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BosonSampling is an intermediate model of quantum computation where linear-optical networks are used to
solve sampling problems expected to be hard for classical computers. Since these devices are not expected to be
universal for quantum computation, it remains an open question of whether any error-correction techniques can
be applied to them, and thus it is important to investigate how robust the model is under natural experimental
imperfections, such as losses and imperfect control of parameters. Here, we investigate the complexity of
BosonSampling under photon losses, more specifically, the case where an unknown subset of the photons is
randomly lost at the sources. We show that if k out of n photons are lost, then we cannot sample classically from
a distribution that is 1/n�(k) close (in total variation distance) to the ideal distribution, unless a BPPNP machine
can estimate the permanents of Gaussian matrices in nO(k) time. In particular, if k is constant, this implies that
simulating lossy BosonSampling is hard for a classical computer, under exactly the same complexity assumption
used for the original lossless case.
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I. INTRODUCTION

BosonSampling is a computational problem that involves
sampling from a certain kind of probability distribution,
defined in terms of the permanents of matrices. While it
does not have any obvious applications, the BosonSampling
problem has two features of interest: (i) it is “easy” to solve
by a restricted, single-purpose quantum computer composed
only of linear-optical elements, and (ii) it is hard to solve on a
classical computer [1], under plausible complexity-theoretic
assumptions. Its natural implementation as a linear-optical
experiment led, since the initial proposal, to a flurry of
experiments of increasing complexity [2–9].

The fact that these single-purpose linear-optical devices
are not expected to be universal for quantum computing
also means that they are not likely to have access to the
usual tools of fault tolerance and error correction, and thus
it is important to investigate the resilience of the underlying
models to real-world experimental imperfections. The original
proposal of [1] already focused on this issue, giving evidence
that BosonSampling is hard even if the classical computer is
allowed to sample from a distribution that only approximates
the ideal one (in variation distance). However, this does not
suffice to address all realistic sources of error and imperfec-
tions that one may encounter. Thus, since then, further work
has been done to investigate the robustness of BosonSampling
devices to errors such as losses and mode mismatch [10,11],
imperfections on the linear-optical network [12,13], and other
sources of noise [14].

There are a few reasons why photon losses are a central
scalability issue in BosonSampling devices. The first is that
they are pervasive in linear-optical experiments; to give
an example, most recent BosonSampling experiments were
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performed using integrated photonic devices, where rather
than setting up a linear-optical circuit using beam splitters
in free space, the photons propagate along waveguides etched
in a small chip. The most realistic models of loss in these
devices give a per-photon probability of arrival that decreases
exponentially with the depth of the circuit, and this is even
before taking into account source and detector inefficiencies.
The second reason is that often losses are dealt with using
post-selection. By only accepting the experimental runs where
the correct number of photons is observed, one can argue
that the losses manifest only as an attenuation of the number
of observed events per unit time. The problem with this
approach, of course, is that even if each photon has only
a constant probability of being lost, this already leads to
an exponential overhead in experimental time as the desired
number of photons increases.

In this paper, we give a formal treatment of the problem
of BosonSampling with a few lost photons. More specifically,
we show how the original argument of [1] can be modified to
allow for the loss of a constant number [i.e., O(1)] of photons,
thus showing that BosonSampling in this regime has the same
complexity-theoretic status as in the ideal case. Of course,
this falls short of the result one would want since, in practice,
one expects that at least a constant fraction [i.e., �(n)] of the
photons will be lost. Nevertheless, the result here constitutes a
nontrivial step toward understanding experimentally realistic
BosonSampling regimes.

Let us point out in particular that, if more than k = O(1)
photons are lost, then we still get some hardness result: the
issue is “just” that the strength of the result degrades rapidly
as a function of k. More concretely, if k out of n photons
are lost, then our argument will imply that BosonSampling
cannot be done in classical polynomial time, to within a 1/n�(k)

error in total variation distance, assuming that permanents of
Gaussian matrices cannot be estimated in nO(k) time. So, for
example, even when a (sufficiently small) constant fraction
of the photons is lost, k = εn, we can conclude that exact
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BosonSampling cannot be done in classical polynomial time,
assuming that Gaussian permanent estimation is exponentially
hard.

We also point out, in the Appendix, how the proof of our
main result can be repurposed to other physically interesting
error models, such as BosonSampling with dark counts, or a
combination of both losses and dark counts.

Notation. Throughout this paper, we denote by N (0,1)C
the complex Gaussian distribution with mean 0 and variance
1, and by N (0,1)m×n

C the distribution over m × n matrices
of i.i.d. complex Gaussian entries. For two probability dis-
tributions D1 = {px}x and D2 = {qx}x , the total variation
distance ||D1 − D2|| and the Kullback-Leibler divergence
DKL(D1||D2) are given, respectively, by

||D1 − D2|| :=1

2

∑
x

|px − qx |, (1)

DKL(D1||D2) :=
∑

x

px ln
px

qx

. (2)

The O and � notations have the usual meaning: for two
functions f (n) and g(n), we say that f (n) is O(g(n)) if f (n)
is upper bounded by some positive multiple of g(n) in the
asymptotic limit n → ∞, and we say f (n) is �(g(n)) if both
f (n) is O(g(n)) and g(n) is O(f (n)).

II. DEFINITION OF THE PROBLEM

Let U be an m × m Haar-random unitary matrix (i.e., the
“interferometer”), and let �m,n be the set of all lists of non-
negative integers S = (s1, . . . ,sm) such that

∑
si = n, (i.e.,

the “input/output states”). The transition probability from a
given input state S = (s1, . . . ,sm) ∈ �m,n to an output state
T = (t1, . . . ,tm) ∈ �m,n is given by

Pr[S → T ] = |Per(US,T )|2
s1! . . . sm!t1! . . . tm!

, (3)

where US,T is a submatrix of U constructed as follows: (i)
first, construct a m × n matrix UT by taking t1 copies of the
first row of U , t2 copies of the second row, etc; (ii) then, form
US,T by taking s1 times the first column of UT , s2 times its
second column, etc. If we now fix some input state S (which,
for simplicity, we will take to be a string of n ones followed
by m − n zeros), Eq. (3) defines a distribution DU given by

Pr
DU

[T ] = |Per(US,T )|2
t1! . . . tm!

. (4)

The original BosonSampling problem then can simply be
defined as producing a sample from DU , or at least from some
other distribution that is close to it in total variation distance.
It can also be shown that, if m � n2 and U is Haar random,
then one only needs to consider “no-collision outputs,” where
each ti is only 0 or 1, since these dominate the distribution.
For simplicity we will restrict our attention to these states from
now on, replacing �m,n by �m,n (defined as the subset of �m,n

with only no-collision states) and dropping the denominator
of Eq. (4), but for a full discussion see [1] or Sec. 4 of [15].

In this paper, we will consider a modified version of the
BosonSampling problem, where a subset of the photons is lost
along the way. Before giving the formal definition, consider

the following illustrative example. Suppose we input one
photon in each of the first n + 1 modes of U (i.e., S ∈ �m,n+1

is a string of n + 1 ones followed by all zeros), but we
observe an outcome with only n photons (i.e., T ∈ �m,n).
With no knowledge of the mechanism behind the losses, what
conditional probability should we ascribe to this event, given
that we know that exactly one photon was randomly lost at
the input ports? Clearly, the probability of this event is just the
average of the probabilities of n + 1 different BosonSampling
experiments that use only n out of the n + 1 initial photons. In
other words, we can write this as

Pr[T ] = 1

n + 1

∑
i

∣∣Per
(
USi,T

)∣∣2
, (5)

where USi,T is obtained by deleting the ith column of US,T .
Note that, by the way we defined US,T it is, in this setting,
an n × (n + 1) matrix, so after deleting one of its columns
we obtain a square matrix and the permanent function is well
defined.

We can now easily generalize the above to the case where
exactly k out of n + k photons were lost. In this case, the
probability of outcome T ∈ �m,n is given by

Pr[T ] = 1

|�n+k,n|
∑

S∈�̄m,n+k,n

|Per(US,T )|2, (6)

where now �̄m,n+k,n denotes the set of all possible no-collision
states of n photons in the first n + k out of m modes. It is easy
to see that |�̄m,n+k,n|, which is the total number of states that

contribute to this probability, is equal to |�n+k,n| = (n+k
n ).

Two remarks are in order about this particular choice of
loss model. The first is that we are supposing that exactly
k photons have been lost in the experiment, but the more
physically realistic model is one where each photon has an
independent probability p of being lost. These models may
seem very different at first glance, especially since the latter is
described by a state which does not even have a fixed photon
number. Nevertheless, we can connect them as follows: if
we start with N total photons, and each has probability p of
being lost, then the average number of lost photons is k = pN .
Furthermore, the probability of observing this exact value of k

is non-negligible (i.e., inverse polynomial), and in fact we are
likely to observe it at least once after repeating the experiment
O(

√
N ) times. This shows that the model considered here can

be simulated (with only polynomial overhead) by the realistic
one if we set p = k/N and, hence, that a hardness result for
our model carries over to the realistic one, which is what we
need.

The second remark is that, to simplify the analysis, we
are assuming that the photons are lost only at the input to
the interferometer (e.g., in the sources). In reality, however,
we should expect them to be lost inside the circuit or at the
detectors as well, in which case the above equation for the
probability would be different. We will return to this issue in
Sec. IV.

Given our choice of loss model, we can view the modified
problem more abstractly as BosonSampling with the |Per(X)|2
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function replaced by the following function:

�(A) := 1

|�n+k,n|
∑

S

|Per(AS)|2, (7)

where �(A) is a function defined on n × (n + k) matrices, and
the sum is taken over all square n × n proper submatrices of A.

The main questions we address in this paper, then, are as
follows: is this generalized version of BosonSampling, where
probabilities are given by objects like �(A), as hard to simulate
approximately as the nonlossy case where probabilities are
given by |Per(X)|2? For what values of k?

We will show that the first question has an affirmative
answer, but alas, we are only able to show a strong hardness
result in the case where k is a constant (i.e., does not grow
with n). We leave, as our main open problem, to give a fuller
understanding of what happens in the realistic case that k grows
with n.

Let us first give a (very) brief outline of the reasoning behind
the result of Aaronson and Arkhipov [1]. We begin by defining
the following problem:

Problem 1 (|GPE|2±) [1]. Given as input a n × n matrix
X ∼ N (0,1)n×n

C of i.i.d. Gaussians, together with error bounds
ε,δ > 0, estimate |Per(X)|2 to within additive error ±ε · n!
with probability at least 1 − δ over X in poly(n,1/ε,1/δ) time.

|GPE|2± is the main problem addressed in [1]. Aaronson
and Arkhipov show that, if there is a classical algorithm that
efficiently produces a sample from a distribution close in
total variation distance to that sampled by a BosonSampling
device, then |GPE|2± ∈ BPPNP. They then conjecture that
|GPE|2± is #P-hard (by means of two natural conjectures,
the permanent-of-Gaussians conjecture and the permanent
anticoncentration conjecture; see [1] for more details). Under
that conjecture, they conclude that, if there was an efficient
classical algorithm C as described above, the polynomial
hierarchy would collapse. This argument provides evidence
that, despite being a very restricted quantum computer, a
BosonSampling device is exponentially hard to simulate on
a classical computer.

Here, we are going to “intercept” the result of Aaronson and
Arkhipov halfway through: we will show that |GPE|2± can be
reduced to another problem, which is its natural generalization
when we replace |Per(X)|2 by �(A), as long as k is constant.
More concretely, consider the following problem:

Problem 2 (�|GPE|2±). Given as input a n × (n + k) matrix
A ∼ N (0,1)n×(n+k)

C , together with error bounds ε′,δ > 0,
estimate �(A) := �S |Per(AS)|2 to within additive error ±ε′n!
with probability at least 1 − δ over A in poly(n,1/ε′,1/δ) time.

Then our main result is as follows:
Theorem 1. If O is an oracle that solves �|GPE|2± with

ε′ = O( εδk+1/2kk/2

nk/2(n+k)k ), then |GPE|2± can be solved in BPPO.
Notice that the precision demanded of the oracle O is

exponential in k, which is why we can only use Theorem 1 to
make claims about BosonSampling if k is constant. However,
in this case Theorem 1 immediately allows us to replace all
further claims made by Aaronson and Arkhipov regarding
|GPE|2± by their equivalent versions with �|GPE|2±, and thus
show that BosonSampling with a few lost photons has the same
complexity as the original BosonSampling problem.

III. REDUCTION FROM |GPE|2
± TO �|GPE|2

±

In this section, we prove Theorem 1. The idea behind the
proof is as follows. Given X ∼ N (0,1)n×n

C , we can trivially
embed X as the leftmost submatrix of another matrix A ∼
N (0,1)n×(n+k)

C . Now, define A[c] to be the matrix obtained by
multiplying the k rightmost columns of A by the real number
c, and let NA[c] be the resulting distribution over A[c]. Then,
it is easy to see that

�(A[c]) := 1

|�n+k,n| |Per(X)|2 + |c|2Q1 + |c|4Q2

+ . . . + |c|2kQk, (8)

where each Qi is the sum of the absolute squares of the
permanents of all submatrices of A that include i out of the
k rightmost columns of A, scaled by a factor of 1

|�n+k,n| . If c

is sufficiently close to 1, then NA[c] is close to NA[1] [which
coincides with N (0,1)n×(n+k)

C ], and we can use the oracle O to
estimate �(A[c]). By calling O for k + 1 different values of
c, we can then estimate |Per(X)|2 using standard polynomial
interpolation.

Let us start with the following simple lemma, which relates
the total variation distance between NA[c] and NA[1] to the
distance between c and 1.

Lemma 1. If |c − 1| � δ√
nk

, then ||NA[c] − NA[1]|| =
O(δ).

Proof. First notice that, since NA[1] is just the joint dis-
tribution of n(n + k) i.i.d. complex Gaussians xi ∼ N (0,1)C,
thenNA[c] is the joint distribution over n(n + k) i.i.d. complex
Gaussians yi ∼ N (0,σi)C, where σi is 1 for n2 of the variables
(those corresponding to the leftmost n × n submatrix of A)
and c for the remaining nk variables. By Pinsker’s inequality,
we have

||NA[c] − NA[1]|| �
√

1

2
DKL(NA[1]||NA[c]),

where DKL(P ||Q) is the Kullback-Leibler divergence. When
P and Q are multivariate Gaussian distributions, there is a
closed form for DKL(P ||Q); in particular, if P (respectively
Q) corresponds to the distribution over K i.i.d. complex
variables {xi} with means 0 and corresponding variances {σP,i}
(respectively {σQ,i}), we can write [16]

DKL(P ||Q) =
∑

i

(
σP,i

σQ,i

)2

− K + 2
∑

i

ln
σQ,i

σP,i

.

By setting K equal to n(n + k), σQ,i equal to 1 for all i, and
σP,i equal to 1 for n2 of the i’s and c for the other kn we get

DKL(NA[1]||NA[c]) = nk

(
1

c2
− 1 + 2 ln c

)
.

If |1 − c| = a, we get

DKL(NA[1]||NA[c]) = 2nka2 + O(a3)

and hence

||NA[c] − NA[1]|| � a
√

nk + O(a2).

Setting a = δ√
nk

completes the proof. �
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By Lemma 1, to satisfy the definition of O we must have
|1 − c| = O(δ/

√
kn). One might worry about how stable the

estimate of |Per(X)|2 produced by the polynomial interpolation
will be, if we are only allowed to probe a very small region of
values of c. We now show how to relate the precision in the
output of O to the resulting estimate of |Per(X)|2.

To begin, consider the equivalent problem of estimating the
parameters {βi} of the polynomial

w = β0 + β1x + β2x
2 + . . . + βkx

k (9)

by choosing k + 1 distinct values xi in the interval [1 − a,1 +
a] and estimating the corresponding values wi each with error
ei < ε′n!. This results in the following linear system (written
in vector notation):

w = Xβ + e, (10)

where X is the Vandermonde matrix

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 x2
1 . . . xk

1

1 x2 x2
2 . . . xk

2

1 x3 x2
3 . . . xk

3

...
...

...
. . .

...

1 xk+1 x2
k+1 . . . xk

k+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Note that X is invertible as long as we choose all xi’s distinct.
We can now use, as an estimator for β, the one given by the

ordinary least-squares method, namely,

β̂ = (XT X)−1XT w. (12)

Let us now bound the variance on the estimator β̂0, which
corresponds to the parameter that we are trying to estimate
[i.e., |Per(X)|2 in Eq. (8)]. Since the errors ei are all in the
interval [−ε′n!,ε′n!] by assumption we can, without loss of
generality, assume that E(ei) = 0 and Var(ei) � (ε′n!)2. Let us
also denote by 
 the covariance matrix of the error vector e.
Then, we can write

Var(β̂) = Var[(XT X)−1XT w]

= X−1
(X−1)T , (13)

and thus

Var(β̂0) = [X−1
(X−1)T ]1,1. (14)

But, now we can bound this as

[X−1
(X−1)T ]1,1 � max
i,j

[X−1
(X−1)T ]i,j

� ||X−1
(X−1)T ||∞
� ||X−1||∞||
||∞||(X−1)T ||∞
= ||X−1||∞||
||∞||(X−1)||1
� (k + 1)||X−1||2∞||
||∞, (15)

where ||A||∞ and ||A||1 are the maximum row 1-norm
and maximum column 1-norm, respectively, and we used
the inequalities ||AB||∞ � ||A||∞||B||∞ and ||A||1 � (k +
1)||A||∞, which hold for all {A,B} ∈ Mk+1 [17]. We can now
use a result due to Gautschi [18], which bounds the norm of

the inverse of the square Vandermonde matrix as

||X−1||∞ � max
1�j�k+1

k+1∏
i=1,i 	=j

1 + |xj |
|xj − xi | .

Since, in our case, all x ′
i s are bounded in the interval [1 −

a,1 + a], we can write

||X−1||∞ � (2 + a)k max
1�j�k+1

k+1∏
i=1,i 	=j

1

|xj − xi | . (16)

In order to obtain the sufficiently tight bound from the
expression above, it is helpful to choose the xi’s evenly spaced
in the interval [1 − a,1 + a]. In that case, the maximum in
Eq. (16) is obtained by choosing xj to be one of the central
points, i.e., j = k/2 + 1 if k is even or j = (k + 1)/2 is k is
odd. In this case, it is not hard to show that, if k is even, we get

||X−1||∞ �
(

2e

a

)k 1

πk
, (17)

and if k is odd,

||X−1||∞ �
(

2e

a

)k 1

π
√

k2 − 1

kk

(k−1)
k−1

2 (k+1)
k+1

2

. (18)

Clearly, if k is sufficiently large, these bounds coincide. Finally
note that, since every ei has variance at most (ε′n!)2, we can
write

||
||∞ � (k + 1)(ε′n!)2. (19)

By plugging Eqs. (15), (17) or (18), and (19) back into Eq. (14)
we obtain

Var(β̂0) = O

(
(ε′n!)2

a2k

)
. (20)

We are now in position to prove Theorem 1.
Proof. We begin by writing

�(A[c]) := 1

|�n+k,n| |Per(X)|2 + |c|2Q1 + |c|4Q2

+ . . . + |c|2kQk.

We then choose k + 1 values of c equally spaced in the interval
[1 − δ/

√
nk,1 + δ/

√
nk]. By Lemma 1, each A[c] obtained in

this way is within δ of total variation distance toN (0,1)n×(n+k)
C ,

so we can use the oracle O to obtain an estimate of �(A[c]) to
within additive error ±ε′n!. Using the ordinary least-squares
method, we can then give an estimate P̂ for 1

|�n+k,n| |Per(X)|2
with variance given by

Var(P̂ ) = O

(
(ε′n!)2

(δ2/nk)k

)
,

which is just Eq. (20) where we set a = O(δ/
√

nk). Finally,
by Chebyshev’s inequality, we have

Pr

[∣∣∣∣P̂ − 1

|�n+k,n| |Per(X)|2
∣∣∣∣ � K

√
Var(P̂ )

]
� 1

K2

for any K > 0. Thus, by setting K = 1/
√

δ and ε′ =
O( εδk+1/2kk/2

nk/2(n+k)k ), we obtain an estimate for |Per(X)|2 to within

012335-4



BosonSampling WITH LOST PHOTONS PHYSICAL REVIEW A 93, 012335 (2016)

additive error ±ε · n! with probability at least 1 − δ (over X

and over the errors in the outputs of O) in poly(n,1/ε,1/δ)
time, thus solving |GPE|2±. �

Theorem 1 then guarantees, for example, that if k is
constant, then as long as the error in each estimate of O is

 1/n3k/2, solving �|GPE|2± is as least as hard as solving
|GPE|2±.

IV. SUMMARY AND OPEN PROBLEMS

We investigated the loss tolerance of BosonSampling in
the regime where only a few photons are lost. In this case,
the output distribution can become very far (in total variation
distance) from the ideal one, and so the original argument
of Aaronson and Arkhipov [1] does not work. Nevertheless,
we showed how the problem of estimating the permanent,
which usually describes the outcome probabilities in the ideal
BosonSampling model, can be reduced to the problem of
estimating the quantity �, defined in Eq. (7), which describes
the probabilities in the lossy BosonSampling model. For the
regime where the number of lost photons is constant (or,
alternatively, where each photon is lost with probability ∼c/n),
this allows us to replace |Per(X)|2 by �(A) in Aaronson and
Arkhipov’s argument, and thus to obtain similar complexity
results as those in [1]. Note that it was not necessary to
modify either the permanent-of-Gaussians conjecture or the
permanent anticoncentration conjecture that Aaronson and
Arkhipov [1] used.

Note that, if we restrict our attention to the loss model
where each photon has an independent probability p of being
lost [cf. the discussion after Eq. (6)], then there is a hardness
argument that works for k = O(1), based on post-selection,
that is much simpler than our proof. Namely, in this regime the
probability that zero photons will be lost is only polynomially
small (in n), so one could simply repeat the experiment a
polynomial number of times, and post-select on observing
all of the photons. As a related observation, if the scattering
matrix U can be chosen arbitrarily (rather than from the Haar
measure), then even if exactly k photons will be lost in each
run, we could simply pick U to act as the identity on k of
the n modes that initially have 1 photon each. If no photons
are observed in those k modes, which occurs with probability
�(1/nk), then we know that lossless BosonSampling has been
performed on the remaining n − k photons.

In our view, these observations underscore that our hardness
result is only a first step, and that ultimately one wants a strong
hardness result that holds even when k is nonconstant. On the
other hand, it is important to understand that our result is
not itself obtainable by any simple post-selection trick like
those described above. Rather, our result requires analyzing
output probabilities that are sums of absolute squares of many
permanents, and showing that these sums inherit some of the
hardness of the permanent itself. By demonstrating that such
reductions are possible, we hope our result will inspire further
work on the complexity of lossy BosonSampling. We also
point out that the reasoning behind our proof of Theorem 1
can be used to deal with other issues aside from just photon
losses, such as, e.g., the case of photon “shuffling” described
in the Appendix, where photon losses compounded with dark

counts acts as noise in the probability distribution that cannot
be dealt with just by post-selection.

Our work leaves a few open questions. The obvious one
is to investigate what happens in more realistic loss regimes,
such as, e.g., if a constant fraction of the photons is lost (i.e.,
in our notation, k = εn). In that case, Theorem 1 requires
the oracle O to produce an estimate of � to within error
1/n�(εn), so it does not allow us to make any strong complexity
claims. It would be reasonable to expect that, if k is too large,
BosonSampling becomes classically simulable; in fact, this
is easily seen to be true if all but O(ln n) photons get lost,
and it would be interesting if we could determine where the
transition happens.

In that direction, an even more basic question that one
can ask is whether �(A), of an i.i.d. Gaussian matrix A ∼
N (0,1)n×(n+k)

C , becomes concentrated around some simple
classical estimator when k is large compared to n. For example,
one could look at R(A), the product of the squared 2-norms of
the rows of A. Aaronson and Arkhipov [15] previously studied
this estimator in the case of no lost photons (i.e., k = 0),
and showed that even there, R(A) has a constant amount of
correlation with |Per(A)|2. If (say) n = 2, then it is not hard to
see that R(A) has an excellent correlation with �(A), as k gets
arbitrarily large. What happens when n ∼ ln2 k or n ∼ √

k?
A second open problem concerns our choice to model

photon losses assuming all of them were lost at the input, as
described at the beginning of Sec. II. We leave as a question for
future work to adapt our proof to the case where losses happen
at the detectors. In that case, rather than summing over all pos-
sibilities that k out of k + n input photons were lost, we would
have to sum over all possibilities of a subset of k out of the
m − n detectors malfunctioning. When we do that, we obtain a
probability expression that is very similar to that in Eq. (7), but
with three complications: (i) the permanents are of (n + k) ×
(n + k) matrices since now n + k photons actually traveled
through the network, (ii) the sum is over (m−n

k ) possibilities,
rather than (n+k

n ), and (iii) rather than considering A to be a n ×
(n + k) matrix of i.i.d. Gaussian entries, we need to consider
it an m × (n + k) random matrix of orthonormal columns.
Nevertheless, in the regime m = �(n2) that is often assumed
in BosonSampling, it should be possible (although somewhat
cumbersome) to adapt our polynomial interpolation argument
to this case. Then, as a next step, one could consider the case
where the photons can be randomly lost both at the sources
and at the detectors, or indeed anywhere in the network.
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APPENDIX: OTHER APPLICATIONS OF MAIN RESULT

In this appendix, we point out how our main result in Sec. III
can be repurposed to include other scenarios besides photon
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losses, such as dark counts. In the same way that our main result
(Theorem 1) only extends the loss tolerance of BosonSampling
to allow for a constant number k of photons to be lost, the
other scenarios described in this appendix also have some
parameter k (e.g., the number of dark counts) that can be at
most a constant.

Recall that our main result concerns the setting where n + k

photons were prepared, but only n of them were measured, and
the corresponding probability is given by replacing the perma-
nent with �(A) defined in Eq. (7), which is a function of n ×
(n + k) matrices. We then embed the n × n matrix X whose
permanent we wish to estimate in a matrix A[c] defined as

A[c] = (X cY ), (A1)

for some k × k Gaussian Y . We then write, as in Eq. (8),

�(A[c]) := 1

|�| [|Per(X)|2 + |c|2Q1 + |c|4Q2

+ . . . + |c|2kQk], (A2)

where each Qi is given in terms of permanents of different
submatrices of A[c], other than X, and their values are
irrelevant for our purposes. Finally, we can use a polynomial
regression to produce an estimate for |Per(X)|2 from estimates
of �(A[c]) for several values of c sufficiently close to 1.

Now, let us show how other scenarios can be cast in the
same form.

1. Dark counts

Suppose that, rather than preparing n + k photons and
measuring n of them, we prepare n and measure n + k photons,
that is, we have events known as dark counts, when an optical
detector “clicks” even in the absence of a photon. This means
that we must now ascribe, to our detected event, a probability
that is the average of the probabilities obtained by considering
that each possible subset k of the k + n detectors were the ones
that misfired. In other words, we can write the probability as

�dark(A) := 1

|�|
∑
T ∈�

|Per(AT )|2, (A3)

where again � denotes the set of all possible no-collision states
of n photon in n + k modes, but A is now a (n + k) × n matrix,
and AT is the submatrix of A obtained by taking n of its rows
corresponding to the 1’s in T . We once more embed the n × n

matrix X in a larger matrix, but which now is defined as

A[c] =
(

X

cY

)
. (A4)

Note that this leads to an identical expression as Eq. (8):

�dark(A[c]) = 1

|�| [|Per(X)|2 + |c|2Q1 + |c|4Q2

+ . . . + |c|2kQk]. (A5)

As before, the Qi’s correspond to permanents of different
submatrices of A[c], which are now distributed vertically
rather than horizontally. It is clear from the form of �dark(A[c])
that the arguments of Sec. III follow through unchanged.

2. Combination of losses and dark counts

Consider now the following scenario: we prepared n + k

photons and measured n + k photons, but during the process
k of our photons were lost, and there were k dark counts
(let us call this event of losing a photon and getting a dark
count as “shuffling” a photon). One difference compared to
the previous scenarios is that a shuffling event is not heralded
in any way; in principle, any experiment which performs n-
photon BosonSampling should take all probabilities of up to
n-fold shuffling into account as noise in the final distribution.
As we now argue, in a situation where up to k out of n + k

photons can be shuffled, for constant k, the reasoning behind
our hardness result goes through.

First, suppose that, for whatever reason, we know that
exactly k photons were shuffled during the process. In this case,
the probability we ascribe to the observed event is given by

�shuf(A,k) := 1

|�|2 �S,T ∈�|Per(AST )|2, (A6)

where now S and T both run over all possible collision-free ba-
sis states corresponding to n photons in k + n modes and index
rows and columns, respectively, of A. In other words, again the
sum is over all n × n proper submatrices of A, which now is
(n + k) × (n + k). As before, we can build a matrix of the form

A[c] =
(

X cY

cV c2W

)
, (A7)

and write

�shuf(A[c],k) = 1

|�|2 [|Per(X)|2 + |c|2Q1 + |c|4Q2

+ . . . + |c|4kQ2k]. (A8)

In this case, each Qj is a sum that collects all submatrices of
A[c] which use j rows and/or columns of A that contain the
factor c, and the total polynomial is of degree 4k, rather than
2k as in previous cases. Nonetheless, it is straightforward to
adapt the least-squares method to this setting, and our main
argument goes through with no significant changes.

However, since shufflings are not heralded, restricting
ourselves to the case where exactly k photons are shuffled
is not very natural. To make it (slightly) more natural, we can
consider the case where all j -fold shufflings can happen, from
j ranging from 1 to k, with corresponding known probabilities
pj . In this case, the probability we assign to the event is

�shuf(A[c]) =
k∑

j=0

pj�shuf(A[c],j ). (A9)

But, note that, in each �shuf(A[c],j ) for j between 0 and
k − 1, the permanents in Eq. (A8) are over submatrices of
dimensions (n + k − j ) × (n + k − j ), and thus each of them
must include at least one column or row that contains a factor
c. This means that, in the sum in Eq. (A9), the only term that
does not have a factor of c is the one containing |Per(X)|2.
Thus, we can write once again

�shuf(A[c],k) = 1

|�|2 [pk|Per(X)|2 + |c|2Q′
1

+ |c|4Q′
2 + . . . + |c|4kQ′

2k], (A10)
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where now all Q′
is may depend in complicated but unimportant

ways on all j -fold shuffling events. We can again apply the
least-squares method, but now there is an important caveat:
rather than obtaining an estimate of |Per(X)|2 to within

additive precision, we only obtain an estimate of pk|Per(X)|2.
This introduces the additional restriction that pk is large
enough that the additive approximation does not become
useless.
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