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We present a theoretical analysis of different methods to synthesize entangled states of two quantum mechanical
resonators. These methods are inspired by experimentally demonstrated interactions of superconducting
resonators with artificial atoms, and offer efficient routes to generate nonclassical states. Using a two-mode
Jaynes-Cummings model, we analyze the theoretical structure of these algorithms and their average performance
for arbitrary states and for deterministically preparing NOON and maximally entangled states. Using a
new state synthesis algorithm, we show that NOON and maximally entangled states can be prepared in a
time linear in the desired photon number and without any state-selective interactions.
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I. INTRODUCTION

In recent years we have witnessed a dramatic evolution
in the quantum mechanical experiments performed with
superconducting circuits. Initially, the challenge was to fab-
ricate, prepare, and isolate signatures of quantum behavior
of the coupled motion of Cooper pairs through Josephson
junctions and electrodynamic oscillations in superconducting
devices [1–4]. This has now become routine in the field of
circuit quantum electrodynamics (QED) [5], and the frontier
is designing and manipulating the quantum states of coupled
superconducting qubits (quantum bits) and resonators to
achieve quantum-enhanced information processing [6,7].

When embarking on this new journey, the quantum mechan-
ical engineer must decide on which degrees of freedom she
wishes to manipulate: the electronic (qubit) or electromagnetic
(resonator)? There are important advantages on both sides,
but, until recently [8], the coherence (or quality factor) of
superconducting resonators (or cavities) could be significantly
greater than the qubit circuits utilizing Josephson junctions.
Thus, one should consider what coherent operations can be
performed with superconducting resonators as opposed to
qubit circuits. Such studies include high-fidelity measure-
ment [9,10], computation [11], and error correction [12,13],
which all attempt to utilize the larger state space afforded by
the harmonic oscillator states of a resonator to achieve greater
efficiency.

There are many other systems in nature which have
harmonic oscillator modes that can be accessed at the quantum
level. These include the photon states in cavity QED, which
can be selectively excited by laser-controlled atoms, or the
motional states of trapped ions when driven by sideband
transitions [14]. The collective quantum states of atomic or
spin ensembles also have harmonic oscillator modes that could
be controlled [15,16]. Finally, mechanical oscillators can be
prepared and manipulated at the quantum level [17,18]. For
all of these systems, a theoretical understanding of methods to
manipulate their quantum states is an important topic.

In this paper, we consider how to perform “digital” state
synthesis of superconducting resonators, where the desired
state is a superposition of Fock states [19,20]. In particular,

*frederick.w.strauch@williams.edu

we continue the development of theoretical methods [21–24]
to synthesize an entangled superposition of the Fock states
between two resonators. This complements the many recent
studies [11,25–28] of how to perform quantum computation
using such systems as qudits [29], in which d levels are used as
a quantum digit. An alternative “analog” approach uses super-
positions of coherent states to store quantum information [30].
We expect that many of the issues encountered in the digital
regime will have counterparts in the analog regime, but both
warrant detailed study. Finally, we note that there have been
a number of other studies of interesting interactions that can
be used to generate entanglement between superconducting
or nanomechanical resonators [31–35]. While our results are
primarily theoretical, we expect that the methods and ideas
presented here will inform the control of these and other
quantum oscillators.

The general state synthesis problem concerns how one can
prepare, with high fidelity, an arbitrarily chosen quantum state.
A state synthesis algorithm is a procedure, given a description
of the target state, to identify the appropriate set of Hamiltonian
controls (such as amplitudes and frequencies of control fields)
that will prepare the target state from a fixed initial state. Note
that there are two senses in which the state synthesis problem
is solved algorithmically. First, the algorithm is typically
implemented as a computer program and run on classical
hardware. Second, the output of this program is a list of
operations to be applied to quantum hardware to prepare the
desired state. Thus, the state synthesis algorithms presented
here can be used to program future quantum machines.

In this paper we consider scenarios such as those depicted in
Fig. 1, in which a qubit is used to couple two resonant cavities
A and B, the latter with Fock states |na〉 ⊗ |nb〉. We will
analyze algorithms that deterministically and exactly produce
an arbitrarily chosen state of two resonators, of the form,

|ψtarget〉 = |0〉qubit ⊗
Na∑

na=0

Nb∑
nb=0

cna,nb
|na〉 ⊗ |nb〉. (1)

In fact, we will provide a detailed performance analysis of two
such algorithms, one a “photon subtraction” algorithm based
on previous work [21,36], and a second “photon swapping”
algorithm new to this work. In the spirit of Law and Eberly’s
classic study of controlling a qubit-resonator system [37],
we explore a simplified model of two resonators coupled to
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FIG. 1. Schematic scenario for entangled state synthesis prob-
lems, in which two cavities A and B are coupled by a qubit, using
(a) a planar coplanar waveguide circuit, or (b) two three-dimensional
cavities. The qubit can be controlled to effect qubit rotations or swaps
between the qubit and each cavity.

a qubit, here called the driven two-mode Jaynes-Cummings
Hamiltonian:

H/� = ωaa
†a + ωbb

†b + ωq(t)σ †σ + F (t)σx

+ ga(t)(σ †a + σa†) + gb(t)(σ †b + σb†). (2)

Here a, b, and σ = |0〉〈1| are the annihiliation operators for
the two resonators and qubit, respectively, and σx = σ + σ †.
The resonator frequencies are ωa and ωb, while the qubit
frequency ωq(t), the driving field F (t), and the couplings
ga(t) and gb(t) are all treated as possible control parameters.
By turning these parameters on and off according to the state
synthesis algorithm, one can evolve the initial ground state
|0〉qubit ⊗ |0〉 ⊗ |0〉 to the desired target state |ψtarget〉.

While our state synthesis algorithms are based on the
above model, implementing the algorithms using a specific
Hamiltonian appropriate to experimental implementations in
circuit QED, and the expected fidelity in the presence of
decoherence, have been discussed in previous work [36].
In this context, it is important to note that time-dependent
control of the qubit frequency ωq(t) and driving field F (t)
was used to experimentally synthesize Fock states and their
superpositions in a single coplanar waveguide resonator using
a phase qubit [19,20]. This approach was extended to a system
similar to that in Fig. 1(a) and used to controllably swap
excitations between [7] and to prepare entangled states of
two resonators [38]. However, it was argued [21] that, for
an arbitrary target state, the algorithm must use state-selective
interactions, such as the number-state-dependent qubit tran-
sitions found in experiments with a transmon qubit coupled
to a resonator [39–43]. Although these experiments involved
planar circuits, there also has been significant progress toward
tunable devices coupled to three-dimensional cavities [44,45].
Furthermore, while the state-synthesis algorithms discussed
here can be adapted to systems with fixed couplings, our
final results may be most relevant for systems with control-
lable couplings. Controllable couplings between qubits and
resonators [46–49], between high-coherence qubits [50], and
between planar [51] and three-dimensional [52] cavities have
also been experimentally demonstrated. This last experiment
used a system very similar to that in Fig. 1(b).

The results obtained here can be used both as a guide to
future experiments using advanced circuit QED circuits, and as
a theoretical benchmark for alternative procedures to prepare
such states. These alternatives include using other interactions
(such as sideband transitions [53–55]), numerical optimization

methods [56], closed-loop control [57], or other measurement-
based methods for state preparation [58]. In this work, we
will identify how physical resources, such as the number and
type of controls and the average time required, scale with
the size of the desired target state. In particular, we apply
our new algorithm to NOON-state preparation, for which a
special-purpose algorithm using a multilevel device [22] was
previously demonstrated [38]. We go beyond our previous
work [21,36] to find that our new algorithm can synthesize
the following class of entangled states (with Na = Nb = N )
in a time linear in the state size and without state-selective
interactions:

|ψtarget〉 = |0〉qubit ⊗
N∑

n=0

cn|n〉 ⊗ |N − n〉. (3)

As state-selective interactions are often weaker than direct
qubit-resonator interactions [9,26], we expect these results will
aid future demonstrations of entanglement in superconducting
or other qubit-resonator systems.

This paper is organized as follows. In Sec. II, we introduce
the general state synthesis problem by studying how to
prepare a general state of a d-level quantum system (i.e., a
qudit). This is followed in Sec. III by a presentation of the
Law-Eberly algorithm for a single resonator coupled to a
qubit, before addressing in Sec. IV the two entangled-state
synthesis algorithms for two resonators coupled by a qubit.
Finally, Sec. V compares these algorithms for the preparation
of NOON and maximally entangled states. We conclude in
Sec. VI by summarizing our work and open questions. The
appendix details how to generate the appropriate interactions
from the driven two-mode Jaynes-Cummings Hamiltonian.

II. QUDIT STATE SYNTHESIS

Before focusing on state synthesis problems for qubit-
resonator systems, it is useful to start with a simpler prob-
lem. Thus, we begin by considering the synthesis of an
arbitrary state of a d-level system known as a qudit (a
quantum digit) [29]. Such systems are universal for compu-
tation [59,60], and much is known about the construction of
logic operations [61–64] and error correcting codes [29,65]
using such systems. A superconducting qudit could be a
nonlinear oscillator driven directly by control fields with
frequencies tuned to distinct transitions (as in the phase qudit
experiment [66]), or a driven qubit-resonator system with
either resonant or dispersive coupling to a qubit [26].

Our task is to prepare the quantum state,

|ψtarget〉 =
d−1∑
n=0

cn|n〉, (4)

starting from the initial state |0〉. For ease of analysis, we write
the coefficients of the target state |ψ〉 in terms of d phases and
d-dimensional spherical polar coordinates,

c0 = cos θ0e
iφ0 ,

c1 = sin θ0 cos θ1e
iφ1 ,

...
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cd−2 = sin θ0 sin θ1 · · · sin θd−3 cos θd−2e
iφd−2 ,

cd−1 = sin θ0 sin θ1 · · · sin θd−3 sin θd−2e
iφd−1 , (5)

where the angles have the ranges 0 � θj � π/2 and −π <

φj � π . Note that the first phase φ0 could be set to zero without
changing the physical problem.

The quantum state can be generated by two natural single-
qudit operations: the two-level rotations,

Rn,n+1(θ ) = exp

[
− i

θ

2
(|n〉〈n + 1| + |n + 1〉〈n|)

]
, (6)

and the single-level phase shifts,

Zn(φ) = exp(iφ|n〉〈n|). (7)

In terms of these operations, a solution to the state synthesis
problem is the following:

|ψ〉 = Zd−1(φd−1)

(
d−2∏
k=0

Zk(φk)Zk+1(π/2)Rk,k+1(2θk)

)
|0〉,

(8)

where we are using a “time-ordered” product notation, e.g.,

d−1∏
j=1

Uj = Ud−1Ud−2 · · · U1. (9)

For a qubit (d = 2), this reduces to Z0(φ0)Z1(φ1 +
π/2)R0,1(2θ0), which can be combined into the product of
two spin rotations (about the x and z axes, respectively). This
is the number of rotations required to map an arbitrary qubit
state’s Bloch vector from the north pole to any point on the
Bloch sphere. Similarly, this solution is a minimal approach
to controlling a qudit, using a fixed set of operations for an
arbitrary state of the form Eq. (4).

While this solution can be verified by inspection, an
alternative approach, the prototype for the state synthesis
algorithms to be described below, is to find the rotations
by reversing the time evolution, that is, to choose a set of
operations U

†
j such that

1∏
j=d−1

U
†
j |ψ〉 = U

†
1 · · · U †

d−1|ψ〉 = |0〉. (10)

By simple inversion of this sequence of operations, we can
use this solution to the inverse evolution equation to find a
solution of the state synthesis problem given by Eq. (8). The
algorithmic approach is to choose each operation to “zero out”
an amplitude of the target state. Once all of the amplitudes have
been removed, save that for state |0〉, a solution to Eq. (10) is
obtained. To see this in more detail, we index the steps of the
algorithm and define the quantum state,

|ψj 〉 = U
†
j |ψj+1〉, (11)

where |ψd〉 = |ψ〉 and j = d − 1 → 0. The operator U
†
j is

then chosen to remove the corresponding state amplitude, so
that

〈j |ψj 〉 = 0. (12)

Using the rotations specified above, we can set

U
†
j = R†

j−1,j (γj )Z†
j (βj )Z†

j−1(αj ). (13)

The amplitude in Eq. (12) is then “zeroed” with the solution,

αj = arg(〈j − 1|ψj+1〉),
βj = π

2
+ arg(〈j |ψj+1〉), (14)

γj = 2 arctan

(∣∣∣∣ 〈j |ψj+1〉
〈j − 1|ψj+1〉

∣∣∣∣
)

.

Before verifying that this produces the same solution as
Eq. (8), let us consider the first rotation U

†
d−1 in Eq. (10) (the

last rotation of the forward sequence). This is chosen to remove
the highest state |d − 1〉 from the superposition in |ψd〉. Using
Eqs. (4) and (13) we have

〈d − 1|U †
d−1|ψ〉 = e−iβd−1 cos(γd−1/2)cd−1

+ ie−iαd−1 sin(γd−1/2)cd−2. (15)

Using the spherical coordinates for cd−2 and cd−1 from Eq. (5)
(and canceling common terms), we thus require

cos(γd−1/2) sin θd−2e
−iβd−1eiφd−1

+ i sin(γd−1/2) cos θd−2e
−iαd−1eiφd−2 = 0, (16)

which is satisfied by

αd−1 = φd−2,

βd−1 = π

2
+ φd−1, (17)

γd−1 = 2θd−2,

in complete agreement with Eq. (14).
The same procedure works for each U

†
j . However, the

choice of αj ensures that the phase of 〈j |ψj+1〉 is zero, for
each j = d − 2,d − 3, . . . , so that in general we find

αj = φj−1,

βj = π

2
+ δj,d−1φj , (18)

γj = 2θj−1.

Using these angles, we see that

|ψ〉 =
d−1∏
j=1

Uj |0〉 = Ud−1 · · ·U1|0〉, (19)

with

Uj = Zj−1(αj )Zj (βj )Rj−1,j (γj ), (20)

agrees with Eq. (8) after setting k = j − 1. Note, however,
that the choice of the angles is not unique. We could have
set αj = 0 and βj = π/2 + (φj − φj−1) to achieve the same
result.

For an arbitrary target state |ψ〉, we can characterize the
performance of this algorithm in terms of the resources needed
to construct the state. These resources could be analyzed in
terms of the number of controls required, the energy associated
with each control, and the duration over which the control
fields act. While the exact resources will depend on the actual
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details of an experimental implementation, we can use our
algorithm to estimate the overall time required in the following
way. We postulate that each of the two-state rotations occurs
with an effective Rabi frequency � and each phase shift with
±ω. Then, this algorithm produces a set of d − 1 phase shifts
(assuming α and β can occur in parallel) and d − 1 rotations,
such that the overall time is

T = 1

ω

d−1∑
j=1

|βj | + 1

�

d−1∑
j=1

γj . (21)

The average time required can be found by averaging over the
unit circle (for βj ) and the spherical coordinates in Eq. (5) (for
γj = 2θj ). We find that 〈|βj |〉 = π/2 and

〈θj 〉 =
∫ π/2

0 θ (sin θ )d−2−j dθ∫ π/2
0 (sin θ )d−2−j dθ

≈ π

2
− π

4

1√
d − 2 − j

. (22)

Thus, we find that

〈T 〉 =
(

π

�
+ π

2ω

)
(d − 1) − π

2�

d−1∑
k=1

1√
k
. (23)

Thus, this particular sequence takes a time that grows roughly
linear in the Hilbert space dimension d, with time scales given
by 1/� and 1/ω. For the state-synthesis algorithms to be
presented below, our goal will be to find how the resources
scale, on average, with the Hilbert space dimension.

III. LAW-EBERLY ALGORITHM

Having illustrated the properties of qudit state synthesis,
we proceed to a qubit-oscillator system, appropriate for
superconducting circuits and resonators. This algorithm was
first put forward by Law and Eberly in the context of
cavity QED [37], and experimentally demonstrated using the
internal and vibrational states of a trapped ion [67]. The
superconducting experiments [19,20], using this algorithm,
demonstrated exquisite control over the combined Hilbert
space of the qubit-resonator system. For completeness, and
to better understand the two-resonator constructions to be
presented below, we review this problem.

The goal of the Law-Eberly algorithm is to synthesize an
arbitrary state of harmonic oscillator mode (the resonator) by
using a two-level auxiliary system (qubit). The target state is
taken to be

|ψtarget〉 = |0〉 ⊗
Nmax∑
n=0

cn|n〉, (24)

in which the resonator has a maximum photon number Nmax.
The system is modeled by a Hamiltonian of the Jaynes-
Cummings type [68], with a Hamiltonian (in the interaction
picture) of the form,

H/� = ω(t)σ †σ + 1
2�(t)σx + g(t)(σ †a + σa†), (25)

where σ = |0〉〈1| is the lowering operator for the qubit and
the control fields ω(t), �(t), and g(t) can be turned on
and off to achieve the operations above. This formulation is
natural in the cavity QED context, and can be applied to circuit
QED [20] with minor modifications. Our goal is to characterize

the performance of this algorithm, using the average resources
needed to prepare an arbitrary target state.

Using the Hamiltonian Eq. (25), one can implement the
unitary operations,

S(θ ) = exp[−iθ (aσ † + a†σ )], (26)

R(θ ) = exp

(
− i

θ

2
σx

)
, (27)

and

Z(φ) = exp

(
− i

φ

2
σz

)
, (28)

by turning on (and off) the controls g(t), �(t), and ω(t),
respectively. The Law-Eberly algorithm will be expressed in
terms of these operations.

The state-synthesis procedure follows a similar pattern as
the qudit case presented above. We first set

|ψj 〉 = U
†
j |ψj+1〉, (29)

where

U
†
j = R†(γj )Z†(βj )S†(θj )Z†(αj ), (30)

and |ψN+1〉 = |ψtarget〉. Here α,β,γ, and θ are chosen so that
at each step,

〈0,j |ψj 〉 = 〈1,j |ψj 〉 = 0. (31)

These angles are then found for each j = N → 1, after which
|ψ1〉 = |0,0〉. The inverse sequence specifies how to prepare
the target state using only qubit rotations, phase shifts, or
qubit-resonator swaps.

To see how this can be accomplished, it is convenient to
break Eq. (29) into two steps by defining

|ψj+1/2〉 = S†(θj )Z†(αj )|ψj+1〉, (32)

and

|ψj 〉 = R†(γj )Z†(βj )|ψj+1/2〉. (33)

In addition, we define

ψq,k(j ) = 〈q,k|ψj 〉, where q = 0 or 1. (34)

The first step of the algorithm (for the inverse evolution)
solves ψ0,j (j + 1/2) = 0. Using Eq. (32), this reduces to

eiαj /2 cos(
√

jθj )ψ0,j (j + 1) + ie−iαj /2

× sin(
√

jθj )ψ1,j−1(j + 1) = 0, (35)

or

e−iαj tan(
√

jθj ) = i
ψ0,j (j + 1)

ψ1,j−1(j + 1)
. (36)

This has the solution,

αj = arg

( 〈1,j − 1|ψj+1〉
i〈0,j |ψj+1〉

)
,

(37)

θj = 1√
j

arctan

(∣∣∣∣ 〈0,j |ψj+1〉
〈1,j − 1|ψj+1〉

∣∣∣∣
)

.
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The second step solves ψ1,j−1(j ) = 0. Using Eq. (33), this
reduces to

e−iβj /2 cos

(
γj

2

)
ψ1,j−1(j + 1/2)

+ ieiβj /2 sin

(
γj

2

)
ψ0,j−1(j + 1/2) = 0, (38)

or

eiβj tan

(
γj

2

)
= i

ψ1,j−1(j + 1/2)

ψ0,j−1(j + 1/2)
. (39)

This, in turn, has the solution,

βj = arg

(
i〈1,j − 1|ψj+1/2〉
〈0,j − 1|ψj+1/2〉

)
,

(40)

γj = 2 arctan

(∣∣∣∣ 〈1,j − 1|ψj+1/2〉
〈0,j − 1|ψj+1/2〉

∣∣∣∣
)

.

By solving these equations for αj ,βj ,γj , and θj for j =
N → 0, keeping track of |ψj 〉 at each step, the amplitude
is forced down to smaller and smaller photon numbers, so
that |ψ0〉 = |0,0〉. The form of the sequence was chosen
specifically to not send amplitude to higher photon numbers.
That is, the algorithm actually produces operators Uj and states
|ψj 〉 that satisfy the condition,

〈0,k|ψj 〉 = 〈1,k|ψj 〉 = 0 for k � j. (41)

Satisfying this condition for two or more resonators is the
greatest challenge for generalizations of the Law-Eberly
algorithm. In the two-resonator case, to be considered shortly,
the algorithm must simultaneously ensure that amplitude is
not sent to higher photon numbers for either resonator mode.

The average values of αj ,βj ,γj , and θj can be used to find
the average time required, assuming constant controls ±ω,
�, and g:

T = 1

ω

Nmax∑
j=1

(|αj | + |βj |) + 1

�

Nmax∑
j=1

γj + 1

g

Nmax∑
j=1

θj . (42)

We illustrate the average angles obtained with Eqs. (37)
and (40) in Fig. 2. Here we have generated 100 random target
states for each value of Nmax and averaged the total of the
angles used in the Law-Eberly algorithm. Also shown are the

approximations,

∑
j

〈|αj | + |βj |〉 ≈ π

(
Nmax − 1

2

)
,

∑
j

〈γj 〉 ≈ 2.72Nmax − 1.66, (43)

∑
j

〈θj 〉 ≈ 2.65
√

Nmax − 1.78,

obtained by fitting the numerical data.
The linear increase of the phases and qubit rotations are

expected, as each step requires such a rotation, while the
square-root dependence of

∑
j 〈θj 〉 is due to the

√
n coupling

between the qubit and the n-photon state of the resonator.
When these averaged angles are substituted into Eq. (42),
we see that, just as the qudit case, an arbitrary state of the
form Eq. (24) can be synthesized in a time proportional to the
effective Hilbert-space dimension.

IV. TWO-RESONATOR ALGORITHMS

The state synthesis problem can be extended to any number
of resonators, but explicit algorithms are a challenge to specify.
Early work utilized special interactions [69–73] to enable
the transfer of excitations between resonators and multilevel
atoms. These interactions, while possible for trapped-ion
systems, are harder to realize in other resonator systems. As we
are interested in Fock-state control, we restrict our attention to
the simplest system of a single qubit coupling two resonators,
with the general target state,

|ψtarget〉 = |0〉 ⊗
Na∑

na=0

Nb∑
nb=0

cna,nb
|na〉 ⊗ |nb〉. (44)

In general, such a state will be entangled, thus we call this
the entangled-state synthesis problem. To analyze the state-
synthesis algorithms, we use a simplified form of the two-mode
driven Jaynes-Cummings Hamiltonian:

H/� = ω(t)σ †σ + 1

2

∑
na,nb

�na,nb
�na,nb

(t)σx

+ ga(t)(σ †a + σa†) + gb(t)(σ †b + σb†), (45)

where the control fields ω(t), �na,nb
(t), ga(t), and gb(t) can

be turned on and off at will, and where we have defined a set
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FIG. 2. Averaged total angles for the state synthesis sequence using the Law-Eberly algorithm.
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of projection operators,

�na,nb
= |na,nb〉〈na,nb|. (46)

The physics underlying this projection operator is due to Stark
shift of the qubit in the dispersive regime of the underlying
Jaynes-Cummings Hamiltonian. These Stark shifts allow for a
number-state selective Rabi rotation of the qubit. Such selec-
tive operations were first observed in circuit QED as number
splitting [39] and later used for photon measurement [42]
and theoretically proposed for entangled-state synthesis [21].
A derivation of this effective Hamiltonian from the original
driven two-mode Jaynes-Cummings model is presented in the
appendix.

Using this effective Hamiltonian, steps of the algorithm will
involve the swap operators,

A(θ ) = exp[−iθ (aσ † + a†σ )],
(47)

B(θ ) = exp[−iθ (bσ † + b†σ )],

the single-qubit phase rotations,

Z(φ) = exp

(
− i

φ

2
σz

)
, (48)

and the number-state-selective qubit rotations,

Rna,nb
(θ ) = exp

(
− i

θ

2
σx ⊗ |na,nb〉〈na,nb|

)
. (49)

The first three operators correspond to turning on (and off)
the controls ga , gb, and ω, respectively. The last operation
corresponds to a special application of the Rabi control �(t)
to drive a state-selective Rabi transition, for state |na,nb〉
only. We note that this last condition is not necessary, as
the state synthesis algorithms can be performed with reduced
selectivity [21,36]. In fact, we will discuss applications that
require no selectivity at all in the following section.

To analyze the algorithms, we use a Fock-state diagram,
such as Fig. 3, in which a state |na,nb,q〉 with na excitations in
mode A, nb excitations in mode B, and qubit state q is indicated
by the node at location (na,nb) and internal level q. Each
of the operations described above corresponds to a transition
between sets of states in this diagram, and the state synthesis

sequence can be interpreted using paths in this diagram. Two
algorithms, to be described below, can be visualized using
these diagrams. The first algorithm, shown in Fig. 3(a), which
we call the photon subtraction algorithm, uses vertical and
horizontal paths from top to bottom and left to right in the Fock-
state diagram. The second algorithm, shown in Fig. 3(b) which
we call the photon swapping algorithm, uses diagonal paths
from the upper left to the lower right. These are the two natural
choices for how to navigate the Fock-state diagram in order
to program the quantum system into any desired state. In this
section, we will analyze each algorithm in detail, and compare
their average performance when preparing an arbitrary two-
resonator state of the form Eq. (44).

A. Algorithm 1: Photon subtraction

The first algorithm for superconducting resonators [21]
used a strategy similar to the trapped-ion proposal by Kneer
and Law [72], and involves repeated subtraction of photons
from one of the resonators. In terms of the Fock-state diagram
presented, state amplitudes are cleared column-by-column,
row-by-row, until all of the remaining photons are in one mode
only. The final steps remove these photons by the Law-Eberly
protocol described above.

The essential steps can be written as

U =
⎛
⎝ Nb∏

j=1

Ub,j

⎞
⎠Ua, (50)

where

Ua =
Na∏
j=1

Z(αj )A(θj )Z(βj )R(γj ), (51)

and

Ub,j =
Nb∏
k=0

Z(αjk)B(θjk)Z(βjk)Rna=k(γjk). (52)

Read in reverse, the elements of Ua and Ub,j are all of the form
of Eq. (30), with phases and angles calculated using the same
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FIG. 3. Illustration of the Fock-state diagram for state synthesis. (a) Algorithm 1, the inverse sequence for the photon subtraction algorithm.
(b) Algorithm 2, the inverse sequence for the photon swapping algorithm.
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method. In more detail, U
†
b,j is a product of operations that

subtract a photon from state |0,k,j 〉 (transferring its amplitude
to |1,k − 1,j 〉 and then to |0,k − 1,j 〉), first for k = Na → 1
(column by column), which is then repeated for j = Nb → 1
(row by row). After all of the amplitudes have been transferred
to the states |0,k,0〉, Ua removes these much as the original
Law-Eberly algorithm. A graphical representation of this
sequence is shown in Fig. 3(a).

To prevent amplitudes from returning to previously cleared
states, it was proposed [21] to make the qubit rotations in Ub,j

number-state selective. This could be achieved by choosing
a rotation for state (na = k,nb = j − 1) only, but the main
requirement is that previously removed states with nb = j

and na < k are unaffected. Note also that, for the number-
state-selective interactions induced by coupling the resonator
to a multilevel system, the column ordering may need to be
reversed, as discussed in [36].

The actual steps involved in this algorithm are nearly
identical to those in the Law-Eberly algorithm. The main
challenge is to keep track of the various quantum states and the
ordering of the operations. For completeness, we include an
explicit treatment here, first breaking up the quantum evolution
into two stages (for the B and A swaps, respectively). For the
first stage, we define

|ψj,k+1/2〉 = B†(θjk)Z†(αjk)|ψj,k+1〉,
(53)

|ψj,k〉 = R
†
na=k(γjk)Z†(βjk)|ψj,k+1/2〉,

where k is the “fast” index (ranging from Na → 0) and j is the
“slow” index (ranging from Nb → 1). These states have the
boundary conditions |ψj,Na+1〉 = |ψj+1,0〉 and |ψNb,Na+1〉 =
|ψtarget〉. Following a procedure similar to the previous section,
we find

αjk = arg

( 〈1,k,j − 1|ψj,k+1〉
i〈0,k,j |ψj,k+1〉

)
,

θjk = 1√
j

arctan

(∣∣∣∣ 〈0,k,j |ψj,k+1〉
〈1,k,j − 1|ψj,k+1〉

∣∣∣∣
)

,

(54)

βjk = arg

(
i〈1,k,j − 1|ψj,k+1/2〉
〈0,k,j − 1|ψj,k+1/2〉

)
,

γjk = 2 arctan

(∣∣∣∣ 〈1,k,j − 1|ψj,k+1/2〉
〈0,k,j − 1|ψj,k+1/2〉

∣∣∣∣
)

.

These equations can be solved for k = Na → 0, j = Nb → 1,
until we reach the second stage.

For stage two, we define

|ψj+1/2〉 = A†(θj )Z†(αj )|ψj+1〉,
(55)

|ψj 〉 = R†(γj )Z†(βj )|ψj+1/2〉,
with j ranging from Na → 1 and |ψNa+1〉 = |ψ1,1〉 (the final
state from stage 1). The remaining parameters are then found
by

αj = arg

( 〈1,j − 1,0|ψj+1〉
i〈0,j,0|ψj+1〉

)
,

θj = 1√
j

arctan

(∣∣∣∣ 〈0,j,0|ψj+1〉
〈1,j − 1,0|ψj+1〉

∣∣∣∣
)

,

(56)

βj = arg

(
i〈1,j − 1,0|ψj+1/2〉
〈0,j − 1,0|ψj+1/2〉

)
,

γj = 2 arctan

(∣∣∣∣ 〈1,j − 1,0|ψj+1/2〉
〈0,j − 1,0|ψj+1/2〉

∣∣∣∣
)

.

The total number of operations amounts to Na + Nb +
NaNb swaps, Na + Na + NaNb rotations, and 2(Na + Nb +
NaNb) phase shifts. Assuming we can turn the various
Hamiltonians on and off with rates ±ω, g, and � (for the
phase, swap, and rotation operators, respectively), the total
time for this sequence is

T = 1

ω

⎛
⎝∑

j

(|αj | + |βj |) +
∑
jk

(|αjk| + |βjk|)
⎞
⎠

+ 1

�

⎛
⎝∑

j

γj +
∑
jk

γjk

⎞
⎠ + 1

g

⎛
⎝∑

j

θj +
∑
jk

θjk

⎞
⎠.

(57)

The averaged total angles are shown in Fig. 4. These were again
formed by generating 100 random target states of the form
Eq. (44) with Na = Nb = Nmax and summing and averaging
the angles produced by Eqs. (54) and (56). Also shown are the
approximations,

∑
n

〈|αn| + |βn|〉 ≈ π

(
N2

max + 3

2
Nmax − 1

2

)
,

∑
n

〈γn〉 ≈ 2.8N2
max + 4.6Nmax − 2.7,

∑
n

〈θn〉 ≈ 2.9Nmax − 0.7, (58)
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FIG. 4. Averaged total angles for the state synthesis sequence using the photon subtraction algorithm.
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where the sums are over all of the indices (j,k) and j of stages
one and two, respectively. The quadratic growth of the phase
shifts and rotations match the total number of operations, while
the linear growth of the swap angles is reduced by a square-
root, similar to the Law-Eberly results above. We observe that
the total time required to produce an arbitrary target state again
scales with effective Hilbert-space dimension.

B. Algorithm 2: Photon swapping

An important fact regarding state synthesis is that the
solution need not be unique. There are an infinite number of
solutions, and finding the optimal solution, under constraints
on time, energy, or complexity, is a hard problem [56,74].
For the algorithm just presented, we observe that each qubit
rotation can add or remove one quantum of energy, which
occurs N2

max times. The desired state, however, has a maximum
energy of 2Nmax, corresponding to the resonator state |Nmax〉 ⊗
|Nmax〉. Thus, we might expect an optimal solution would use
a smaller number of qubit rotations. We will provide such a
solution in this section. For convenience, we will let the target
state be a superposition of all states with quantum number
na + nb � 2Nmax:

|ψ〉 = |0〉 ⊗
∑

na+nb�2Nmax

cna,nb
|na〉 ⊗ |nb〉. (59)

The photon subtraction algorithm described above removes
a quantum of energy for each and every possible state on the
Fock-state diagram. However, one can just as easily move
about the Fock-state diagram by swapping photons between
the resonators, either directly or through the qubit [7]. Using
the latter, we can swap photons along diagonal paths with a
fixed number of quanta (na + nb + q = Na + Nb � 2Nmax).
By first swapping all of the photons from resonator B to A, we
can then remove a photon from mode A, after which we move
to the next diagonal. By repeating the procedure, we need only
use 2Nmax qubit rotations.

Specifically, our new algorithm is

U =
2Nmax∏
�=1

U�, (60)

where

U
†
� = R

†
na=�−1(γ�)Z†(φ�)

1∏
m=�

[A†(θm−1,�−m)

×Z†(βm−1,�−m)B†(ηm,�−m)Z†(αm,�−m)]. (61)

The interpretation of each operation is analogous to Algorithm
1, however, the sequence of operations is significantly differ-
ent. A graphical illustration of this photon swapping algorithm
is presented in Fig. 3(b).

In this algorithm, as we move along the diagonal path
with na + nb + q = �, the operator B†(ηm,�−m) implements
the transition |0,� − m,m〉 → |1,� − m,m − 1〉, while for
m > 1 A†(θm−1,�−m) implements the transition |1,� − m,m −
1〉 → |0,� − m + 1,m − 1〉. This sequence has the effect of
repeatedly swapping quanta from mode B to mode A, until we
reach |1,� − 1,0〉. At this point, θ0,�−1 is chosen to complete
the swapping transition |0,�,0〉 → |1,� − 1,0〉, which is finally

rotated to |0,� − 1,0〉. This last step need only be selective on
na = � − 1, and is so indicated in U

†
� .

For completeness, we present the detailed steps of the
algorithm. We again break each step in two by defining

|ψ�,m+1/2〉 = B†(ηm,�−m)Z†(αm,�−m)|ψ�,m+1〉,
(62)

|ψ�,m〉 = A†(θm−1,�−m)Z†(βm−1,�−m)|ψ�,m1/2〉,
where the various angles are calculated by the following
equations:

αm,�−m = arg

( 〈1,� − m,m − 1|ψ�,m+1〉
i〈0,� − m,m|ψ�,m+1〉

)
,

ηm,�−m = 1√
m

arctan

(∣∣∣∣ 〈0,� − m,m|ψ�,m+1〉
〈1,� − m,m − 1|ψ�,m+1〉

∣∣∣∣
)

,

βm−1,�−m = arg

(
i〈1,� − m,m − 1|ψ�,m+1/2〉

〈0,� − m + 1,m − 1|ψ�,m+1/2〉
)

,

θm−1,�−m = 1√
� − m + 1

× arctan

(∣∣∣∣ 〈1,� − m,m − 1|ψ�,m+1/2〉
〈0,� − m + 1,m − 1|ψ�,m+1/2〉

∣∣∣∣
)

.

(63)

These can be solved from m = � until m = 1, for which case
we must modify our equations by

β0,�−1 = arg

( 〈1,� − 1,0|ψ�,1+1/2〉
i〈0,�,0|ψ�,1+1/2〉

)
,

(64)

θ0,�−1 = 1√
�

arctan

(∣∣∣∣ 〈0,�,0|ψ�,1+1/2〉
〈1,� − 1,0|ψ�,1+1/2〉

∣∣∣∣
)

.

This still leaves a final phase and amplitude rotation, the latter
selective on na = � − 1, with parameters,

φ� = arg

(
i〈1,� − 1,0|ψ�,1〉
〈0,� − 1,0|ψ�,1〉

)
,

(65)

γ� = 2 arctan

(∣∣∣∣ 〈1,� − 1,0|ψ�,1〉
〈0,� − 1,0|ψ�,1〉

∣∣∣∣
)

.

This sequence is then repeated for the next diagonal with
na + nb + q = � − 1, starting with m = � − 1 and |ψ�−1,�〉 =
|ψ�,1〉, and again for � = 2Nmax → 1.

The expectation values for the sum of the angles, when
averaged over many target states, are shown in Fig. 5, along
with the approximate forms,∑

n

〈|αn| + |βn| + |φn|〉 ≈ 6.4N2
max,

∑
n

〈γn〉 ≈ 6Nmax − 3, (66)

∑
n

〈θn + ηn〉 ≈ 1.65N2
max + 4.2Nmax − 4.5.

Here we see that the total rotation angles
∑

n〈γn〉 is now
linear with the maximum photon number, at the cost of an
increased number of swaps (and phase rotations). However,
this can represent a significant advantage, as the qubit rotations
have (so far) been required to be number-state selective, and
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FIG. 5. Averaged total angles for the state synthesis sequence using the photon swapping algorithm.

thus limited in Rabi amplitude � [36]. By reducing the number
of such rotations, the total time can be reduced. The overall
scaling of the time, however, is again proportional to the
effective Hilbert-space dimension.

V. SPECIAL TWO-RESONATOR STATES

The algorithms presented above are designed for the
synthesis of an arbitrary state of two resonators. For many
applications, the desired target state has a specific form. One
such target state is the so-called NOON state:

|ψtarget〉 = |0〉 ⊗ 1√
2

(|N,0〉 + |0,N〉), (67)

an entangled superposition of resonator states in which N

photons are in mode A or mode B. This state can be considered
a generalization of the Bell and GHZ states, and has potential
applications in quantum metrology [75]. A second such target
state is the maximally entangled state,

|ψtarget〉 = 1√
N

N∑
n=0

|N − n,n〉. (68)

This state can be used for tests of higher-dimensional Bell
inequalities [76] and superdense teleportation [77]. In this
section we analyze how the photon subtraction and photon
swapping algorithms perform for these two important entan-
gled states. In fact, we find that the photon swapping algorithm
can prepare any state of the form,

|ψtarget〉 = |0〉 ⊗
N∑

n=0

cn|N − n,n〉, (69)

without state-selective interactions.

A. NOON state synthesis

The NOON state has the special status of having entan-
glement equal to that of a singlet state. As such, it can be
prepared without using the full algorithms described above.
Indeed, the initial experiment to generate a “high” NOON state
(with N = 3) was performed using a particular preparation
method [22,38]. That method uses a pair of three-level systems
to couple the resonators. This method has been simplified
using a single three-level system [23] or four levels of a
tunable flux-based device [24]. These methods start from
a single superposition state of the auxiliary system that is
then mapped onto the resonators, and require state-selective

swapping interactions that are effectively turned on and off by
tuning the auxiliary system.

While these methods do not require number-state-selective
transitions, their use of state-selective swaps limits the cou-
pling rate due to the anharmonicity of the system [11]. Nev-
ertheless, these methods can be implemented faster than the
original state-synthesis algorithm [21] (the photon subtraction
method presented above). However, a comparison with the
experimental method [22,38] showed that both were experi-
mentally comparable as far as decoherence is concerned [36].
Here we consider the new photon swapping algorithm and
show that no multilevel systems or state-selective interactions
are required, allowing for faster operations and simplified
experimental design.

This improved performance is due to the nature of the paths
taken through the Fock-space diagram in this new algorithm.
By following the photon swapping method, starting from a
superposition of a given diagonal na + nb = N , the first time
through one can move all of the population down to |0,N −
1,0〉. Thus, one need only use a Law-Eberly sequence along
the path nb = 0 to remove the photons from the system. The
result is that any “diagonal” state of the form Eq. (69) can
be synthesized by one sequence of photon swaps followed by
a Law-Eberly sequence with no state-selective interactions.
The specific set of parameters for NOON state synthesis with
N = 3 are shown for the photon subtraction and swapping
algorithms are shown in Tables I and II, respectively, and
graphically represented in Fig. 6.

We now compare these two approaches for a general NOON
state. Based on previous analysis [36], we find that the photon

TABLE I. NOON state synthesis by the photon subtraction
algorithm.

Step Parameters Quantum state

R1 γ1 = π/2 |0,0,0〉 − i|1,0,0〉
A1 θ1 = π |0,0,0〉 − |0,1,0〉
R2 γ2 = π |0,0,0〉 + i|1,1,0〉
A2 θ2 = π/

√
2 |0,0,0〉 + |0,2,0〉

R3 γ2 = π |0,0,0〉 − i|1,2,0〉
A3 θ3 = π/

√
3 |0,0,0〉 − |0,3,0〉

R4 γ2 = π −i|1,0,0〉 − |0,3,0〉
B1 η1 = π −|0,0,1〉 − |0,3,0〉
R5 γ2 = π i|1,0,1〉 − |0,3,0〉
B2 η2 = π/

√
2 |0,0,2〉 − |0,3,0〉

R6 γ2 = π −i|1,0,2〉 − |0,3,0〉
B3 η3 = π/

√
3 −|0,0,3〉 − |0,3,0〉
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TABLE II. NOON state synthesis by the photon swapping algorithm.

Step Parameters Quantum state

R1 γ1 = π −i|1,0,0〉
A1 θ1 = π/2 −|0,1,0〉
R2 γ2 = π +i|1,1,0〉
A2 θ2 = π/2

√
2 +|0,2,0〉

R3 γ3 = π −i|1,2,0〉
A3 θ3 = 0.2153 −0.3643|0,3,0〉 − i0.9313|1,2,0〉
B1 η1 = 2.1999 −0.3643|0,3,0〉 + i0.548|1,2,0〉 − 0.753|0,2,1〉
A4 θ4 = 1.3589 +0.6454|0,3,0〉 − i0.1283|1,2,0〉 + 0.2589|0,2,1〉 + i0.7071|1,1,1〉
B2 η2 = π/2

√
2 +0.6454|0,3,0〉 − i0.2889|1,2,0〉 + 0.7071|0,1,2〉

A5 θ5 = π/2 −0.7071|0,3,0〉 − i0.7071|1,0,2〉
B3 η3 = π/2

√
3 −0.7071|0,3,0〉 − 0.7071|0,3,0〉

subtraction method requires N A swaps, N B swaps, and 2N

rotations. No phase shifts are required, and the parameters
scale as (∑

n

γn

)
subtraction

≈ π

(
2Nmax − 1

2

)
,

(70)(∑
n

[θn + ηn]

)
subtraction

≈ 6
√

Nmax − 3.3.

As in the general photon subtraction algorithm, many of these
rotations must be number-state selective.

The photon swapping algorithm requires 2N − 1 A swaps,
N B swaps, and N rotations. There are also a few phase shifts
required, but they do not scale appreciably with N . By looking
at the numerical performance for the NOON state (not shown),
we find (∑

n

γn

)
swapping

≈ πNmax,

(71)(∑
n

[θn + ηn]

)
swapping

≈ 9.9
√

Nmax − 9.2.

As described above, these rotations need not be number-state
selective.

Comparing these two algorithms for the NOON state,
we see that we have traded rotations for swaps, with the
photon swapping algorithm achieving the minimal number of
rotations. Even better, the photon swapping method does not
require those rotations to be state selective. This advantage
is particularly nice as the actual dispersive shifts for a
multilevel system coupled to a resonator can be quite
complicated [9,11,78] and the extension to multiple resonators
is an outstanding experimental challenge [43]. There is also
an advantage over the special-purpose algorithms in terms
of reduced complexity of hardware and controls [22–24].
Thus, the method presented here has both theoretical
and experimental advantages, with the potential for fast
performance and optimal scaling.

B. Maximally entangled states

While most research has studied NOON state synthesis,
the maximally entangled states of Eq. (68) are of potentially
greater value. As discussed above, the photon swapping
algorithm can produce a superposition along the diagonals
of the Fock state diagram with only N rotations. For the
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FIG. 6. NOON state synthesis (with N = 3) using (a) the photon subtraction method, and (b) the photon swapping method. Both prepare
the NOON state with a linear number of steps, but the latter uses no state-selective interactions.
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FIG. 7. Total rotation angles for the state synthesis of the
maximally entangled state using (a) the photon subtraction algorithm,
and (b) the photon swapping algorithm.

maximally entangled states we compare the rotations required
by two state-synthesis algorithms in Fig. 7.

We find that the photon subtraction algorithm requires a
quadratic number of rotations, with the total of the rotation
angles scaling as(∑

n

γn

)
subtraction

≈ 1.56N2
max + 4.49Nmax − 1.33. (72)

Here many of the rotations must be number-state selective.
However, the photon swapping algorithm, as argued above,
requires only N rotations, with the total of the rotation angles
scaling as (∑

n

γn

)
swapping

≈ πNmax. (73)

Here none of the rotations need be number-state selective.
We thus see that the photon swapping algorithm achieves the
same advantages found for NOON state synthesis, with both
a reduced number of rotations and the elimination of their
number-state-selective character.

VI. CONCLUSION

In this paper, we have studied state synthesis algorithms
for superconducting resonators. Starting from a qudit and
the classic Law-Eberly algorithm, we have explored how
solving for the inverse evolution allows one to determine
the operations needed to synthesize an arbitrary state. We
have further shown how these step-by-step procedures have
a complexity that typically grows linearly with the effective
Hilbert-space dimension. These schemes have been extended
to two different state synthesis algorithms for a qubit coupled
to two resonators. The first uses photon subtraction to ensure
that the inverse evolution leads to the ground state, whereas the
second uses photon swapping before any photons are removed
from the system. When taken in reverse, these algorithms
allow one to synthesize an arbitrary entangled state of two
resonators. Finally, when applied to typical superconducting
circuit experiments, we expect that the photon swapping
method will have improved performance due to a reduced
number of state-selective interactions.

While we have found an improved algorithm, we do
not claim to have found an optimal algorithm. Indeed, we
believe that numerical optimizations using the same basic
Hamiltonians can lead to improved methods for state synthesis.

However, we do hold that the two algorithms compared
here are the most natural analytical approaches to state
synthesis. At the same time, the differences between the two
algorithms suggest that different types of optimizations may
be possible. The photon subtraction algorithm minimizes the
number of A swaps performed on the system, but at the
cost of a quadratic number of B swaps and state-selective
qubit rotations. By contrast, the photon swapping algorithm
minimizes the number of rotations, at the cost of an increased
number of A swaps and slightly increased overall complexity.
Nevertheless, for states such as the NOON and maximally
entangled states, the photon swapping method appears to have
overall better performance, in that no state-selective rotations
are needed at all.

Finally, the linear scaling of the NOON state sequences
are nearly ideal, in that the energy of the final state and
the number of qubit rotations used (to put energy into the
system) are both linear in the state number Nmax [11]. We
further observe that one can achieve a reduction in time
complexity by a factor of two by driving multiple transitions
simultaneously [26], but the linear scaling remains. However,
recent work has found, using numerical optimization, that
sublinear scaling is possible for Fock state preparation by
starting the cavity in a large-amplitude coherent state and
using repeated number-state-dependent qubit transitions and
displacements of the resonator [28]. Extending such a scheme
to NOON state synthesis in two cavities using two qubits
is straightforward [26]; whether a single qubit suffices is an
interesting question.

In conclusion, we have improved the theoretical under-
standing and performance of entangled-state synthesis algo-
rithms for superconducting resonators. We hope that the results
presented here, on a fundamental quantum control problem,
may provide useful benchmarks for future explorations of
control of superconducting or other resonator-based systems.
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APPENDIX: DRIVEN TWO-MODE JAYNES-CUMMINGS
HAMILTONIAN

In this appendix we derive the effective Hamiltonians used
in Sec. IV in the text, starting from the driven two-mode
Jaynes-Cummings Hamiltonian,

H/� = ωaa
†a + ωbb

†b + ωq(t)σ †σ + F (t)σx

+ ga(t)(σ †a + σa†) + gb(t)(σ †b + σb†). (A1)

This Hamiltonian models two resonators with different fre-
quencies (ωa �= ωb) and coupled by a qubit. Ideally, the qubit
has a tunable frequency ωq(t), is controllably coupled to
each resonator [with couplings ga(t) and gb(t)], and is driven
by an external control field F (t). While such a system has
not yet been realized, the effective Hamiltonians used in
the text can be realized using experimentally demonstrated
interactions: Systems with fixed couplings (and a tunable
qubit frequency) have been realized in [7] and [45]; systems
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with controllable couplings have been realized in a number of
different ways [46–52].

We will consider both fixed and controllable couplings in
this appendix, and describe three primary modes of opera-
tion. The first mode involves operations in the dispersively
coupled regime (when |ωq − ωa|,|ωq − ωb| 	 ga,gb), with
fixed couplings. The second mode involves operations in the
resonant regime (when ωq = ωa or ωq = ωb), again with fixed
couplings. These two modes can be accessed by using a qubit
with a dynamically tunable frequency ωq(t) [42,43]. The third
mode involves time-dependent parametric couplings [48,51]
that can be used to generate operations with a fixed frequency
qubit (with ωq �= ωa,ωb).

1. Dispersive regime

In the dispersive regime, we analyze the dynamics using a
canonical transformation [79],

H′ = eKHe−K, (A2)

with

K = ga

a

(a†σ − aσ †) + gb

b

(b†σ − bσ †), (A3)

where ga and gb are held constant and we have defined a =
ωa − ω0 and b = ωb − ω0, with ω0 a constant idling point of
the qubit frequency. By expanding the exponentials to second
order in the couplings, one obtains (with F = 0 and ωq = ω0)

H′/� ≈
(

ωa + g2
a

a

)
a†a +

(
ωb + g2

b

b

)
b†b

+ gagb

2

(
1

a

+ 1

b

)
(a†b + ab†)σz

+
[
ω0 − g2

a

a

(2na + 1) − g2
b

b

(2nb + 1)

]
σ †σ, (A4)

where na = a†a and nb = b†b.
This transformation has produced small shifts of the

resonator frequencies, a small coupling term, and a number-
state-dependent shift of the qubit frequency (the ac Stark
shift). By additional transformations, we can simplify this
Hamiltonian to that used in the text. Specifically, we can
remove the first two terms in Eq. (A4) by a rotating frame
transformation for the resonators and the third by a rotating
wave approximation (using the fact that |ωa − ωb| > ga,gb in
the dispersive regime). By reintroducing the detuning and the
coupling field, we thus obtain the effective Hamiltonian,

H′′/� ≈ ω(t)σ †σ +
∑
na,nb

ωna,nb
�na,nb

σ †σ

+F (t)
∑
na,nb

�na,nb
σx, (A5)

where we have used the projection operators,

�na,nb
= |na,nb〉〈na,nb|, (A6)

and defined the time-dependent detuning ω(t) = ωq(t) − ω0

and the number-state-dependent qubit transition frequencies,

ωna,nb
=

[
ω0 − g2

a

a

(2na + 1) − g2
b

b

(2nb + 1)

]
. (A7)

We proceed to consider Eq. (A5) when the driving field
drives all of the number-state-dependent transitions in parallel:

F (t) =
∑
na,nb

�na,nb
cos

(
ωna,nb

t
)
, (A8)

and perform yet another rotating frame transformation and
rotating wave approximation. This can be done by using the
transformation,

Heff = U
†
0H′′U0 − i�U

†
0dU0/dt, (A9)

with

U0 = exp

(
−it

∑
na,nb

ωna,nb
�na,nb

σ †σ

)
, (A10)

and selecting the time-independent terms, which yields

Heff/� ≈ ωσ †σ + 1

2

∑
na,nb

�na,nb
�na,nb

σx. (A11)

This expression agrees with the effective Hamiltonian (with
ga,gb → 0) of Eq. (45) in the text. Number-state-dependent
transitions can be driven provided the Rabi frequencies �na,nb

are small compared to the frequency differences |ωna+1,nb
−

ωna,nb
| = 2g2

a/a and |ωna,nb+1 − ωna,nb
| = 2g2

b/b; this en-
sures that the rotating wave approximation remains valid.
Small changes of ω about zero will cause the qubit state to
develop a phase with respect to the driving field (which is what
is observed in tomography [20]). We note that these results
can be extended to coupling of resonators via a multilevel
system, albeit with modified number-state-dependent qubit
transition frequencies [9,11,78]; some of the implications of
these modified results have been discussed elsewhere [36].
The conclusions of this paper are largely independent of these
modifications.

2. Resonant regime

In the resonant regime, we have ωq = ωa or ωq = ωb.
In these cases, a rotating frame transformation (and rotating
wave approximation) yield the qubit-resonator swapping
interactions,

Heff/� = ga(σ †a + σa†), (A12)

and

Heff/� = gb(σ †b + σb†), (A13)

respectively. These agree with the effective Hamiltonian (with
ω,�na,nb

→ 0) of Eq. (45) in the text. While there are
residual phase shifts incurred by tuning the qubit frequency
between these two frequencies, these phases can be adjusted
(relative to the fixed condition ω = 0 discussed above)
during the time-dependent pulse [40,41].

3. Parametric coupling

The previous mode of operation required a qubit with
a tunable frequency. A fixed frequency qubit will require
an alternative mode of operation, which is possible using
parametric coupling. Such methods have been experimen-
tally demonstrated and used to couple a qubit and lumped-
element resonator [48], two planar resonators [51], and two
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three-dimensional cavities [52]. These experiments all use a
parametric coupling of the form,

g(t) = g0 + g1 cos(ωt). (A14)

This type of coupling can achieve the two modes of operation
described above in the following way. First, one can operate

the coupler with g0 �= 0 and g1 = 0 to effect the number-state-
dependent transitions in the dispersive regime. Second, one
can operate the coupler with g0 = 0, g1 �= 0, and ω tuned to
the difference in frequencies ωa − ωq or ωb − ωq to effect the
qubit-resonator swapping interactions in the resonant regime.
Thus, all of the operations designed for systems with tunable
frequency qubits and fixed couplings can be realized for fixed
frequency qubits and tunable couplings.
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Itano, B. M. Jelenković, C. Langer, D. Leibfried, T. Rosenband
et al., Phys. Rev. Lett. 90, 037902 (2003).

[68] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89
(1963).

[69] S. A. Gardiner, J. I. Cirac, and P. Zoller, Phys. Rev. A 55, 1683
(1997).

[70] J. Steinbach, J. Twamley, and P. L. Knight, Phys. Rev. A 56,
4815 (1997).
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