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Perfectly secure steganography: Hiding information in the quantum noise of a photograph
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We show that it is possible to hide information perfectly within a photograph. The proposed protocol works
by selecting each pixel value from two images that differ only by shot noise. Pixel values are never modified,
but only selected, making the resulting stego image provably indistinguishable from an untampered image, and
the protocol provably secure. We demonstrate that a perfect steganographic protocol is also a perfectly secure
cryptographic protocol, and therefore has at least the same requirements: a truly random key as long as the
message. In our system, we use a second image as the key, satisfying length requirements, and the randomness
is provided by the naturally occurring quantum noise which is dominant in images taken with modern sensors.
We conclude that, given a photograph, it is impossible to tell whether it contains any hidden information.
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Communication is crucial in human society. As we be-
come more connected, our ability to safeguard and protect
our communications becomes critical. Although privacy of
correspondence is a right granted by the constitution of most
countries [1], technical solutions must guarantee this right
in practice. Cryptography [2] aims at making a message
incomprehensible to the unauthorized reader, however, it does
not guarantee privacy: The fact that an encrypted message is
being exchanged can be discovered by observing encrypted
(random-looking) data within a communication.

Steganography provides a solution by concealing the
existence of the message in an innocent support. Historically,
Histaeus, tyrant of Miletus, instructed Aristagoras to revolt
by sending him a message tattooed on a slave’s scalp, under
his hair. Later, stegosystems continued to play a historical
role; notable examples are the invisible inks used during the
American revolution and the microdots used in World War II.
Nowadays, steganography often looks at hiding information
in a digital image [3,4].

Today, governments are proposing compromises between
privacy and security, exploring the idea of prohibiting un-
breakable encryption protocols. In this context, the question
of whether such a protocol can be fundamentally undetectable
is important: If a perfectly secure steganographic scheme
exists, any attempt at prohibiting secret communications, e.g.,
by weakening cryptographic protocols, is vain. We consider
the following setting: Ward is a security agent examining an
innocent-looking photograph sent by Alice to Bob. Ward has
to decide whether this photograph contains a secret message
or not. Is it, at least in principle, possible for Ward to make
this decision?

It has been shown that perfectly secure steganography is in
principle possible [5,6]. Also, steganography on digital images
has been extensively studied, including hiding information
within simulated shot noise [7,8], however, a protocol for doing
so in a perfectly secure way has not been put forward.

Here we propose a protocol that perfectly hides the
existence of a secret message in a photograph. More in general,
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we show that any perfectly secure steganographic protocol
also ensures perfect cryptographic security, and therefore must
comply with the known requirements of the latter, i.e., the key
must be as long as the message, and truly random. We use an
identical second image as the key. The required randomness is
naturally present as “shot noise,” an intrinsic quantum property
of the light emitted by the subject of the photograph [9,10].

First, we will give the context and setting for steganography,
followed by an overview of the state of the art and its limits.
We then describe a protocol that uses the presence of shot
noise (quantum noise) within a photograph to hide information
perfectly. A proof-of-principle experiment is shown in the
Appendix.

Digital image steganography. As described in Fig. 1,
steganography on digital images is nowadays mostly based
on embedding a secret message T into a cover image C. A
cover image is an innocent-looking digital image used to hide
the secret content to protect. When this image C contains the
secret message T , i.e., once the embedding of T has been
performed, then it is referred to as stego image and denoted by
S. The image S can then be distributed over the Internet without
arising suspicion [4,5,11]. The secret message is embedded
using the embedding key. Once the receiver gets the stego
image S, it can retrieve the hidden message T using the
corresponding extraction key. The case where the embedding
key is the same as the extraction key is referred to as secret-
key steganography. Instead, in public-key steganography the
embedding key and the extraction key are not identical.
Aiming at information-theoretically secure steganography, in
our work we consider secret-key steganographic schemes only.
In fact public-key steganography is information-theoretically
impossible, as proven in [12].

In our setting, Ward has to decide whether a certain digital
image contains an embedded message or not. This means that
Ward is dealing with a hypothesis test problem, as pointed out
by Cachin in [13]. A steganographic scheme is perfectly secure
if Ward cannot detect the presence of any message which has
been embedded with this scheme.

This can only happen if the stego image S is drawn from the
same statistical distribution as the cover image C. If that is the
case, then it is referred to as a perfectly secure steganographic
scheme. However, the embedding of any object will inevitably
modify the statistical distribution of the hosting digital image.
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FIG. 1. Illustration of a generic image steganography protocol:.
Alice embeds the cleartext in a photograph to form a stego image.
This image is published where Bob can find it. Bob then extracts the
cleartext from the image.

Although the distortions due to embedding cannot be
perceived by human eyes, they can be detected from a
statistical point of view. More precisely, let us denote with
C the statistical distribution of the pixels in the cover image
C and with S the one for the stego image S. As the picture
S has been obtained through embedding from the picture C,
then the statistical distribution S diverges from C. The distance
between these two distributions C and S is quantified by the
Kullback-Leiber divergence [13], denoted by DKL(C||S). In
the discrete case, which is our case of interest, this value is
defined as

DKL(C||S) :=
∑

i

C(i) ln
C(i)

S(i)
.

Specifically, the Kullback-Leiber divergence of S from
C is the relative entropy between the two distributions, as
it measures the loss of information when S approximates
C. Performing the embedding leads to a Kullback-Leiber
divergence strictly greater than zero. An example is shown
in Fig. 2, where the distortion introduced by the technique
of the least-significant-bit (LSB) replacement is immediately
visible. For an accurate description of this technique we refer to
[11]. Other common steganographic techniques can be found
in Refs. [14] and [15].

FIG. 2. Histogram of the pixel values of a homogenous area of a
photograph (a) and the obvious effects of encoding encrypted data on
the Least significant bit of each pixel (b). The effect is visible even if
the probability of the least significant digit being 1 is exactly 0.5.

In some approaches (see [16,17]), zero Kullback-Leiber
divergence is achieved at the expense of employing an always
larger amount of hosting signal (i.e., in the cover-image C) for
statistical restoration. However, these approaches do not scale:
For a constant risk of detection, the amount of data that can
be hidden is proportional to the square root of the total size of
the image material sent [18], so that if Alice sends a constant
flow of images to Bob, the amount of data that she can embed
per image quickly goes to zero.

Instead of embedding, i.e., attempting to emulate the
original statistical distribution of the cover image, which
necessarily leads to distortion, our scheme creates the stego
image S by directly sampling the space C of cover images,
ensuring zero distortion.

Protocol. We propose a secret-key steganographic protocol
where two digital pictures are involved. This is in contrast
with the common steganographic strategies where the protocol
takes into account one digital picture only, i.e., the cover image.
In our framework, one picture is the key image K , and the
other is the cover image C, which is discarded as soon as
the stego image S is created. In principle, our protocol may
use any source of true randomness (noise) naturally present in
an image; shot noise (quantum noise) is the dominant noise
mechanism for modern sensors, and provides an excellent
source of entropy, as described in [19]; it is therefore this
type of noise that we consider in our protocol.

We take the point of view of Ward, and assume that Alice
has the capability of satisfying the following assumptions:

(i) The state of the camera and the subject remain un-
changed between the taking of two consecutive photographs.

(ii) Each pixel is statistically independent, i.e., one cannot
predict the value of one pixel by the knowledge of the others
better than the shot noise limit.

In the following we describe the protocol, also illustrated
in Fig. 3. Alice wants to secretly communicate a message T

to Bob. Alice takes two photographs, K and C. In order to
fulfill assumption (i), she uses the same camera and takes the
pictures of the same static subject in rapid succession. As this
is a secret-key steganographic protocol, the photograph K is
shared with Bob over a private channel (for example, they can
meet in person). According to Kerckhoffs’s principle [20], the
protocol is aborted if the key image K is seen by Ward.

The ith bit of the message T is denoted by Ti , while the ith
pixel value of the images K , C, and S is denoted by Ki , Ci ,
and Si ∈ N0, respectively. The secret message T is encoded
within the stego image S. The pixels composing such image S

are taken either from K or C, according to the following rule:

Si :=
{
Ki, if Ti = 0
Ci, if Ti = 1 . (1)

Once the stego image S is constructed, Alice sends it to Bob
through a public channel. The cover image C is then destroyed.
On his side, Bob can decode the hidden message T as he has
the secret key K . He retrieves T bit by bit checking the pixels
Si of the stego image S he received by applying

Ti :=
{

0, if Si = Ki

1, if Si �= Ki
. (2)

In practice, there exists the possibility that Ki = Ci , which
leads to a bit error if Ti = 1. To solve this issue, T can already
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FIG. 3. Illustration of the proposed protocol. First, Alice and Bob meet. Alice takes two “identical” photographs K and C and gives a copy
of K to Bob as a key. They then separate. At a later date, Alice encodes her cleartext with the help of the key image K and the cover image C

into a stego image S. She then published this stego image where Bob can retrieve it. With K and S in hand, Bob is able to extract the cleartext
from S.

contain the required error correction information, such that it
will not interfere with the rest of the procedure. For a more
detailed explanation we refer to the Appendix and the proof-
of-principle experiment.

Security analysis. The stego image S is a digital picture
that could have been drawn directly from the underlying
distribution of the genuine pictures K and C. The photographs
K and C naturally follow the same statistical distribution that
we denote by C. That is, the statistical distribution of the key
image and the cover image is seen as the statistical distribution
of the cover image of the usual steganographic framework
[11]. The statistical distribution of the stego image S, denoted
by S does not deviate from C. That is possible because of
assumptions (i) and (ii) stated at the beginning of the protocol.
For each sample i of the statistical distributions, it holds that
C(i) = S(i). This leads to a zero Kullback-Leiber divergence,
meaning that the message T is carried by the stego image S

without statistical distortions with respect to C, i.e., the secret
content is perfectly undetectable by Ward. The steganographic
scheme is then perfectly secret. Furthermore, all the pixels
available are used to encode the message T , which has the
same size of the images K , C, and S. In contrast with common
steganographic strategies, in our protocol the amount of the
data embedded scales linearly with the image size.

Moreover, the protocol that we propose bares strong
similarities to the one-time pad (OTP). In OTP, to encode
a bit “0” and “1,” Alice chooses a bit from the key k

and k̄, respectively. We replace k and k̄ by the two images
K and C. Our protocol therefore has the advantages, but
also the requirements of the OTP. In the next section, we
show this formally, and generalize it to any provably secure
steganographic protocol.

Perfect steganography implies perfect cryptography. The
definition of perfectly secure stegosystems proposed by Cachin
[13] parallels the one of perfectly secret cryptosystems
proposed by Shannon [21]. Below, we show that any perfectly
secure steganographic protocol is also a perfectly secret

cryptographic protocol, and must therefore have the same (or
greater) requirements in terms of key length and randomness.

Indeed, if it is impossible to detect the presence of a message
in the cover image, it is also impossible to extract the message
without knowledge of the key. This can be proven by reductio
ad absurdum: If Ward has access to an eavesdropping function,
he can use it to obtain the message and therefore discover its
presence. Perfect steganography implies that it is impossible
to detect a hidden message, and consequently this implies that
an eavesdropping function cannot exist.

More formally, let us suppose that T is the space of the
messages to hide and S the space of the stego images. A
steganographic protocol is a function P : T → S such that
P (T ) = S, for a certain S ∈ S and a certain T ∈ T . The
space of the steganographic protocols is denoted by P . In
this framework, a hypothesis test is a function H : S → {0,1}
defined as follows:

H (S) :=
{

1 if there is a message within S

0 otherwise .

Let us suppose that a message T ∈ T has been embedded
using the protocol P ∈ P , generating the stego image S ∈ S.
Furthermore, let us assume that the eavesdropper Ward is able
to extract the message T . This means that there exists an
eavesdropping function EP ∈ E able to break the protocol P .
More precisely,

∃EP ∈ E such that EP (S) = T ,

where EP : S → T , from which Ward can infer that H (S) =
1. However, a perfectly secret steganographic scheme R ∈ P
is perfectly undetectable, so that for any stego image S ∈ S
generated using R behaves like a common image, so that for a
T ∈ T ,

S = R(T ) ⇒ H (S) = 0.

This is in contrast to the result H (S) = 1, which Ward can
infer if EP exists, implying that EP cannot exist, and any
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perfectly secure steganographic scheme is also a perfectly
secure cryptographic scheme.

Experiment. An image sensor (CCD or CMOS) converts
photons that impinge on its pixels into electrons. Each
absorbed photon will generate a single electron. This charge
is converted into a voltage and digitized, so if there were no
technical noise, the digital values are a direct representation
of the number of photons absorbed by the pixel. Photons
are emitted by the light source illuminating the observed
object at an unpredictable time, due to the laws of quantum
physics. The number of photons absorbed by a sensor pixel
during the exposure, follows the Poisson distribution, and is
fundamentally random. Therefore, the standard deviation of
the measured number of electrons (photons) n will be

√
n.

For most imagers, the full well capacity can be of 5 × 104,
so n ∼ 104, and the standard deviation will typically be
σ ∼ 100. This is much larger than the noise levels of modern
image sensors, which is most often <10 e−, and can be of
the order of a single electron in devices with small pixels,
such as the cameras of mobile telephones. The noise in most
photographs is therefore dominated by quantum noise [19].
This type of noise arises from the quantum nature of light
and is omnipresent, the only exception being “squeezed light”
[22], which can only be created in complex quantum-optical
experiments. If the images were noise-free, the protocol that
we propose would not work, as the key image and cover image
would be identical.

We have performed the above protocol in two ways. On one
hand, we used a scientific monochrome camera. Although un-
realistic from a practical perspective, this allows us to explore
the theoretical framework without color image processing. On
the other hand, we used a consumer color camera, which
produces raw image files. Alice’s pixel manipulations are
carried out at the raw image stage, although the image can
be later processed.

These experiments, which are detailed in the Appendix,
show that indeed quantum noise is the dominant noise
mechanism for both cameras. Furthermore, we found that
adjacent pixels are statistically independent, showing that
assumption (ii) can be satisfied [19]. For the scientific
monochrome camera, the image-to-image fluctuations were
smaller than both the shot noise and the typical efficiency
fluctuations between pixels, indicating that assumption (i) can
be satisfied. With the commercial color camera, fluctuations in
the shutter speed introduced a measurable difference between
consecutive images. A threshold should be derived to evaluate
what fluctuations are acceptable for our assumptions to hold.
Further details are given in the Appendix, in particular, using
more than one pixel to encode each bit strongly increases the
robustness of the protocol with respect to image manipulation
and experimental imperfections. Intuitively, the protocol is
perfectly robust in the limit where Alice and Bob use an entire
image to encode each bit.

Our experimental demonstration illustrates how the pro-
posed protocol can be carried out. We show that Ward cannot in
principle know whether an image contains hidden information,
however, from Alice and Bob’s perspective, further study
is required to find all possible problems and loopholes
in the physical implementation which could be exploited
by Ward.

We have shown that the answer to the question “can
Ward, at least in principle, make the decision of whether a
photograph contains any hidden information?” is “no.” More
precisely, we demonstrate that a provably secure stegosystem
is possible and propose a concrete protocol. This proves that
a photograph can carry a large amount of hidden data while
being indistinguishable, in a fundamental way, from a typical
photograph. It also shows that an unmodified photograph
can be used as the key. We show that any perfectly secure
stegosystem is also a perfectly secret cryptosystem, and has at
least the same requirements, i.e., the key must be at least as long
as the message and must be perfectly random. Randomness
is taken directly from the shot noise (quantum noise) which
is dominant in modern digital cameras. We conclude that it
is impossible to prohibit encrypted communications without
prohibiting the free exchange of photographs.
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APPENDIX A: PROOF-OF-PRINCIPLE EXPERIMENT

We have performed the above protocol in two ways. On one
hand, we used a scientific monochrome camera. Although un-
realistic from a practical perspective, this allows us to explore
the theoretical framework without color image processing. On
the other hand, we used a consumer color camera, which
produces raw image files. Alice’s pixel manipulations are
carried out at the raw image stage. Note that strong error
correction is needed in case the stego image is compressed
into a JPEG file. If that is the case, also the algorithm on Bob’s
side becomes more complex.

1. Experimental setup

The experimental setup consists of a monochrome scientific
camera (ATIK 383L+) mounted to an optical bench. The
noise of this camera is strongly dominated by quantum shot
noise, as it has been discussed in [19]. Moreover, we show
that the statistical distribution of pixel values are independent,
meaning that assumption (ii) is satisfied. With respect to the
pictures K and C, the subject has to be static while they are
taken. Any variation of the experimental conditions would
conflict with a assumption (i). The subject is a printed circuit
board (PCB) with some areas of strong contrast between the
reflective copper traces and dark board color. This saturates
some pixels and gives a predictable value, leading to error
occurrence. These errors are useful for testing our error
correction algorithm. To satisfy assumption (i), we used a
dc-powered light-emitting diode (LED), which provides a
constant intensity level.

Exposure time of 100 ms ensures that each pixel, even the
dark ones, receives a sufficiently large photon number, such
that the quantum noise dominates other possible noise types.
A set of 100 photographs is taken in order to verify the stability
of the setup and the repeatability of the measurements. All the
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FIG. 4. Illustration of the full algorithm. The original text (1) is Reed-Solomon encoded (2). Each character is placed at a pseudorandom
position in the image with a mixing step (3). The data are converted to binary and padded as to fit the image extents (4). All these steps
are “preprocessing”; we consider the binary string obtained after step (4) as being the cleartext. Step (5) shows steganographic encoding by
choosing each pixel of the stego image S from either K or C depending on the cleartext value being 0 or 1, respectively. The following steps
are performed by Bob. He compares S with his key image K , to recover the cleartext T ∗ (6). Note that step (5) cannot be fully reversed by step
(6), due to the probability that Ki = Ci . The extracted T ∗ therefore contains errors, which are recovered during a Reed-Solomon step (9) to
yield the original text (10).

photographs are 8 megapixels, encoded as 16-bit “tiff” files.
Among these photographs, only two of them are finally chosen
and actually used to perform the protocol. Specifically, the first
one is employed as the key image K , while the second one as
the cover image C.

2. Protocol implementation in monochrome

The following protocol was implemented using the Python
programming language. A representation of the functions, with
real sample data, is shown in Fig. 4.

The protocol consists of the 10 steps listed below. It is
assumed that Alice has already taken two photographs K and
C and securely shared K with Bob.

(1) Alice chooses the text to communicate to Bob. The size
of the text is at most one bit per pixel. In our case this would
be a maximum of 8 Mbits.

(2) Alice encodes the text using the Reed-Solomon code
[23]. The required redundancy depends on the image, and
more or less space should be allocated for error correction.
In our tests, the error rate is approximately 1%, due mostly
to overexposed pixels. This requires the allocation of at least
2% of the total space for error correction. Note that Alice can
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FIG. 5. The three actual photographs as used in the proof-of-principle experiment. A printed circuit board was chosen as it goes towards
satisfying our assumption of a static subject and presents a high-contrast image with some saturated pixels, which will therefore have the same
value in pictures K and A, and test the error-correction code.

herself test whether the redundancy is sufficient or not, because
she can locally perform all Bob’s operations.

(3) Alice places each byte of data in a specific region of the
image. The place where each byte is allocated is predetermined
but looks pseudorandom within the image. The placement list
is obtained by shuffling an ordered dictionary of the placement
of each byte. The shuffled dictionary is previously shared with
Bob and can be a constant. The purpose of this “mixing” step
is to optimize error correction efficiency. Often, overexposed
pixels are adjacent and this would damage many bytes within
a Reed-Solomon block, making the data unreadable. The
mixing step allows for a homogeneous distribution of the bytes
within a block. This also leads to a homogeneous distribution
throughout the image itself, mixing even a larger overexposed
area recoverable by means of error correction.

(4) The data are converted to its binary representation and
padded such that there is exactly one bit per pixel. The output
of this step corresponds to the message T introduced in the
paper.

(5) The stego image S is created by K’s pixels where T = 0
and C’s pixels where T = 1. Alice communicates the picture
S to Bob through a public channel, without raising suspicions.

(6) Bob is already in possession of the key image K and
receives the stego image S. He retrieves the message T ∗ by
comparing each pixel pair (Si,Ki). He sets T ∗

i = 0 if Si = Ki

and T ∗
i = 1 otherwise.

(7) In the extracted message T ∗ errors occur in the
positions where Ki = Ci . Error correction is then needed.

(8) Bob records the bytes according to his dictionary. Note
that, unlike the error locations, the dictionary can be public.
The dictionary does not have to be carried by Bob, and will
therefore not reveal his intention to communicate to Ward.

(9) Bob performs the Reed-Solomon error correction
(errors are highlighted in red in Fig. 4.)

(10) Bob gets the original text without errors.
We have performed the above protocol using two images of a
printed circuit board. The results are shown in Fig. 5.

3. Protocol implementation in color and JPEG

We have also partially implemented a protocol similar to the
one described above. Photographs taken by a commercial color
camera are employed and these images are published in a com-
pressed file format, such as JPEG. This significantly increases

the complexity of the system and limits the amount of data that
can be embedded. Most color image sensors are arranged in a
Bayer pattern, as shown in Fig. 6. It consists of the red (R), the
green (G), and the blue (B) components, which are not captured
at the same site, but at different places. Every pixel, however,
requires each of a R, G, and B component to display the appro-
priate color. This is done through an interpolation process. For
example, a red pixel retains its R value, but has associated the
G and the B values, resulting from the interpolation of adjacent
pixels. If any operation is applied after such interpolation pro-
cess, e.g., white balance, this will introduce some correlations
across the pixels and across the color channels.

For the steganographic technique presented here, the data
embedding process (Step 5 above) must only act on the raw
image data. All the other processes must happen at a later stage.

When no compression is applied, image processing steps
such as white balance and color correction are reversible,
within numerical precision. Step 6 requires an estimator which
from a processed image will estimate the most likely values
for the captured sensor data for each R, G, and B pixel. The
comparison between the key image K and the estimated pixel
values from the published stego image S cannot be a strict

FIG. 6. Bayer pattern, used in most color image sensors. Each
pixel only measures a single color channel, its full RGB value is
extrapolated from adjacent pixels (“debayering”), however, the value
of its own color channel is not modified by the algorithm, e.g., the R

value of a red pixel is not affected by debarring.
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FIG. 7. Illustration of how the protocol might work for JPEG-compressed images. Instead of using the images pixel by pixel, the protocol
would use blocks of 16 × 16 pixels, corresponding to the native JPEG processing size. Alice would choose a RAW block either from RAW
data K or C, to encode a “0” or a “1,” respectively. To decode the message, Bob would compare the image to his key image (also JPEG) block
by block.

equality, but has to use an optimal “similarity” bound. Even
with this bound, we found that stronger error correction has to
be applied, typically 5%.

The JPEG image compression algorithm acts on 16 × 16
pixel blocks. When such compression is used, it is possible
to embed a single pixel or several pixels per block. If that is
the case, then in Step 6 the blocks are compared, rather than
the pixels. This results in an information capacity of 1/256 or
less, as shown in Fig. 7.

APPENDIX B: OPEN PROBLEMS

“Beware of bugs in the above code; I have only proved it
correct, not tried it.” Don Knuth

FIG. 8. Autocorrelation between adjacent pixels. “Pixel lag” is
the distance between pixels. Here, the autocorrelation is calculated
over the subtraction of two consecutive images, to cancel out any
static image feature. The curve labeled “theory” represents the same
process applied to images generated using a pseudorandom Poisson
distribution, and are used to evaluate the finite sample effects.

Further research is needed to define a threshold above which
assumptions (i) and (ii) can be considered satisfied. Below, we
present an assessment on the difficulty of this task.

Assumption (ii) is easily satisfied. We have measured the
correlation in the noise between adjacent pixels and found out
that it is unmeasurably low. However, if this remained a worry,
it would be possible to use a subset of nonadjacent pixels,
leading to an even lower risk of revealing some correlation.
Figure 8 shows that there is no measurable correlation between
adjacent pixels.

On the other hand, assumption (i) is demanding: The camera
and scene are in general not in the same state when two
consecutive photographs are taken. For example, a flying
bird in the background or varying illumination would make
the stego image identifiable as such. Furthermore, the image
noise would have to be of quantum origin. This means that

FIG. 9. Representation of the mean difference between cor-
responding pixels of two consecutive images, normalized to the
expected quantum deviation, which is the square root of the photon
number absorbed by the pixel. The mean normalized deviation is
1.05 ± 0.1.
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nonilluminated pixels, which present only classical noise,
would have to remain unused during the protocol. In fact,
their employment would lead to a major risk of exposing
the communication. In principle, however, if larger areas of
photographs are taken to encode a bit 0 or 1, the protocol does
become secure. In the limit that each photograph encodes a
single bit, the protocol is obviously secure, and several bits
can be sent by using several photographs. Further work would
be required to find what the right compromise would be.
For 40 image pairs, we measured the average difference in
the corresponding pixels between the two photographs, and
compared it to the expected deviation given only quantum

noise. That is, we plotted the mean of (Ki − Ci)/
√

Ki , where
Ki and Ci are similar, and normalized to represent photon
numbers, so

√
Ki is the expected quantum noise. Results are

shown in Fig. 9.
These differences arise from several factors, one of which

is varying image illumination. We have tested a Canon Single
Lens Reflex camera, an ATIK scientific camera, and a Nokia
mobile telephone camera, under several lighting conditions.
Taking two consecutive pictures of the same subject, the
exposure changes between 0.01% and 5%. Small differences
can be given by effects which are as subtle as sound pressure
level, as shown in [24].
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