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Higher-order two-mode and multimode entanglement in Raman processes
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The existence of higher-order entanglement in the stimulated and spontaneous Raman processes is established
using the perturbative solutions of the Heisenberg equations of motion for various field modes that are obtained
using the Sen-Mandal technique and a fully quantum mechanical Hamiltonian that describes the stimulated and
spontaneous Raman processes. Specifically, the perturbative Sen-Mandal solutions are exploited here to show
the signature of the higher-order two-mode and multimode entanglement. In some special cases, we have also
observed higher-order entanglement in the partially spontaneous Raman processes. Further, it is shown that
the depth of the nonclassicality indicators (parameters) can be manipulated by the specific choice of coupling
constants, and it is observed that the depth of nonclassicality parameters increases with the order.
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I. INTRODUCTION

With the advent of quantum computation and communica-
tion, entanglement has appeared as a very important resource
[1–4]. For example, its essential role in many processes, such
as teleportation [1], dense coding [2], quantum information
splitting [3], etc., is now well established. In short, entangled
states are required to perform various important tasks related to
quantum information processing. Entanglement is produced in
many physical systems and there exists a large number of crite-
ria for detection of entanglement ([5] and references therein).
The first inseparability criterion was proposed by Peres [6] in
1996. Since then several inseparability inequalities have been
reported for two-mode and multimode states [7–19]. For the
present study, we have mostly used higher-order version of two
criteria of Hillery and Zubairy [11,12]. To be precise, we have
used these criteria to investigate the existence of higher-order
entanglement in Raman processes, as depicted in Fig. 1.

From Fig. 1 we can easily observe that the scheme illus-
trated here is essentially a sequential double Raman process
[15]. Nonclassical properties of this system have been studied
for a long time (for a review see Ref. [20]). Initial studies on
this system were restricted to the short-time approximation
[21,22]. However, recently nonclassical properties of this
system have been investigated by some of us [23,24] using
different approaches other than short-time approximation, but
the possibility of observing higher-order entanglement is not
investigated in any of the existing studies. Further, several
applications of Raman processes have been reported in the
recent past [25–32]. Specifically, quantum repeaters having
applications in long-distance quantum communication have
been built using the spontaneous Raman process [25,26], laser
cooling of solids [27], construction of THz source [28], quanti-
tative chemical imaging [29], fast molecular spectral imaging
of tissue [30], construction of quantum random number gener-
ator [31], and highly sensitive medical imaging [32] have been
reported using stimulated Raman process. Moreover, higher-
order nonclassicality in different physical systems has also
been reported experimentally [33–36] and theoretically [37–
40]. Further, in Ref. [33] it is shown that higher-order nonclas-
sicality criteria can easily detect some weak nonclassicalities

that are difficult to be detected by lower-order criteria of non-
classicality (cf. Fig. 4 of Ref. [33] and the corresponding dis-
cussions). Keeping these facts in mind, the present paper aims
to investigate the possibility of higher-order entanglement in
the spontaneous, partially spontaneous, and stimulated Raman
processes. Further, the effect of the phase of the pump mode
on the observed higher-order entanglement is also analyzed.

In what follows, Raman process is described as shown in
Fig. 1 and a completely quantum mechanical description of
the system is used to obtain analytic expressions for the time
evolution of the various filed modes involved in the process.
The expressions are obtained using a perturbative method
known as the Sen-Mandal method [41–44]. Subsequently, the
expressions obtained using this method and Hillery-Zubairy
criteria [11,12] are used to investigate the existence of multi-
mode entanglement and higher-order two-mode entanglement.
Interestingly, the investigation has revealed the existence of
multimode entanglement (which is essentially higher order
as is witnessed via higher-order correlation function) and
higher-order two-mode entanglement involving various modes
present in the Raman process.

The remaining part of the present paper is organized as
follows. In Sec. II, the Hamiltonian of stimulated Raman
processes and its operator solution are briefly described. In
Sec. III, the solution is used to show the existence of higher-
order two-mode, three-mode, and four-mode entanglement and
the effect of phase of the pump mode on the higher-order
entanglement. Finally, the paper is concluded in Sec. IV.

II. MODEL HAMILTONIAN

A completely quantum mechanical description of stimu-
lated and spontaneous Raman processes described in Fig. 1 is
given by the Hamiltonian [21,24,41–44,46,47]

H = ωaa
†a + ωbb

†b + ωcc
†c + ωdd

†d

+ g(ab†c† + H.c.) + χ (acd† + H.c.), (1)

where H.c. stands for the Hermitian conjugate. Throughout
the present paper, we use � = 1. The annihilation (creation)
operators a(a†), b(b†), c(c†), d(d†) correspond to the laser
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FIG. 1. Two-photon stimulated Raman scheme. The pump pho-
ton is converted into a Stokes photon and a phonon. The pump photon
can also mix with a phonon to produce an anti-Stokes photon.

(pump) mode, Stokes mode, vibration (phonon) mode, and
anti-Stokes mode, respectively. They obey the well-known
bosonic commutation relations. The frequencies ωa, ωb, ωc,
and ωd correspond to the frequencies of pump mode a, Stokes
mode b, vibration (phonon) mode c, and anti-Stokes mode
d, respectively. The parameters g and χ are the Stokes and
anti-Stokes coupling constants, respectively. The coupling
constant g (χ ) denotes the strength of coupling between
the Stokes (anti-Stokes) mode and the vibrational (phonon)
mode and depends on the actual interaction mechanism. The
dimension of g and χ are that of frequency and consequently
gt and χt are dimensionless. Further, gt and χt are very small
compared to unity. Further, we would like to note that in our
present study, only one vibration (phonon) mode has been
considered for the mathematical simplicity.

In order to study the possibility of the existence of higher-
order entanglement, we need simultaneous solutions of the
following Heisenberg operator equations of motion for various
field operators:

ȧ = −i(ωaa + gbc + χcd),

ḃ = −i(ωbb + gac†),

ċ = −i(ωcc + gab† + χa†d),

ḋ = −i(ωdd + χac). (2)

The above set of equations (2) are coupled nonlinear differ-
ential equations of field operator and are not exactly solvable
in the closed analytical form under weak pump condition.
However, for the very strong pump, the operator a can be
replaced by a c number and these equations (2) are exactly
solvable in that case [22].

In order to solve these equations under weak pump
approximation, we have used Sen-Mandal perturbative ap-
proach [41–44]. The specific reason behind choosing this
particular perturbation technique underlies in the fact that
the solutions obtained using this approach are more general
than the solutions obtained for the same system using the
well-known short-time (or short-length) approximation. To be
precise, short-time (short-length) approximated solution can
be obtained as a special case of the Sen-Mandal perturbative
solution if we neglect all the terms beyond certain power
of rescaled time (length). For example, neglecting the terms
beyond quadratic or cubic powers in rescaled time (length)
we obtain a second- or third-order short-time (short-length)
solution. Further, the solutions obtained using this approach
may be used to detect nonclassicality that is not detected
by short-time (short-length) solutions. For example, in an
asymmetric nonlinear optical coupler in codirectional prop-
agation of radiation field the short-length solution failed to
detect squeezing in fundamental and second harmonic modes.
However, they were observed when investigated using the
Sen-Mandal solution (cf. Table 1 of Ref. [45]). Similarly,
in the same system, the Sen-Mandal solution successfully
detected antibunching in fundamental and second harmonic
modes, which short-time solution could not. Similarly, for
contradirectional propagation in an asymmetric nonlinear
optical coupler intermodal squeezing was observed with the
Sen-Mandal solution, but it was not observed with short-length
solution (cf. Table 1 of Ref. [40]).

Here we have not elaborately discussed the methods
followed to obtain the Sen-Mandal perturbative solution as
the details of the calculations are already given in our previous
papers [41–44]. Here, we first note that under weak pump
approximation, the solutions of Eq. (2) are assumed in the
following form:

a(t) = f1a(0) + f2b(0)c(0) + f3c
†(0)d(0) + f4a

†(0)b(0)d(0) + f5a(0)b(0)b†(0) + f6a(0)c†(0)c(0)

+ f7a(0)c†(0)c(0) + f8a(0)d†(0)d(0),

b(t) = g1b(0) + g2a(0)c†(0) + g3a
2(0)d†(0) + g4c

†2
(0)d(0) + g5b(0)c(0)c†(0) + g6b(0)a(0)a†(0),

c(t) = h1c(0) + h2a(0)b†(0) + h3a
†(0)d(0) + h4b

†(0)c†(0)d(0) + h5c(0)a(0)a†(0)

+h6c(0)b(0)b†(0) + h7c(0)d†(0)d(0) + h8c(0)a†(0)a(0),

d(t) = l1d(0) + l2a(0)c(0) + l3a
2(0)b†(0) + l4b(0)c2(0) + l5c

†(0)c(0)d(0) + l6a(0)a†(0)d(0). (3)

The parameters fi, gi, hi and li are computed using the initial
boundary conditions. In order to obtain the solutions we
use the boundary conditions at t = 0, i.e., f1(0) = g1(0) =
h1(0) = l1(0) = 1 and fi(0) = gi(0) = hi(0) = li(0) = 0 (for
i = 2, 3, 4, 5, 6, 7, and 8). This is so because in the absence of

the interaction (i.e., for g = χ = 0) the parameters fi, gi,hi ,
and li are zero except f1, g1,h1, and l1. Under these initial
conditions the corresponding solutions for fi(t), gi(t), hi(t),
and li(t) are already reported in our earlier work [24]. The
same is included here as Appendix.
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In order to obtain the above assumed solutions, we have
used the time evolution of the operator a(t) as

a(t) = exp(iH t)a(0) exp(−iH t). (4)

Expanding Eq. (4), we obtain

a(t) = a(0) + it[H,a(0)] + (it)2

2!
[H,[H,a(0)]]

+ (it)3

3!
[H,[H,[H,a(0)]]] + · · · . (5)

The commutators present in the right-hand side of Eq. (5)
provide the time evolution of the operator a(t). It is to be
noted that in our method we neglect the terms beyond the
quadratic powers of the interaction constants g and χ, but
we do not impose any restriction on time t . Specifically,
our assumed solution contains all the terms arising from
the infinite series (5), provided that the terms are not of
higher power (higher than quadratic) in g and χ. Once an
assumed solution for a specific mode is obtained in this
way, the assumed solution is substituted in the Heisenberg’s
equation of motion for that mode obtained using the given
Hamiltonian, subsequently the coefficients of the similar
terms are compared. This leads to a set of coupled ordinary
differential equations involving fi, gi, hi , and li , which are
subsequently solved using the standard methods to obtain
the final analytic solution. The presence of the additional
terms provides an advantage to the present technique over the
conventional short-time method. For example. the second and
third terms in the right-hand side of Eq. (5) are equivalent to the
first and second derivative of operator a, respectively. Thus,
a second-order short-time solution do not contain the terms
arising from the third term in the right-hand side of Eq. (5)
while the solution assumed here even contains the terms (up
to second order in coupling constants g and χ ) arising from
third and higher terms [terms that are not shown in the series
(5)]. For example, f4 is proportional to (�ω1 + �ω2)χgt3,

where �ω1 = ωb + ωc − ωa and �ω2 = ωa + ωc − ωd are
the detunings and are usually very small. In the present work,
we have chosen |�ω1| = 0.1 MHz and |�ω2| = 0.19 MHz.
Hence our solutions are valid beyond t2 and thus beyond
the region of validity of a short-time approximated solution
as in that we neglect the terms beyond (gt)2 and (χt)2. In
this way our solutions are more general than the solutions
from short-time approximation. Recently, it is established by
some of us that the improved solutions by the Sen-Mandal
technique can detect several nonclassical characters that are not
observed using the solutions from short-time approximations
[38,40–43].

III. HIGHER-ORDER INTERMODAL ENTANGLEMENT

In order to investigate the higher-order entanglement in
spontaneous and stimulated Raman processes, we assume that
all photon and phonon modes are initially coherent. In other
words, the composite boson field consisting of photons and
phonon is in an initial state, which is product of coherent
states. Therefore, the composite coherent state arises from the
product of the coherent states |α1〉, |α2〉,|α3〉, and |α4〉, which
are the eigenkets of a, b, c, and d, respectively. Thus, the initial

composite state is

|ψ(0)〉 = |α1〉 ⊗ |α2〉 ⊗ |α3〉 ⊗ |α4〉. (6)

This particular choice of the initial state is justified, because in
the radiation photon modes (i.e., pump, Stokes, and anti-Stokes
modes) it is natural to assume initial coherent states when
(ideal) laser beams are used. However, the phonon mode can
be assumed as both coherent or chaotic (as is done in our
earlier work (cf. Secs. III and IV of Ref. [23]). Here, we have
restricted ourselves to the situation where the initial state of the
phonon mode is in the coherent state, which essentially implies
coherent scattering, and provides calculational convenience.

It is clear that the initial state is separable. Now the field
operator a(0) operating on such a composite coherent state
gives rise to the complex eigenvalue α1. Hence we have,

a(0)|ψ(0)〉 = α1|ψ(0)〉, (7)

where |α1|2 is the number of input photons in the pump
mode. In a similar fashion, we can also describe three more
complex amplitudes α2(t),α3(t), and α4(t) corresponding to
the Stokes, vibrational (phonon), and anti-Stokes field mode
operators b, c, and d, respectively. It is clear that for a
spontaneous process, the complex amplitudes except for the
pump mode, are necessarily zero. Thus, in the spontaneous
Raman process, α2 = α3 = α4 = 0 and α1 �= 0. For partially
spontaneous process [23], the complex amplitude α1 and any
one (two) of the remaining three eigenvalues are nonzero while
the other two (one) complex amplitudes is zero. In the present
investigation, we consider that the eigenvalue corresponding
to the pump mode is complex i.e., α1 = |α1|e−iφ , where φ is
the phase angle, but the other eigenvalues [i.e., eigenvalues for
the Stokes, vibrational (phonon) and anti-Stokes modes] are
real.

A. Higher-order two-mode entanglement

In order to investigate the higher-order two-mode
entanglement, we use two criteria due to Hillery and Zubairy
[11,12]. The first criteria of Hillery and Zubairy is

E
n,m
i,j = 〈i†ninj †mjm〉 − |〈inj †m〉|2 < 0, (8)

and the second criterion is

E
′n,m
i,j = 〈i†nin〉〈j †mjm〉 − |〈injm〉|2 < 0. (9)

where i and j are any two arbitrary operators and
i,j ∈ {a,b,c,d}∀i �= j. Here m and n are the positive
integers and the lowest possible values of m and n are
m = n = 1, which corresponds to the normal (lowest) order
intermodal entanglement. A quantum state is said to be
higher-order entangled (bipartite) if it is found to satisfy the
Eq. (8) and/or Eq. (9) for any choice of the integers m and
n satisfying m + n � 3. From here onward we will refer to
these criteria (8) and (9) as HZ-1 criterion and HZ-2 criterion,
respectively. More specifically, a higher-order entangled state
is one that is witnessed via a higher-order (order k > 2)
correlation function and as per this definition all multipartite
(multimode) entangled states are also higher-order entangled.

Before we proceed further, we note that these two cri-
teria are only sufficient (not necessary) for detection of
entanglement. Keeping this fact in mind, we have applied
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both of these two criteria to investigate the existence of
higher-order intermodal entanglement between various modes
and have observed higher-order intermodal entanglement in
various situations. In what follows, we have also investi-
gated the possibility of observing three-mode and four-mode
entanglement.

Let us first investigate the possibility of two mode entangle-
ment in Raman process using HZ-1 and HZ-2 criteria. From
Eqs. (3), (6), (8), and (9), we obtain the expression for the

intermodal entanglement in pump and Stokes mode as(
E

n,m
a,b

E
′n,m
a,b

)
= |f2|2m

(
m|α1|2(n+1)|α2|2(m−1) ∓ n|α1|2n|α2|2m

)
+ |f3|2n2|α1|2(n−1)|α2|2m|α4|2. (10)

In the similar manner, for the remaining cases, we obtain
expressions for E

n,m
i,j and E

′n,m
i,j : i,j ∈ {a,b,c,d}∀i �= j using

HZ-1 and HZ-2 criteria as follows

(
E

n,m
b,c

E
′nm,
b,c

)
= |g2|2|α2|2(n−1)|α3|2(m−1)

{
n2(1 ± 2m)|α1|2|α3|2 + m2(1 ± 2n)|α1|2|α2|2

±m2n2|α1|2 ∓ mn|α2|2|α3|2
} + |h3|2m2|α2|2n|α3|2(m−1)|α4|2

± |α2|2(n−2)|α3|2(m−2)mn

[
g1g

�
2|α2|2|α3|2α�

1α2α3 + h2h
�
3m|α2|2|α3|2α2

1α
�
2α

�
4

+ g1g
�
4|α2|2α2α

2
3α

�
4(2|α3|2 + m − 1) + h�2

1 h2h3(m − 1)|α1|2|α2|2α�
2α

�2
3 α4

+ g2
1g

�2
2 α�2

1 α2
2α

2
3

{
1

2
(m − 1)(n − 1) + (m − 1)|α2|2 + (n − 1)|α3|2

}
+ c.c.

]
, (11)

(
En,m

a,c

E′n,m
a,c

)
= |f2|2|α1|2n|α3|2(m−1)m(m|α1|2 ∓ n|α3|2)

+ |f3|2|α1|2(n−1)|α3|2(m−1)
{
m2(1 ± 2n)|α1|2|α4|2 + n2(1 ± 2m)|α3|2|α4|2

∓mn|α1|2|α3|2 + m2n2|α4|2
} ± |α1|2(n−2)|α3|2(m−2)mn

[
f1f

�
3 |α1|2|α3|2α1α3α

�
4

+h�
2h3|α3|2α�2

1 α2α4{m|α1|2 − (n − 1)|α3|2} + f2f
�
3 |α1|2α2α

2
3α

�
4{n|α3|2 − (m − 1)|α1|2}

+ f �2
1 f 2

3 α�2
1 α�2

3 α2
4

{
(n − 1)|α3|2 + (m − 1)|α1|2 + (m − 1)(n − 1)

2

}
+ c.c.

]
, (12)

(
E

n,m
a,d

E
′n,m
a,d

)
= |f3|2n|α1|2(n−1)|α4|2m(n|α4|2 ∓ m|α1|2), (13)

(
E

n,m
c,d

E
′n,m
c,d

)
= |h2|2n2|α1|2|α3|2(n−1)|α4|2m + |l2|2|α3|2(n−1)|α4|2m[n2|α4|2 ∓ mn|α3|2], (14)

(
E

n,m
bd

E
′n,m
b,d

)
= |g2|2n2|α1|2|α2|2(n−1)|α4|2m ± [

l�1l3mnα2
1α

�
2|α2|2(n−1)α�

4|α4|2(m−1) + c.c.
]
. (15)

Here we would like to note that once we obtain analytic
expressions for E

n,m
i,j and E

′n,m
i,j in stimulated Raman process,

it is straightforward to study the special cases: (i) spontaneous
Raman process, where α2 = α3 = α4 = 0, but α1 �= 0, and
(ii) partially spontaneous Raman process, where α1 �= 0
and any one (two) of the other three αi (i = 2, 3, 4) is (are)
nonzero. It is also easy to observe that for m = 1,n = 1,
Eqs. (10)–(15) reduce to Eqs. (16)–(26) of Ref. [24], which
were obtained earlier using lower order HZ criteria. This is
indicative of the accuracy of the more general expressions
reported here as Eqs. (10)–(15).

Further, it is clear from the Eqs. (10)–(15) that for
spontaneous Raman process Eqs. (10)–(15) reduces to zero.
Hence, for the spontaneous Raman process, no signature
of intermodal entanglement is observed. To investigate the
possibility of higher-order intermodal entanglement in the
stimulated Raman process we have used χ = g = 104 Hz,
|α1| = 10, |α2| = 8, |α3| = 0.01, |α4| = 1 [48]. We have plot-

ted the right-hand side of (10)–(15) in Fig. 2 and Fig. 3
for m = 1 and n = 1, 2, and 3. We observed that HZ-1
criteria can detect the higher-order intermodal entanglement
in the stimulated Raman process for different values of the
phase angle or all phase angles of the input pump field
(i.e., for φ = 0, π

2 , and π ) for all the possible modes except
pump-phonon (ac) and phonon-anti-Stokes (cd) modes. It is
interesting to note that higher-order intermodal entanglement
is observed in pump-Stokes mode, although in the lowest
order it was not observed. Further, the figures show that
the depths of the nonclassicality parameters E

n,m
i,j and E

′n,m
i,j

increase with the order. Use of HZ-1 criteria also led to
similar features in the partially spontaneous Raman process
(not in figure). In other words, we observed signatures of
intermodal entanglement in all the cases except pump-phonon
(ac) and phonon-anti-Stokes (cd) modes. As HZ-1 is only
a sufficient (not necessary) criterion, it may have failed to
witness entanglement, keeping this fact in mind, we have
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FIG. 2. Higher-order intermodal entanglement in stimulated Raman process with |α1| = 10, |α2| = 8,|α3| = 0.01 and |α4| = 1 using HZ-1
criteron is shown for different values of phase angle (φ = 0, π

2 , and π ) in pump mode. Higher-order intermodal entanglement is observed in (a)
pump-Stokes mode for phase angle 0, (b) Stokes-vibration phonon mode for phase angle φ = π

2 , (d) pump-anti-Stokes mode for phase angle
0, (f) Stokes-anti-Stokes mode for phase angle 0; and not observed in (c) pump-vibration phonon mode and (e) vibration phonon-anti-Stokes
mode. In all the plots, the smooth line, dotted line, and dash-dotted line are used for the m = 1 and n = 1, 2, and 3, respectively. In (e), n = 2
and 3 are multiplied by 103 and 106, respectively. While in all the remaining cases, n = 1 and 2 are shown 1500 and 50 times, respectively. All
the quantities plotted here and in the following plots are dimensionless.

plotted the right-hand side of Eq. (10)–(15) using HZ-2
criteria (see Fig. 3). It is interesting to note that HZ-2
criterion can detect the higher-order intermodal entanglement
in pump-phonon (ac) mode for phase angle φ = π

2 , which was
not detected by HZ-1 criterion, in the stimulated and partial
spontaneous Raman processes. However, we do not observe
any signature of higher-order intermodal entanglement for
spontaneous Raman process. Thus, the stimulated Raman
process provides a very nice example of a physical system,
which can produce higher-order entanglement.

B. Three-mode entanglement

There exists another alternative way to study the higher-
order entanglement. To be precise, all multimode entangle-
ments are essentially higher-order entanglement. In other
words, three-mode entanglement always indicates higher-
order entanglement. In order to investigate the three-mode
entanglement, we use the following criterion [49]

E′
a,b,c = 〈Na〉〈Nb〉〈Nc〉 − |〈abc〉|2 < 0, (16)
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FIG. 3. Higher-order intermodal entanglement in stimulated Raman process is illustrated using HZ-2 criterion with different phase angle
(φ = 0, π

2 , and π ) in pump mode for |α1| = 10, |α2| = 8,|α3| = 0.01, and |α4| = 1. Specifically, higher-order intermodal entanglement is
observed in (b) for Stokes-vibration phonon mode with phase angle φ = π

2 , (c) for pump-vibration phonon mode with phase angle φ = π

2 ,

and (f) for Stokes-anti-Stokes mode with phase angle π

2 . However, in (a), (d), and (e) higher-order intermodal entanglement is not observed
for pump-Stokes, pump-anti-Stokes and vibration phonon-anti-Stokes modes, respectively. The smooth, dotted and dash-dotted lines are used
for m = 1 and n = 1, 2, and 3, respectively. Here, for (e) n = 2 and 3 are multiplied by 103 and 106, respectively. For all the remaining cases,
n = 1 and 2 are shown 1500 and 50 times, respectively.

where 〈Na〉, 〈Nb〉, and 〈Nc〉 are average value of the number operators of the pump mode Stokes mode and vibration phonon
mode respectively. Using Eqs. (3), (6), and (16) we obtain

E′
a,b,c = 〈Na〉〈Nb〉〈Nc〉 − |〈abc〉|2

= |f2|2|α1|2(5|α2|2|α3|2 − |α1|2|α3|2 − |α1|2 − |α1|2|α2|2) + |f3|2|α2|2(|α1|2|α3|2 − 4|α4|2 − 3|α3|2|α4|2 − 3|α1|2|α4|2)

− [h1h
�
2|α1|2α�

1α2α3 + 2f1f
�
3 |α2|2α1α3α

�
4 + h2h

�
3α

2
1α

�
2α

�
4(2 + |α1|2 + 2|α2|2) + c.c.]. (17)

For the spontaneous Raman process, Eq. (17) reduces to

E′
a,b,c = −|f2|2|α1|4, (18)

which is clearly negative and thus indicate the existence of
tripartite entanglement in the spontaneous Raman process.

To investigate the existence of three mode entanglement
in the stimulated Raman process, we plot the right-hand side
of the equation (17) in Fig. 4 for three different values of
the phase angle of the input pump field, i.e., for φ = 0 (blue
smooth line), φ = π

2 (red dotted line), and φ = π (green dash
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dotted line). The negative regions of the plots clearly illustrate
the existence of trimodal (higher-order) entanglement. From
Fig. 4 we can clearly observe the signature of higher-order
entanglement for different values of phase angle of the input
pump field for stimulated and spontaneous Raman processes.

C. Four-mode entanglement

In order to investigate the four-mode entanglement we use
the following criterion, which is similar to that of Li et al.’s

three mode criterion [49]:

E′
a,b,c,d = 〈Na〉〈Nb〉〈Nc〉〈Nd〉 − |〈abcd〉|2 < 0, (19)

where a,b,c, and d are arbitrary operators and the negative
value of E′

a,b,c,d gives the signature of the higher-order entan-
glement. Now, we investigate the higher-order entanglement
i.e., the entanglement among the four modes of the stimulated
Raman and spontaneous Raman processes and we obtain

E′
a,b,c,d = |f2|2|α1|2|α4|2(5|α2|2|α3|2 − |α1|2|α3|2 − |α1|2)

+ |f3|2|α2|2|α4|2(7|α1|2|α3|2 − 4|α4|2 − 3|α1|2|α4|2 − 3|α3|2|α4|2)

− [
h�

1h2|α1|2|α4|2α1α
�
2α

�
3 + 2f �

1 f3|α2|2|α4|2α�
1α

�
3α4 + f �

2 f3α
�
2α

�2
3 α4(|α1|4 + 2|α2|2|α4|2 − 3|α1|2|α4|2).

+ l�1l3|α1|2|α3|2α2
1α

�
2α

�
4 + h2h

�
3α

2
1α

�
2α

�
4(2|α4|2 + |α1|2|α4|2 + 2|α2|2|α4|2 + 3|α3|2|α4|2 − |α1|2|α3|2)

+ f1f
�
2 h�

1h2|α4|2α2
1α

�2
2 α�2

3 + 2f �
1 f3l1l

�
2|α2|2α�2

1 α�2
3 α2

4 + h�
1h4|α1|2|α4|2α�

2α
�2
3 α4 + c.c.

]
. (20)

In order to investigate the possibility of observing four-
mode entanglement in the Raman processes, in Fig. 5 we have
plotted the variation of right-hand side of Eq. (20) with the

FIG. 4. The variation of three-mode entanglement among pump,
Stokes and vibration phonon modes (a) for stimulated Raman process
using |α1| = 10, |α2| = 8,|α3| = 0.01,|α4| = 1 (b) for spontaneous
Raman process using |α1| = 10,|α2| = |α3| = |α4| = 0 with the
smooth, dashed, and dash-dotted lines corresponding to φ = 0, π

2 ,
and π, respectively.

rescaled time gt . Quite interestingly, for appropriate choice
of the phase of the pump mode, four-mode entanglement is

FIG. 5. Four-mode entanglement among pump, Stokes, vibration
phonon, and anti-Stokes modes is depicted in (a) stimulated Raman
process using |α1| = 10,|α2| = 8, |α3| = 0.01,|α4| = 1 (b) partial
spontaneous Raman process using |α1| = 10,|α2| = |α3| = 0. Here,
the smooth line, dashed line and dash-dotted line corresponds to
φ = 0, π

2 , and π, respectively.
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observed in both the stimulated Raman process and partially
spontaneous Raman process.

IV. CONCLUSIONS

Recently, nonclassical properties of the stimulated Raman
process have been extensively studied by some of the present
authors [23,24]. In those studies intermodal entanglement in
different modes of the stimulated Raman process was reported.
Intermodal entanglement between Stokes mode and the vi-
bration mode in the Raman processes was also reported by
Kuznetsov [50]. However, higher-order entanglement was not
investigated. In the present paper higher-order entanglement
in stimulated the Raman process is studied in detail and the
observed higher-order entanglement are illustrated through
the negative regions of the Figs. 2–5. In Figs. 2 and 3, the
existence of higher-order two-mode entanglement between
various possible combinations of modes are illustrated using
HZ-1 criterion and HZ-2 criterion, respectively. Specifically,
using HZ-1 criterion, we have observed the intermodal higher-
order entanglement for all the possible combinations of modes,
except pump-phonon (ac) and phonon-anti-Stokes (cd) modes
in the stimulated Raman process (cf. Fig. 2) and in partially
spontaneous Raman processes (not shown in figure). However,
we found that HZ-2 criteria can detect the signature of higher-
order intermodal entanglement only in Stokes-phonon (bc),
pump-phonon (ac), and Stokes-anti-Stokes (bd) modes in the
stimulated and partially spontaneous Raman process Fig. 3, but
it is interesting to note that HZ-2 criteria can detect the higher-
order intermodal entanglement in pump-phonon (ac) mode
whereas HZ-1 criteria fails to detect this. Thus, by combining
the results, we have observed the existence of two-mode
higher-order entanglement in stimulated and partially sponta-
neous Raman possesses in all possible cases except in phonon-
anti-Stokes (cd) modes. However, no signature of intermodal
entanglement is observed for the spontaneous Raman process.
Another interesting point is that the present investigation
reveals the signature of higher-order intermodal entanglement
in pump-Stokes mode (ab) in stimulated Raman process, but
intermodal entanglement in ab modes was not observed in
lowest order (cf. Figs. 2(a), 3(a), and 4(a) of Ref. [24]). As
all the multipartite (multimode) entanglement are essentially
higher-order entanglement, we investigated the possibility
of observing three-mode and four-mode entanglements in
Raman processes and found that trimodal entanglement can
be observed among pump, Stokes, and vibration phonon mode
(abc) in both stimulated and spontaneous Raman processes (cf.
Fig. 4), and it is also possible to observe entanglement among
four modes (pump, Stokes, vibration phonon, and anti-Stokes)
in stimulated and partially spontaneous Raman processes (see
Fig. 5). As, recently, many applications of multipartite entan-
glement has been proposed, we hope that the present observa-
tion on the possibility of observing multimode entanglement
in the Raman process would be of help in realizing some of
the recently proposed schemes that are based on multipartite
entanglement. Further, it is easy to experimentally realize
the Raman process and thus the results reported here can be
experimentally verified using the available technologies.

Bosonic Hamiltonians similar to the one studied here
frequently appear in quantum optical, optomechanical, and
atomic systems. Thus, the methodology adopted here may also

be used in those systems to study the existence of nonclassical
states in normal and higher-order entanglement in particular.
Keeping this in mind, we conclude the present work with an
expectation that this work would lead to a bunch of similar
studies in other bosonic systems.
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APPENDIX: PARAMETERS FOR THE SOLUTIONS
IN EQ. (3)

f1 = exp(−iωat),

f2 = ge−iωa t

�ω1
[e−i�ω1t − 1],

f3 = −χe−iωa t

�ω2
[ei�ω2t − 1],

f4 = −χge−iωa t

�ω1

[
e−i(�ω1−�ω2)t − 1

�ω1 − �ω2
+ ei�ω2t

�ω2

]

− χge−iωa t

�ω2

[
e−i(�ω1−�ω2)t − 1

�ω1 − �ω2
− e−i�ω1t

�ω1

]
, (A1)

f5 = g2e−iωa t

�ω2
1

[e−i�ω1t − 1] + ig2te−iωat

�ω1
,

f6 = f5,

f7 = χ2e−iωa t

�ω2
2

[ei�ω2t − 1] − iχ2te−iωat

�ω2
,

f8 = −f7.

g1 = exp(−iωbt),

g2 = −ge−iωbt

�ω1
[ei�ω1t − 1],

g3 = χge−iωbt

�ω2(�ω1 − �ω2)
[ei(�ω1−�ω2)t − 1]

− χge−iωbt

�ω2�ω1
[ei�ω1t − 1], (A2)

g4 = χge−iωbt

�ω2(�ω1 + �ω2)
[ei(�ω1+�ω2)t − 1]

− χge−iωbt

�ω2�ω1
[ei�ω1t − 1],

g5 = g2e−iωbt

�ω2
1

[ei�ω1t − 1] − ig2te−iωbt

�ω1
,

g6 = −g5.
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h1 = exp(−iωct)

h2 = −ge−iωct

�ω1
[ei�ω1t − 1]

h3 = −χe−iωct

�ω2
[ei�ω2t − 1]

h4 = χge−iωct

�ω2

[
ei(�ω1+�ω2)t − 1

�ω1 + �ω2
− ei�ω1t

�ω1

]

− χge−iωct

�ω1

[
ei(�ω1+�ω2)t − 1

�ω1 + �ω2
− ei�ω2t

�ω2

]
(A3)

h5 = −g2e−iωct

�ω2
1

[ei�ω1t − 1] + ig2te−iωct

�ω1

h6 = −h5

h7 = −χ2e−iωct

�ω2
2

[ei�ω2t − 1] + iχ2te−iωct

�ω2

h8 = χ2e−iωct

�ω2
2

[ei�ω2t − 1] − iχ2te−iωct

�ω2
.

l1 = exp(−iωdt)

l2 = χe−iωd t

�ω2
[e−i�ω2t − 1]

l3 = χge−iωd t

�ω1(�ω1 − �ω2)
[ei(�ω1−�ω2)t − 1]

+ χge−iωd t

�ω2�ω1
[e−i�ω2t − 1] (A4)

l4 = χge−iωd t

�ω1(�ω1 + �ω2)
[e−i(�ω1+�ω2)t − 1]

− χge−iωd t

�ω2�ω1
[e−i�ω2t − 1]

l5 = iχ2te−iωd t

�ω2
+ χ2e−iωd t

�ω2
2

[e−i�ω2t − 1]

l6 = l5.
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378, 3431 (2014).

[41] B. Sen and S. Mandal, J. Mod. Opt. 52, 1789 (2005).
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27, 1609 (1980).

[47] D. F. Walls, Z. Phys. 237, 224 (1970).
[48] Same values of χ, g, and |αi | are used in the entire paper (unless

otherwise specified). For spontaneous and partially spontaneous
Raman processes these values of |αi | are used for nonzero |αi |’s.

[49] Z.-G. Li, S.-M. Fei, Z.-X. Wang, and K. Wu, Phys. Rev. A 75,
012311 (2007).

[50] S. V. Kuznetsov, O. V. Man’ko, and N. V. Tcherniega, J. Opt. B:
Quantum Semiclass. Opt. 5, S503 (2003).

012340-10

http://dx.doi.org/10.1103/PhysRevA.90.013808
http://dx.doi.org/10.1103/PhysRevA.90.013808
http://dx.doi.org/10.1103/PhysRevA.90.013808
http://dx.doi.org/10.1103/PhysRevA.90.013808
http://arxiv.org/abs/arXiv:1407.1780v1
http://dx.doi.org/10.1016/j.physleta.2014.09.056
http://dx.doi.org/10.1016/j.physleta.2014.09.056
http://dx.doi.org/10.1016/j.physleta.2014.09.056
http://dx.doi.org/10.1016/j.physleta.2014.09.056
http://dx.doi.org/10.1080/09500340500072984
http://dx.doi.org/10.1080/09500340500072984
http://dx.doi.org/10.1080/09500340500072984
http://dx.doi.org/10.1080/09500340500072984
http://dx.doi.org/10.1088/0953-4075/40/7/010
http://dx.doi.org/10.1088/0953-4075/40/7/010
http://dx.doi.org/10.1088/0953-4075/40/7/010
http://dx.doi.org/10.1088/0953-4075/40/7/010
http://dx.doi.org/10.1080/09500340701765782
http://dx.doi.org/10.1080/09500340701765782
http://dx.doi.org/10.1080/09500340701765782
http://dx.doi.org/10.1080/09500340701765782
http://dx.doi.org/10.1088/0953-4075/44/10/105503
http://dx.doi.org/10.1088/0953-4075/44/10/105503
http://dx.doi.org/10.1088/0953-4075/44/10/105503
http://dx.doi.org/10.1088/0953-4075/44/10/105503
http://dx.doi.org/10.1016/j.physleta.2004.05.066
http://dx.doi.org/10.1016/j.physleta.2004.05.066
http://dx.doi.org/10.1016/j.physleta.2004.05.066
http://dx.doi.org/10.1016/j.physleta.2004.05.066
http://dx.doi.org/10.1080/713820177
http://dx.doi.org/10.1080/713820177
http://dx.doi.org/10.1080/713820177
http://dx.doi.org/10.1080/713820177
http://dx.doi.org/10.1007/BF01398635
http://dx.doi.org/10.1007/BF01398635
http://dx.doi.org/10.1007/BF01398635
http://dx.doi.org/10.1007/BF01398635
http://dx.doi.org/10.1103/PhysRevA.75.012311
http://dx.doi.org/10.1103/PhysRevA.75.012311
http://dx.doi.org/10.1103/PhysRevA.75.012311
http://dx.doi.org/10.1103/PhysRevA.75.012311
http://dx.doi.org/10.1088/1464-4266/5/4/357
http://dx.doi.org/10.1088/1464-4266/5/4/357
http://dx.doi.org/10.1088/1464-4266/5/4/357
http://dx.doi.org/10.1088/1464-4266/5/4/357



