with patterns in the degeneracy
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of the states [21], a conjecture also made earlier by Stone et al.
[10].

In this paper, we study the dynamics of few-body 2D
bosonic systems interacting via regularized pseudopotential
contact interactions under transverse magnetic field within
the adiabatic hyperspherical method. The hyperspherical
framework gives a convenient picture for studying the nature
of the role of interactions and the degeneracy of the ground
state, as well as the resulting Landau-level structure. When
interactions are included, we find that, away from a set of nar-
row avoided crossings in the eigenspectrum, the three-boson
problem is nearly separable in hyperspherical coordinates, in
agreement with previous results for few electrons interacting
via the Coulomb interaction [21]. Weak attractive or repulsive
s-wave interactions also produce ground-state energies for
fixed angular momentum that exhibit even-odd parity oscil-
lations. On the repulsive side, we surmise that if repulsive
higher angular momentum interactions are included, this parity
oscillation combined with the degeneracy pattern of the lowest
Landau level might be the source of the magic number behavior
predicted in previous studies.

This paper is organized as follows. In Sec. II, we describe
our theoretical approach including developing the Hamiltonian
for three-bosons in 2D with a perpendicular magnetic field,
separating out the center-of-mass motion, and transforming
into hyperspherical coordinates. We also describe the Landau-
level structure that results for the noninteracting case and
develop a transcendental equation, the roots of which produce
the adiabatic hyperradial potentials. In Sec. III, we examine the
resulting adiabatic potentials and discuss the limiting cases of
large and small s-wave two-body scattering length. In Sec. IV,
the full eigenspectrum of the three-boson problem is presented
as well as an analysis of the ground-state energy in the weakly
repulsive and attractive limits. In Sec. V, the role of degeneracy
is discussed as well as the part that degeneracy might play in
the emergence of magic numbers in the three-boson system.
Finally, in Sec. VI we summarize the results presented in the
paper.

II. THEORETICAL METHODS

The few-body Hamiltonian that we are concerned with is
that of three identical bosons confined to two dimensions in
a vector potential appropriate to a constant effective magnetic
field perpendicular to the plane of motion:

H =
3∑

i=1

hi +
∑
i<j

V (rij ),

(1)

hi = 1

2m
(−i�∇i + α �Ai)

2,

where hi is the single-particle Hamiltonian for a particle
moving in the vector potential �A, and rij = |�ri − �rj | is the
interparticle separation distance between particles i and j .
Here, �Ai is the vector potential experienced by the ith particle,
and α is an overall scaling factor. If the particles in question
are charged particles, the scale factor would be simply given
by α = q/c in Gaussian units. In Eq. (1), V (r) is a pairwise
isotropic interaction between two bosons that will be described
more fully in the following. Since �A creates an effective

constant magnetic field, here we choose to describe this field
in the symmetric gauge:

�A = B0

2
(x̂y − ŷx). (2)

Note that we have chosen the magnetic field to be pointing
in the −z direction. Inserting the vector potential into Eq. (1)
gives a total Hamiltonian in an illuminating form:

H =
3∑

i=1

(−�
2

2m
∇2

i + 1

8
mωcr

2
i

)
−ωc

2
Lz, Tot+

∑
i<j

V (rij ), (3)

where Lz, Tot = ∑
i �z,i is the total angular momentum of the

system. Here, we have written the Hamiltonian in terms of
the cyclotron frequency ωc = αB/m. The cyclotron frequency
also yields a length scale lc = √

�/mωc = √
�/αB called the

magnetic length. The utility of the symmetric gauge is now
obvious: the effect of the magnetic field is simply that of
an isotropic trap in the system along with an overall shift
downward determined by the total angular momentum of the
system.

To separate out the center of mass, we transform into a set
of mass-scaled Jacobi coordinates [22,23]

�ρ(k)
1 =

√
μi,j

μ
(�ri − �rj ),

�ρ(k)
2 =

√
μij,k

μ

( �ri + �rj

2
− �rk

)
, (4)

�Rc.m. = �r1 + �r2 + �r3

3
,

where μ1,2 = m/2 is the two-body reduced mass, μij,k =
2m/3 is the reduced mass of a two-body system with third
particle, and μ is the three-body reduced mass which we
choose to be μ = m/

√
3. Here, the superscript (k) indicates

which Jacobi coordinates have been chosen using the “odd-
man out” notation where i,j,k is a cyclic permutation of the
particle numbers, e.g., if k = 3 then i = 1 and j = 2. After
the transformation, the total Hamiltonian can be written as

H = Hint + Hc.m., (5)

Hc.m. = − �
2

2MTot
∇2

c.m. +
1

8
MTotω

2
cR

2
c.m. −

ωc

2
Lc.m., z,

Hint = − �
2

2μ

(∇2
1 + ∇2

2

) − ωc

2
Lint,z

+ 1

8
μω2

c

(
ρ2

1 + ρ2
2

) +
∑
i<j

V (rij ). (6)

Here, Lc.m., z is the angular momentum operator of the center
of mass, Lint, z is the internal angular momentum operator,
and MTot = 3 m is the total mass of the three-body system.
In Eq. (6), ∇i refers to a derivative with respect to the ith
Jacobi coordinate. It is important to point out that the internal
Hamiltonian has the same form, independent of which Jacobi
coordinate system has been chosen from Eq. (4) and thus the
superscript (k) has been suppressed.

Since the center-of-mass motion is completely separated,
we can proceed to examine the internal Hamiltonian Hint.
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Because the interactions are isotropic, the total internal 2D
angular momentum of the system is a good quantum number.
If we restrict the system to only states with total internal
angular momentum M , the Schrödinger equation that results
from Eq. (6) is that of three particles confined to an isotropic
oscillator with oscillator frequency ωc/2, i.e.,

E�M

( �ρ(k)
1 , �ρ(k)

2

) =
[∑

i

(−�
2

2μ
∇2

i + 1

8
μω2

cρ
2
i

)

+
∑
i<j

V (rij )−ωc

2
M

⎤
⎦�M

( �ρ(k)
1 , �ρ(k)

2

)
, (7)

where the first sum on the right-hand side runs over the Jacobi
vectors. Here, �M ( �ρ(k)

1 , �ρ(k)
2 ) is a three-body eigenfunction with

total internal angular momentum M .

A. Hyperspherical coordinates

To solve Eq. (7), we employ hyperspherical coordinates and
the adiabatic hyperspherical representation, wherein the four-
dimensional Schrödinger equation is expressed in terms of
the hyperradius R =

√
ρ2

1 + ρ2
2 and a set of three hyperangles

{α,φ1,φ2}, collectively denoted by �, where φ1 and φ2 are the
standard polar angles for Jacobi vectors �ρ1 and �ρ2, respectively,
and α is an angle that correlates the lengths of the two Jacobi
vectors, i.e.,

ρ1 = R sin α,

ρ2 = R cos α.

In hyperspherical coordinates, the internal Hamiltonian of
Eq. (6) can be written as

Hint = −�
2

2μ

(
1

R2

∂

∂R
R3 ∂

∂R
− 
2

R2

)
+ i�ωc

2

(
∂

∂φ1
+ ∂

∂φ2

)

+ 1

8
μω2

cR
2 +

∑
i<j

V (rij ),


2 = −1√
sin α cos α

∂2

∂α2

√
sin α cos α

− 1

sin2 α

(
∂2

∂φ2
1

− 1

4

)
− 1

cos2 α

(
∂2

∂φ2
2

− 1

4

)
. (8)

Here, 
2 is the grand angular momentum operator, the
properties and description of which can be found in a number
of references (see Refs. [24–26] for example).

B. Landau levels

Before we solve the fully interacting system, it is instructive
to consider the structure of the solutions to the noninteracting
system of three particles in an external field. The quantized
motion of a particle in an external field described in the
symmetric gauge results in a set of infinitely degenerate
levels called Landau levels, with energy spacing between
degenerate manifolds of �ωc. It is interesting to note that in
setting the interactions in Eq. (8) to zero, the Hamiltonian
becomes separable in hyperspherical coordinates, reproducing
exactly the Landau-level picture, but with a slightly different

interpretation of the level structure. Here, excitations between
Landau levels are achieved by either a hyperangular excitation
in which the internal configuration of the bosons is changed,
or through a hyperradial vibrational excitation in which the
hyperradial motion is incremented as in a breathing mode.

The grand angular momentum operator is diagonalized
using hyperspherical harmonics [24,25] with eigenvalues
given by


2Yλm1m2 (�) = λ(λ + 2)Yλm1m2 (�), (9)

where λ is the grand angular momentum quantum number
and m1 and m2 are the 2D angular momenta associated with
the Jacobi vectors �ρ1 and �ρ2, respectively. Hyperspherical
harmonics also diagonalize the total angular momentum of
the system as

Lz, intYλm1m2 (�) = MYλm1m2 (�),

where M = m1 + m2 is the total 2D angular momentum of the
system, The allowed values of λ are given by

λ = 2n + |m1| + |m2|, (10)

where n is a non-negative integer. Note that λ has a minimum
value given by λ = |m1| + |m2| when n = 0.

Inserting the separability ansatz �( �ρ1, �ρ2) = �(R,�) =
R3/2F (R)Yλm1m2 (�) into the Schrödinger equation resulting
from Eq. (8) (with the interactions set to zero) results in a
one-dimensional (1D) hyperradial Schrödinger equation of a
harmonic oscillator with frequency ωc/2 that has been shifted
down in energy by M�ωc/2, i.e.,

0 =
[−�

2

2μ

∂2

∂R2
+ �

2

2μ

(λ + 1/2)(λ + 3/2)

R2

− �ωc

2
M + 1

8
μω2

cR
2 − E

]
F (R). (11)

Note that the R3/2 factor in the separability ansatz is included to
remove first derivatives in the hyperradius. This Schrödinger
equation can be solved simply [27] with eigenenergies and
eigenfunctions given by

E = �ωc

[
ν + (λ − M)

2
+ 1

]
, v = 0,1,2, . . . (12)

F (R) = Aνλ

e−R2/(2
√

2l)c

R3/2

(
R√
2lc

)λ+3/2

Lλ+1
ν

(
R2

2l2
c

)
, (13)

where lc is the magnetic length, LL
ν (x) is a Lageurre poly-

nomial, and Aνλ is a normalization constant. Inserting the
restriction on values of λ from Eq. (10) into Eq. (12), the
Landau-level picture emerges:

E = �ωc

(
ν + n + |m1| + |m2| − M

2
+ 1

)
. (14)

Restricting ourselves to positive values of angular momentum,
it is clear that for fixed ν and n any non-negative value of total
angular momentum M produces the same energy, and thus an
infinitely degenerate manifold of states. The structure of the
energy levels seen in Eq. (14) is the same as the energy levels
seen in the standard Landau-level picture. Here, however,
the interpretation of excitation between Landau levels is
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somewhat different. There are two different ways to move from
one level to another, either through a hyperradial excitation
by incrementing ν or through a hyperangular excitation by
incrementing n.

C. Contact interactions and the adiabatic
hyperspherical method

Next, we proceed to diagonalize the full interacting Hamil-
tonian of Eq. (8) within the adiabatic hyperspherical method.
The heart of the approach is in treating the hyperradius R as
an adiabatic parameter, and diagonalizing the Hamiltonian at
fixed R in the remaining hyperangular degrees of freedom. In
this method, the total wave function is expanded as

�M ( �ρ1, �ρ2) =
∑

n

R3/2FnM (R)nM (R; �). (15)

Here, the adiabatic channel functions nM (R; �) satisfy the
fixed R Schrödinger equation⎡

⎣−�
2

2μ


2

R2
+

∑
i<j

V (rij )

⎤
⎦nM (�) = unM (R)nM (�), (16)

where unM (R) is the adiabatic potential associated with
nM (�). Note that this is exactly the adiabatic Schrödinger
equation that is solved in finding the adiabatic potentials for
three bosons in the absence of any external field. Thus, unM (R)
are simply the adiabatic potentials for three interacting bosons
confined to 2D, a system that has been studied extensively
[28–33] and is of current interest in its own right. Inserting
Eq. (8) and projecting onto the nth channel function results is
a coupled system of one-dimensional Schrödinger equations
in R:

EFnM (R) =
[−�

2

2μ

d2

dR2
+ UnM (R) − E

]
FnM (R)

− �
2

2μ

∑
m�=n

[
Qnm(R) + 2Pnm(R)

d

dR

]
FmM (R),

(17)

UnM (R) = unM (R) + �
2

2μ

3/4

R2
− �

2

2μ
Qnn(R) + 1

8
μω2

cR
2

− �ωc

2
M. (18)

Here, the effective hyperradial potentials are given by Un(R)
and the nonadiabatic corrections embodied in the P and Q
matrices are a result of hyperradial derivatives of the channel
functions, i.e.,

Pnm =
〈〈

nM (R; �)

∣∣∣∣ ∂

∂R
mM (R; �)

〉〉
, (19)

Qnm =
〈〈

nM (R; �)

∣∣∣∣ ∂2

∂R2
mM (R; �)

〉〉
, (20)

where the double brackets 〈〈. . .〉〉 indicate that the matrix
elements are taken over the hyperangular degrees of freedom
only.

Up to this point, the treatment described above has been
quite general, and is applicable to any two-body, cylindrically
symmetric interaction. In fact, by extending the Jacobi coor-
dinates to larger numbers of particles, this treatment can be
extended to any N -body system. The adiabatic Schrödinger
equation (16) has been solved for three-body systems with
several different interaction potentials and can be approached
by a number of different techniques [32–35]. In this work, we
focus on the zero-range pseudopotential [36,37]

V (r) = �
2

m

δ(r)

r
[
1 − ln

(
r
a

)] ∂

∂r
r, (21)

where a > 0 is the 2D, s-wave (m = 0) scattering length.
The effect of this pseudopotential is to enforce the two-body
boundary condition

lim
rij →0

∂

∂rij

nM (R; �) = C

[
1 + 2 tan δ

π

(
ln

krij

2
+ γ

)]
,

tan δ = π

2
(

ln ka
2 + γ

) , (22)

where C is a constant, δ is the 2D s-wave scattering phase
shift, k is the two-body wave number, and γ = 0.5772 is the
Euler constant. It is important to note that this pseudopotential
only affects wave functions with an s-wave component of the
angular momentum between pairs of particles; all higher par-
tial waves are treated as noninteracting. This pseudopotential
is accurate in the low-energy limit when the true interparticle
interaction falls off sufficiently fast at large r to be considered
short range. We also require that both the range r0 and the
effective range reff of the interaction are the smallest length
scales in the system, i.e., a 	 r0,reff and lc 	 r0,reff . At the
two-body level, this pseudopotential interaction produces a
large halo dimer state with binding energy Eb = −4e−2γ /ma2

[37]. It is also worth noting that in the limit of large or
small scattering length ka → ∞ or ka → 0, where k is the
relative two-body momentum, the pseudopotential approaches
the noninteracting limit.

In this study, we employ the hyperangular Green’s function
approach of Ref. [38]. The full derivation using this method
is somewhat tedious, but straightforward, and we will not
detail it here. The heart of the method is in turning the
adiabatic Schrödinger equation into a Lippmann-Schwinger
(LS) equation by employing the free-space hyperangular
Green’s function. Within this LS equation, it is easy to apply
the boundary condition of Eq. (22) when two particles are
in contact with each other, and propagate the particles freely
between such contact points. The result of this derivation gives
the adiabatic potentials as

unM (R) = �
2

2μ

εnM (R) − 1

R2
, (23)

where we refer to εnM (R) as the hyperangular eigenvalues
which are roots of the transcendental equation

− ln
R

a
= ln

√
2μ

m
− γ − 1

2
ψ

(
M − √

εnM + 1

2

)

− 1

2
ψ

(
M + √

εnM + 1

2

)
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FIG. 1. The first several adiabatic hyperangular eigenvalues for
angular momentum (a) M = 0, (b) M = 1, and (c) M = 3 are shown
as a function of R/a on a log scale. Dotted lines indicate the hyper-
angular eigenvalues of hyperspherical harmonics of noninteracting
systems expected in the large- and small-a limits.

+
(−1

2

)M �
(M+√

εnM+1
2

)
�

(M−√
εnM+1
2

)
�(M + 1)

2F1

×
(

M−√
εnM + 1

2
,
M+√

εnM + 1

2
; M+1;

1

4

)
,

(24)

where �(x) is the gamma function, ψ(x) = �′(x)/�(x) is
the digamma function, and 2F1 (a,b; c; x) is a hypergeometric
function. In the case where M = 0, this reduces to the results
found in Refs. [28,32].

Examples of the hyperradial eigenvalues εnM for M =
0, 1, and 3 are shown in Fig. 1 as a function of R/a. In
each case, the lowest hyperangular eigenvalue goes to −∞
quadratically in R in the large-R limit. This corresponds
to a particle-dimer hyperangular channel function consisting
of a free particle far away from a bound dimer. With the
exception of the lowest potential in the large-R limit, all

hyperangular eigenvalues logarithmically approach an integer,
corresponding to a noninteracting value, in both the large- and
small-R limits. The hyperangular eigenvalues transition from
one noninteracting limit to another in the region where R ∼ a.

We can understand this behavior by considering the
pseudopotential in Eq. (21). In the limit of large hyperradius
R 	 a, the average interparticle separation is much greater
than the scattering length r 	 a. The logarithmic behavior
of the scattering length in the pseudopotential indicates that
this is a weakly repulsive limit. In the limit of very small
hyperradius R  a, the average interparticle separation is
much smaller than the scattering length r  a, again, because
of the logarithmic nature of the pseudopotential, this becomes
the weakly attractive limit.

The matrix elements of the nonadiabatic correction matrix
P [Eq. (19)] are given in Ref. [32] in terms of the hyperangular
eigenvalues by

Pmn =
√

ε′
mM (R)ε′

nM (R)

εmM (R) − εnM (R)
, (25)

where the primes indicate a derivative with respect to R. The
diagonal correction Qnn(R) to the potentials in Eq. (18) is
given by

Qnn = − 1

12R2
− 1

4

[
ε′′
nM (R)

ε′
nM (R)

]2

+ ε′′′
nM (R)

6ε′
nM (R)

. (26)

In the infinite channel limit, the off-diagonal elements of Q
can be found using the identity

Qmn = P′
mn(R) + [P2]mn, (27)

where [P2]mn is the mnth element of the square of the P matrix
and P′ indicates a derivative with respect to the hyperradius.
While Eq. (27) is only exact in the infinite channel limit, for the
purposes of this work, we will use it in a finite channel number
expansion to approximate direct, off-diagonal, nonadiabatic
contributions.

III. ADIABATIC POTENTIALS

One of the strengths of the adiabatic hyperspherical method
is that, with the effective adiabatic potentials in hand, we can
bring all of the understanding and intuition of normal 1D
Schrödinger quantum mechanics to bear on the problem. The
adiabatic potentials of Eq. (18) can give significant insight
into the structure and behavior of the three-body system.
Figure 2(a) shows the lowest three potentials for total angular
momentum M = 0 for scattering lengths a = 0.1lc, a = 7lc,
and a = 10 000lc. Figure 2(b) shows the same for a system
with total angular momentum M = 2. The insets in Figs. 2(a)
and 2(b) show the potentials for a = 10000lc over a larger
range of R to illustrate the effective oscillator potential that
is introduced as a consequence of the magnetic field. In the
adiabatic potentials, there is a competition between two length
scales: the scattering length a, which controls the interactions,
and the magnetic length lc, which is controlled by the magnetic
field. In the small-a limit, the minimum of lowest adiabatic
potential is shifted down far below the zero-energy threshold.
In fact, in the absence of any field this potential asymptotically
goes to an energy of U → −4 exp (−2γ )�2/ma2 which is

012511-5



SETH T. RITTENHOUSE, ANDREW WRAY, AND B. L. JOHNSON PHYSICAL REVIEW A 93, 012511 (2016)

FIG. 2. The lowest three adiabatic potentials are shown for M =
0 (a) and M = 2 (b) as a function of R in units of the magnetic length
lc for several different values of the scattering length a = 0.1lc (solid
curves), a = 7lc (dashed curves), and a = 10 000lc (dotted curves).
(Insets) The lowest three adiabatic potentials for a = 10 000lc are
shown over a different scale to illustrate the effective oscillator
potential imposed by the external magnetic field.

exactly the energy of the dimer state. As a result, we can
interpret the lowest potential in the small scattering length
limit as describing an effective two-body interaction potential
of a particle and an m = 0 dimer in a weak external field, a
behavior that persists for all values of M .

In the small scattering length limit the second adiabatic
potential is similar to a harmonic oscillator potential, and in the
absence of any magnetic field asymptotes to the zero-energy
threshold. This allows us to interpret the lowest adiabatic
interaction channel as that corresponding to the behavior of
a three-body system with no dimer-type bound states. Another
feature that can be seen in the lowest M = 0 adiabatic potential
is a short-range attractive well that is not present for any other
values of M . For small a, this well is deep enough to bind two
three-body states with binding energies of E = 16.25Eb and
1.26Eb, respectively, where Eb is the dimer binding energy.
These values are found using a single-channel calculation and
are in good agreement with three-body bound-state energies
in the absence of the magnetic field found in Refs. [32,39].

In the large scattering length limit a 	 lc, the hyperangular
eigenvalues are dominated by the small hyperradius behavior,
meaning that the potentials are close to the noninteracting limit.
In this limit, the particles are all kept close together by the
(strong) external field and the average interparticle separation

is much smaller than the scattering length. This means that
any particle-dimer-type behavior is pushed to the the large-R
regime energetically far removed from the minimum. Thus,
all of the potentials can be considered to correspond with true
three-body behavior.

In general, when the hyperradius is much larger than the
scattering length R 	 a, the three-body potentials (those
not associated with particle-dimer-type behavior) approach
the noninteracting limit. When the scattering length is much
smaller than the magnetic length, the minimum in the harmonic
potential resides at R ∼ lc 	 a and deviations from the non-
interacting behavior are energetically inaccessible. Therefore,
we can expect the system to approximately behave as three
noninteracting particles in an external field. For the lowest
potential, associated with particle-dimer behavior, with the
exception of the M = 0 states, we can expect that the system
will behave as a noninteracting two-body system in an external
field whose ground-state energy is shifted by the dimer binding
energy. For M = 0, the deep well in the R < a region in the
potentials will modify this behavior.

In the R  a limit, all of the potentials have noninteracting
limiting behavior. When the scattering length is much smaller
that the magnetic length, any changes in the potentials that
result from the interaction are in the small hyperradius region,
pushed far up the inner potential barrier that can be seen in
the inset of Figs. 2(a) and 2(b). We can therefore expect that
the behavior of the system will again approach that of the
noninteracting system in the a 	 lc limit. With the potentials
in hand, we can now examine the eigenspectrum of the system.

IV. THREE-BODY ENERGIES

In this section, we describe the behavior of the eigenspec-
trum that results from the coupled system of 1D Schrödinger
equations from Eq. (17). Generally, it is necessary to include
many adiabatic channels to converge the bound-state energies
of three bodies in two dimensions to high accuracy; however,
to achieve accuracy to within several digits, only relatively
few channels are needed. With that in mind, we solve Eq. (17)
using the lowest six adiabatic channels for each total angular
momentum M . We have found that this is sufficient to converge
the energetically low-lying states to within ∼ 0.1% accuracy,
which is sufficient for the purposes of this study.

The full eigenspectrum of the three-boson system for
M = 0, 1, and 2 including the off-diagonal couplings between
adiabatic channels is shown as a function of a/lc in red
in Figs. 3(a)–3(c). Also shown in Figs. 3(a)–3(c) are the
energies of the lowest six hyperradial vibrational states for each
effective potential UnM (R), ignoring the off-diagonal coupling
matrices P and Q but including the diagonal correction Qnn(R).
In regions nearby crossings between uncoupled energies, the
off-diagonal couplings Pnm(R) and Qnm(R) introduce a series
of narrow avoided crossings in the energy spectrum as a
function of the scattering length and these off-diagonal direct
and derivative couplings become important in these areas.
However, away from these avoided crossings, the uncoupled
adiabatic potentials UnM (R) provide a good approximation of
the energy spectrum of the three-particle system indicating that
the system is nearly separable within the adiabatic hyperspher-
ical framework which provides an accurate description of this
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FIG. 3. The full energy spectrum in units of �ωc is shown as
a function of a/lc. The energies were calculated for total angular
momentum M = 0 (a), M = 1 (b), and M = 2 (c) including (solid
red line) and ignoring (dashed black line) couplings between adiabatic
channels.

system. As a result, unless otherwise stated, we will focus on
the uncoupled adiabatic channel energies for the remainder of
this paper.

Figures 4(a)–4(c) show the vibrational energies for the
lowest three adiabatic channels as a function of a/lc for M =
0, 1, and 2, respectively. In each case, the lowest adiabatic
channel has vibrational states that decrease in energy as 1/a2

for a  lc. These are states associated with an atom-dimer
interaction channel. For M = 0, the lowest two vibrational
states in the lowest channel become the three-body bound state
mentioned previously. While atom-dimer states are of interest
in their own right, we are interested here in the behavior of
three-body states in the presence of an external field, and the
atom-dimer states in the small scattering length limit will not
be the focus of this work. For the second and third adiabatic
channels, we can see that at very small scattering lengths, the
three-body energies approach the noninteracting Landau-level
values as expected. In sweeping from small to large scattering

FIG. 4. The energies of the first six vibrational levels attached
to the first (solid black curves), second (dashed red curves), and
third (dotted blue curves) adiabatic channels are shown as a function
of scattering length for internal angular momentum (a) M = 0, (b)
M = 1, and (c) M = 2. The coupling between adiabatic channels
has been ignored here. The Landau-level energies are shown as black
dashed lines for reference.

length, the energies transition up smoothly to a higher Landau
level in the large scattering length limit. In the small-a limit,
the energies are shifted up slightly from the noninteracting
energy corresponding to an effectively repulsive interaction.
The energies of the system in the large scattering length limit
are shifted slightly down from the noninteracting Landau levels
corresponding to an effectively attractive interaction.

In the large and small scattering length limits, Fig. 4(b)
shows that the lowest M = 1 adiabatic channel that corre-
sponds to a three-body state converges to the second Landau
level rather than the first. As discussed later, this is because
a total internal angular momentum of M = 1 in the lowest
Landau level is forbidden for bosonic symmetry and the
lowest noninteracting three-boson state with internal angular
momentum M = 1 corresponds to the second Landau level.
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FIG. 5. The lowest vibrational state energy for each adiabatic
channel is shown for M = 0, 2, 3, 4, and 5 as a function of a/lc on
a log scale. The energies for M = 0 are shown as solid curves while
the energies for M = 2–5 are shown as dashed curves with increasing
dash size for increasing values of M . The noninteracting Landau level
is shown for reference.

Of particular interest here is the behavior of the lowest-
energy three-body state. Figure 5 shows the energy of the
lowest three-body state for M = 0, 2, 3, 4, and 5 (shown in
black, blue, magenta, red, and green, respectively) as a function
of a/lc in the region near the lowest Landau level. Because
there are no M = 1 lowest Landau-level states, M = 1 is
excluded here. There are several interesting things that can be
observed in this figure. First, we can see that at small scattering
length a < lc, the three-body energies are pushed above the
lowest Landau level indicating that this interaction regime
corresponds to repulsive interactions. For large scattering
length a > lc, the three-body energies are below the lowest
Landau level indicating that this is the attractive interaction
regime. We also note that for M � 2 the levels show a parity
oscillation, with M even higher in energy for small scattering
length and M odd lower in energy, and vice versa in the large
scattering length limit.

The opposite parity oscillation is shown in Fig. 6 in which
we have plotted the lowest-energy three-body state versus
internal angular momentum M for small scattering length
[a = 0.1lc in Fig. 6(a)] and large scattering length [a = 100lc
in Fig. 6(b)]. This parity oscillation can be understood simply
by understanding that even parity states (even M) tend to have
the three bosons in closer proximity and thus more strongly feel
the s-wave contact interactions than the odd-parity (odd-M)
states. It is interesting to note here that because M = 1
is forbidden for bosonic symmetry in the lowest Landau
level, M = 3 is universally the lowest-energy three-body state
for states interacting via repulsive, a < lc, s-wave contact
interactions.

At larger angular momentum, we would expect an angular
momentum (centrifugal) barrier to form that prevents the
bosons from being near each other. Thus, we might expect that
the energy should tend towards the noninteracting value of the
lowest Landau level. This behavior is not borne out in Fig. 6,
where we observe that the energies of the three-boson states
tend towards a constant that is above the lowest Landau level
for repulsive interactions and below it when the interactions
are attractive. The explanation for this apparent inconsistency

FIG. 6. The energy of the lowest three-body state (the state
without any dimerlike characteristics) is shown as a function of
internal angular momentum M for (a) the weakly repulsive (a =
0.1lc) and (b) weakly attractive (a = 100lc) regimes. Note that for
M > 1 the energies oscillate with parity with odd M being lower in
energy for small scattering length and even M being lower for large
scattering length. Universally for small scattering length, the lowest
M = 3 state is the lowest interacting three-body state for small a/lc.
(Insets) Show the same states on a larger scale to include the lowest
M = 1 state.

lies in the regularized s-wave contact interaction of Eq. (21).
This interaction projects onto only those states which have
some component of their wave functions with zero interparticle
angular momentum. Examining the energy-level structure of
the lowest Landau level from Eq. (14) with m1 = 0, we can see
that for each value of total internal angular momentum, there
is at most one such lowest Landau level state. When the lowest
Landau level for a given value of M is degenerate, there will be
additional states in which the interparticle angular momentum
has no m = 0 component and will be noninteracting according
to our pseudopotential.

V. ROLE OF DEGENERACY

Recently, Daily et al. [21] have highlighted the crucial role
that the degeneracy of the lowest Landau level plays in the
energetic structure of 2D few-fermion systems interacting via
the Coulomb potential in the presence of an external magnetic
field. This degeneracy plays an equally important role in this
study. As mentioned above, at most only a single lowest
Landau level state for each internal angular momentum value
M has a zero interparticle angular momentum component
in the three-boson system. However, as the value of M

increases, the degeneracy generally increases as well. A
complete description of the degeneracy of the lowest Landau
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level for N identical fermions (which can be directly applied
to N identical bosons) is given in Ref. [21]; we will briefly
reiterate the argument here for completeness.

The noninteracting N -body Hamiltonian from Eq. (1), with
V (r) = 0, is separable in individual particle coordinates where
the bosonic lowest Landau level wave functions are given by

�LL = N Ŝ
N∏

j=1

z
mj

j e−|zj |2/l2
c , (28)

where zj = xj + iyj is the j th boson’s position in the labora-
tory frame written in complex coordinates and mj � 0 is the
angular momentum of particle j . Here, Ŝ is a symmetrization
operator that imposes bosonic symmetry and N is a normal-
ization factor. In the symmetrized basis, the individual angular
momenta are no longer good quantum numbers; however,
the total angular momentum MTot = ∑N

j=1 mj is conserved.
Using this, the degeneracy of the lowest Landau level is
given by the number of ways we can combine N individual
particle angular momenta to get MTot subject to the condition
that m1 � m2 � m3 . . . so that we do not double count any
symmetric configurations. This means that the degeneracy
DTot(MTot) for total angular momentum MTot for N particles is
given by the number of integer partitions PN of no more than
N integers of MTot, i.e., DTot = PN (MTot) where we define
PN (0) ≡ 1.

The noninteracting Hamiltonian is also separable into
internal and center-of-mass degrees of freedom as seen in
Eq. (5). In this basis, the total angular momentum can be
written in terms of the internal angular momentum M and
the center-of-mass angular momentum Mc.m. as MTot = M +
Mc.m.. The degeneracy of the lowest Landau level for internal
angular momentum M,D(M), is given by the degeneracy when
the total angular momentum is entirely internal, i.e. MTot = M

and Mc.m. = 0. However, the degeneracy DTot(MTot) from
above includes all allowed values of the center-of-mass angular
momentum 0 � Mc.m. � MTot. To find only the degeneracy
of the states with Mc.m. = 0, we must subtract off the total
number of configurations with Mc.m. = 1,2,3, . . . ,M . Because
each center-of-mass angular momentum is nondegenerate, and
the fact that for each value of M there is only one value of
Mc.m. that gives MTot = M + Mc.m., the number of states with
Mc.m. = 1,2,3, . . . ,M with MTot = M is given by the number
of states with MTot = M − 1, i.e.,

D(M) = DTot(M) − DTot(M − 1) = PN (M)−PN (M − 1),

(29)

with PN (−1) ≡ 0.
Figure 7 shows the degeneracy of the lowest Landau level

for three identical bosons as a function of internal angular
momentum M . Several interesting things emerge in this figure.
First, we can see that, as stated above, there are no allowed
bosonic states with internal angular momentum M = 1. This
is because there is only one lowest Landau level state with
total angular momentum MTot = 1 when m1 = 0, m2 = 0, and
m3 = 1 where mi is defined as in Eq. (28). Since we know there
is a bosonic state with internal angular momentum M = 0, the
only way to get total angular momentum MTot = 1 is then with
M = 0 and Mc.m. = 1.

FIG. 7. The degeneracy of the lowest Landau level for three iden-
tical bosons is shown as a function of internal angular momentum M .
Note that for M = 6n where n = 1,2,3, . . ., there is an anomalously
high level of degeneracy.

We can also observe in Fig. 7 that for M = 6n, n =
1,2,3, . . ., the lowest Landau level presents an unusually high
level of degeneracy where the degeneracy is higher than both
that of M + 1 and M − 1. We note that these anomalously
high-degeneracy values of M correspond exactly to the angular
momentum of the three-boson Laughlin states [2] whose wave
functions are given by

�L(z1,z2,z3) = N e(− ∑
j |zj |2/l2

c )

⎡
⎣∏

i<j

(zi − zj )2n

⎤
⎦, (30)

whereN is again a normalization constant and n = 1,2,3, . . . .
These states are lowest Landau level states in which each
particle pair has an interparticle angular momentum of 2n

giving a total angular momentum of MTot = N (N − 1)n = 6n

for N = 3. Because the prefactor in Eq. (30) only depends of
the position of the particles relative to each other, it contains
no center-of-mass angular momentum Mc.m. = 0. We also note
that the same degeneracy pattern as seen in Fig. 7 for three
bosons occurs for three identical fermions, but shifted to the
right by M = 3 (the minimum allowed angular momentum for
three fermions in the lowest Landau level).

As discussed above, when the lowest Landau level becomes
degenerate, for M = 6 and M � 8 here, there exists at least one
state in which each particle pair has no zero angular momentum
component, and which consequently do not experience the
s-wave pseudopotential. This means that, for weakly repulsive
interactions, a  lc, the lowest-energy three-body states are
noninteracting lowest Landau level states with E = �ωc for
these values of M .

If a repulsive d-wave interaction were to be included in this
system, any state with an m = 2 component in its interparticle
angular momentum would experience the interaction. We can
assume that the d-wave interaction would generally have a
smaller effect on these states than the s-wave interaction
has on states with an m = 0 interparticle angular momentum
component. However, we surmise that the pattern of the energy
shift from the lowest Landau level would be similar for these
d-wave interacting states to the s-wave interacting states,
mainly the pattern of even-odd parity oscillation. Further, when
the degeneracy jumps up to three degenerate states or more (for
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FIG. 8. A schematic illustration of the possible energy structure
of the three-boson system is shown as a function of internal angular
momentum M . This schematic illustrates the possible interplay
between even-odd parity oscillations in the energy and the degeneracy
pattern which could result in ground-state energies that reflect a
“magic number” type behavior.

M = 12 and M � 14) there will exist states with only m � 4
interparticle angular momentum components. These higher
angular momentum states will not experience either the s- or
d-wave interactions.

Figure 8 shows a schematic representation of the energies
that might result from including a repulsive d-wave interaction.
We emphasize here that the energies shown here are purely
schematic in nature and are shown only to illustrate the
surmised structure of the lowest-energy states for weakly re-
pulsive interactions. Here, black circles represent the energies
of states which are experiencing the s-wave interaction, while
blue squares represent states which only experience a d-wave
interaction. A singe red triangle at M = 12 represents a state
with no s- or d-wave interparticle angular momentum [this is
in fact the Laughlin state of Eq. (30) with n = 2]. The even-odd
oscillation combined with the pattern of degeneracies for
three identical bosons creates an interesting overall pattern
of lowest-energy states (marked in Fig. 8 by the solid line) in
which the ground-state energy for each value of M tends to
decrease overall with increasing M. However, every third state,
M = 0, 3, 6, 9, and 12 here, is lower in energy than either of
its neighbors. This pattern of anomalously low-energy states is
similar to the “magic number” states first predicted in Ref. [8]
for fermions interacting via the repulsive Coulomb interaction.
It is possible then that the appearance of the magic numbers
for three-particle systems with repulsive interactions is simply
a manifestation of the combination of even-odd oscillations in

the energy with the pattern of degeneracy for three identical
particles.

VI. SUMMARY

The three-boson problem in 2D in the presence of a
transverse magnetic field is surprisingly well described using
the adiabatic hyperspherical method. The full energy spectrum
presents very narrow avoided crossings between the adiabatic
energies, and away from these crossings the couplings between
channels can be largely ignored to a good approximation. This
indicates that the system is nearly separable in the hyperspher-
ical picture. The adiabatic hyperspherical picture provides
a useful interpretation of transitions in which excitations
between levels can be achieved through either a hyperangular
excitation in which the internal configuration of the three-
boson system is changed or through a hyperradial vibrational
excitation in which the internal structure of the system remains
the same. The adiabatic hyperangular eigenvalues εnM (R)
are exactly the same as those found for three interacting
bosons in free space. The inclusion of the magnetic field
results in the addition of an effective isotropic trap, and an
angular-momentum-dependent shift.

When interacting via the s-wave pseudopotential, three-
body states transition from the weakly repulsive regime (a 
lc) to the weakly attractive regime (a 	 lc) as a function
of the 2D scattering length. States that interact via the
s-wave interaction display an even-odd parity oscillation as a
function of the total internal angular momentum M . For small
scattering length, this parity oscillation combined with the
fact that there is no M = 1 lowest Landau level means that the
lowest interacting three-boson state has total internal angular
momentum M = 3. At higher values of angular momentum
the lowest Landau level becomes degenerate and a set of
noninteracting states emerge in which the inter-particle angular
momentum has no m = 0 component. Interestingly, if the same
pattern of even-odd parity oscillations persists when higher
partial wave interactions are included, in combination with
the pattern of degeneracy for the lowest Landau level, this
might be the source of the “magic number” behavior seen
in three-particle systems interacting via long-range Coulomb
interactions, and is the subject of ongoing work.
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