
PHYSICAL REVIEW A 93, 012334 (2016)

Quantifying coherence in infinite-dimensional systems
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We investigate the quantification of coherence in the infinite-dimensional systems, and especially, we focus on
the infinite-dimensional bosonic systems in the Fock space. We find that given the average energy constraints,
the relative entropy of coherence serves as a well-defined quantification of coherence in the infinite-dimensional
systems, however, the l1 norm of coherence fails. Via using the relative entropy of coherence as the quantification
of coherence, we generalize the case to multimode Fock spaces, and some special examples are considered.
It is shown that with a finite average particle number, increasing the number of modes of light can enhance
the relative entropy of coherence. With the mean energy constraint, our results can also be extended to other
infinite-dimensional systems.
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I. INTRODUCTION

Quantum coherence arising from the quantum superposi-
tion principle is a fundamental aspect of quantum physics
[1]. The laser [2] and superfluidity [3] are two famous
examples of quantum coherence, whose effects are evident
at the macroscopic scale. The quantum tomography and
Leggett-Garg inequalities that test the correlations of a single
system at different times [4] are shown useful for the test
for the existence of quantum coherence [5]. However, the
framework of the quantification of coherence has only been
methodically investigated recently. The first attempt to address
the classification of quantum coherence as physical resources
is given by Baumgratz et al., who have established a rigorous
framework for the quantification of coherence based on
distance measures in the finite-dimensional setting [6]. With
such a foundational framework for coherence, one can find
the appropriate distance measures to quantify the quantum
coherence in a fixed basis by measuring the distance between
the quantum state ρ̂ and its nearest incoherent state. After
the framework was proposed, it received increasing attention.
Streltsov et al. used the entanglement to provide an operational
quantification of coherence [7]. Du et al. focused on the
interconversion of the coherent states by means of incoherent
operations using the concept of majorization relations [8]. Xi
et al. gave a clear quantitative analysis on the connections
between relative entropy of coherence, quantum discord, and
one-way quantum deficit in the bipartite quantum system [9].
Bromley et al. found the freezing conditions in which the
coherence remains unchanged during the nonunitary dynamics
[10]. Up to now, all the results for quantifying the quantum
coherence assumed the finite-dimensional setting, which is
neither necessary nor desirable [6]. In consideration of the
relevant physical situations such as quantum optics states of
light, further investigations are required on quantifying the
quantum coherence in the infinite-dimensional systems.

In this paper, we aim to investigate the quantification of
coherence in the infinite-dimensional systems. Specifically,
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we focus on the infinite-dimensional bosonic systems in
the Fock space [11] which are used to describe the most
notable quantum optics states of light [12] and Gaussian
states [13–15]. We show that when considering the average
energy constraints, the relative entropy of coherence serves
as a well-defined quantification of coherence in the infinite-
dimensional systems, but the l1 norm of coherence fails. Via
using the relative entropy of coherence, we generalize the
results to the multimode Fock spaces, and special examples
are considered. It is shown that with a finite average particle
number, increasing the number of modes of light can enhance
the relative entropy of coherence, which clearly shows the
advantage of multimode quantum optics. Our results can also
be extended to other infinite-dimensional systems with energy
constraints. Our work investigates the experimentally relevant
cases and the most easy-to-use quantifiers, which is significant
and essential in quantum physics as well as quantum optics.

II. CONDITIONS FOR QUANTIFICATION OF
COHERENCE IN FOCK SPACE

We consider a Hilbert space H with a finite dimension D =
dim (H). For a fixed reference basis {|i〉} of H, we define δ̂ =∑

i δi |i〉〈i| with an arbitrary set of nonnegative probabilities
{δi} as an incoherent state and I ⊂ H as a set of the incoherent
states. As presented in Ref. [6], any proper measure of the
coherence C(ρ̂) must satisfy the following postulates:

(C1) C(ρ̂) � 0 for ∀ density operator ρ̂ defined in the
Hilbert space H and C(δ̂) = 0 iff δ̂ ∈ I.

(C2a) Monotonicity under all the incoherent completely
positive and trace-preserving (ICPTP) maps �ICPTP(◦):
C(ρ̂) � C(�ICPTP(ρ̂)), where �ICPTP(◦) ≡ ∑

n K̂n ◦ K̂
†
n. Here

{K̂n} is a set of Kraus operators that satisfies
∑

n K̂
†
nK̂n = I

and K̂nIK̂
†
n ⊂ I.

(C2b) Monotonicity for the average coherence under
the subselection based on measurement outcomes: C(ρ̂) �∑

n pnC(ρ̂n), where ρ̂n = K̂nρ̂K̂
†
n/pn and pn = Tr(K̂nρ̂K

†
n)

for all {K̂n} with
∑

n K̂
†
nK̂n = I and K̂nIK̂

†
n ⊂ I.

(C3) Nonincreasing under the mixing of quantum states:∑
n pnC(ρ̂n) � C(

∑
n pnρ̂n).
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We note that conditions (C2b) and (C3) automatically imply
condition (C2a) [6].

Two kinds of measures for coherence in the finite-
dimensional systems [6] satisfy all the conditions mentioned
above including the relative entropy of coherence defined as

Crel.ent.(ρ̂) = S(ρ̂diag) − S(ρ̂), (1)

and the l1 norm of coherence defined as

Cl1 (ρ̂) =
∑
i 	=j

|ρij |, (2)

where ρ̂ = ∑
ij ρij |i〉〈j |, ρ̂diag = ∑

i ρii |i〉〈i|, and S(ρ̂) =
−Tr(ρ̂ log ρ̂) is the von-Neumann entropy. It has been shown
that the promising fidelity of coherence does not in general
satisfy (C2b) under the subselection of the measurement
condition [16].

We then generalize the problem to the infinite-dimensional
systems, furthermore, we consider the Fock space. Generally,
the bosonic single mode Hilbert space H is spanned by
the basis {|n〉}∞n=0 called the Fock (number state) basis
where n is an integer. Fock states are the eigenstates of the
number operator n̂ := â†â where we have â|n〉 = √

n|n − 1〉
and â†|n〉 = √

n + 1|n + 1〉. Referring to the development of
the entanglement theory in infinite-dimensional systems, the
problem of quantification of coherence can be addressed by
requiring energy constraints [17], which is experimentally
relevant. The quantification of the quantum coherence may be
divergent if no energy constraints are assumed, so we require
a new condition for this case:

(C4) If the first-order moment, the average particle num-
ber, is finite 〈n̂〉 < ∞, it should fulfill C(ρ̂) < ∞.

Given the proper definition of incoherent states, in the
infinite-dimensional systems, incoherent operations and max-
imal coherent states, the proofs of (C1)–(C3) of these two
definitions (1) and (2) do not require the finite-dimensional
setting. It is because there are very relevant physical situations
that require infinite-dimensional systems for their description.
The incoherent states and incoherent operations defined in
Ref. [6] can be easily generalized to the case in infinite-
dimensional systems. In the Fock space, the set of incoherent
states can be defined as I ⊂ H and all density operators δ̂ ∈ I
are of the form δ̂ = ∑∞

n=0 δn|n〉〈n|. For (C2), Kraus operators
{K̂n} satisfy

∑∞
n=0 K̂

†
nK̂n = I and K̂nIK̂

†
n ⊂ I are dn × din

matrices where din → ∞. Given these premises, our problem
turns to verifying condition (C4): whether these quantifications

of coherence fulfilling (C1)–(C3) can serve as a unit for
coherence or be finite C(ρ) < ∞, when the energy constraint
is taken into consideration. That is, incoherent states, maximal
coherent states, and the maximum quantification of coherence
need to be carefully tested.

III. RELATIVE ENTROPY OF COHERENCE

In this section, we show that the relative entropy of
coherence Crel.ent. fulfills the requirements of the quantification
of coherence for the states in the infinite-dimensional Hilbert
space. At the beginning, it is easy to find that the diagonal
mixed states such as thermal states have zero coherence
Crel.ent. = 0. When the mean particle number is finite n̄ :=
〈n̂〉 < ∞, we can figure out the maximal coherent state as

|ψm〉 =
∞∑

n=0

n̄n/2

(n̄ + 1)(n+1)/2
eiϕn |n〉, (3)

which makes (C4) saturated:

Cmax
rel.ent. = (n̄ + 1) log(n̄ + 1) − n̄ log n̄ < ∞. (4)

This result can be directly obtained from the fact that the
thermal state as ρ̂ th(n̄) = ∑∞

n=0 (n̄n/(n̄ + 1)n+1)|n〉〈n| reaches
the maximum von Neumann entropy. Therefore, we can
conclude that relative entropy of coherence is an appropriate
quantification of the coherence in the infinite-dimensional
systems. �

Hereafter, the relative entropy shown in Figs. 1 and 2
is calculated by using the natural logarithm function ln.
The normalized second-order correlation function of the
maximal coherent state (3) can be calculated as g2(0) =
〈â†â†ââ〉/〈n̂〉2 = 2 which is the same as the thermal state.
Given a linear phase generation ϕn = nϕ, the state (3), a pure
state with a thermal distribution (PSTD), has been shown to be
the eigenstate of the SG-phase operator

∑∞
n=0 |n〉〈n + 1| with

eigenvalue
√

n̄/(n̄ + 1)eiϕ [18]. A proposal of the generation
of PSTD in the “photon box” [19] has been also presented in
Ref. [18]. Compared with two well-known Gaussian states,
the coherent state |α〉 := D̂(α)|0〉 and the squeezed vacuum
state |0,ξ 〉 = Ŝ(ξ )|0〉, the particle number distributions and
the coherence quantifications of relative entropy are shown in
Figs. 1(a) and 1(b), respectively. The PSTD has the geometric
distribution, the coherent state has the Poisson distribution,
and the squeezed vacuum state has zero distributions for odd
photon numbers. Given different average photon numbers, the
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FIG. 1. (a) Photon number distributions of the PSTD, the coherent state, and the squeezed vacuum state against average particle number.
(b) Relative entropies of coherence of the PSTD, the coherent state, and the squeezed vacuum state against average particle number. (c)
Determinants of the covariance matrices γ of these three states against the mean particle number.
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PSTD always has the largest relative entropy of coherence.
The squeezed state has a larger relative entropy of coherence
that the coherent state for the larger average photon number. In
Fig. 1(c), the determinants of the coherence variance matrices
γ of these three states against the mean particle number are
given. Since a Gaussian state is pure iff det γ = 1 [13–15],
we conclude that the PSTD with form (3) is a non-Gaussian
state, except for n̄ → 0. Therefore, the PSTD cannot be
easily constructed by acting the squeezing and displacement
operators on the vacuum state. For details, please see the
appendix.

Furthermore, in the infinite-dimensional systems, we con-
sider the interconversion between relative entropy of coher-
ence Crel.ent. and relative entropy of entanglement Erel.ent. [20].
It is shown in Ref. [7] that the nonzero coherence of a system
can be converted to the entanglement between the system (S)
and an initially incoherent ancilla (A). For the contractive
distance to be the relative entropy and dim(A) � dim(S),
there exits an incoherent operation �SA

ICPTP(◦) on the combined
system such that

Erel.ent.
[
�SA

ICPTP(ρ̂ ⊗ |0〉A〈0|)] = Crel.ent.(ρ̂). (5)

To generalize this result to the infinite-dimensional system, we
choose dim(A) → ∞ and consider the incoherent operation as
�SA

ICPTP(◦) = U ◦ U † with the unitary operation,

U =
∞∑

i,j=0

|i〉〈i| ⊗ |i + j 〉A〈j |. (6)

Therefore, for the infinite-dimensional systems, we find the
connection between the relative entropy of coherence and the
relative entropy of entanglement. For instance, we consider
the maximal coherent state (3) and obtain

�SA
ICPTP(|ψm〉〈ψm| ⊗ |0〉A〈0|) = |TMSV〉〈TMSV|, (7)

where |TMSV〉 ≡ ∑∞
n=0

n̄n/2

(n̄+1)(n+1)/2 e
iϕn |n〉|n〉A is the two-mode

squeezed vacuum (TMSV) state and maximizes the relative
entropy of entanglement, given a finite average particle
number.

IV. l1 NORM OF COHERENCE

Next, we show that the l1 norm of coherence does not
satisfy (C4) in the infinite-dimensional systems. With a
set of the particle number distributions {Pn ∈ [0,1]} of a
pure state, the identity condition,

∑∞
n=0 Pn = 1, and the

finite energy constraint (C4),
∑∞

n=0 nPn = n̄ < ∞, are two
constraint conditions. Here, we only consider the pure states,
because for any mixed state, we can find a pure state with
the same particle number distribution that achieves a larger l1
norm of coherence. That is, given the finite energy constraint,
the possible maximal coherent state for the maximal l1 norm
of coherence should be a pure state.

The l1 norm of coherence of a pure state with {Pn} can be
written as

Cl1 (ρ̂) =
∞∑

m,n=0

√
PmPn − 1. (8)

The maximum of l1 norm of coherence should occur as the
first variation is zero,

δCl1 =
∞∑

m,n=0

√
Pm/PnδPn = 0, (9)

with two constraints,
∞∑

n=0

δPn = 0, and
∞∑

n=0

nδPn = 0. (10)

Using the method of Lagrange multipliers with two Lagrange
multipliers λ1 and λ2 to combine Eqs. (9) and (10), a series
of equations can be obtained for n being the non-negative
integers: ∑∞

m=0

√
Pm√

Pn

+ λ1n + λ2 = 0, (11)

the solutions of which, also called Karush-Kuhn-Tucker

(KKT) conditions [21], are written as {Pn = (
∑∞

m=0

√
Pm

λ1n+λ2
)
2}.

If we assume that S ≡ ∑∞
m=0

√
Pm is finite, we can obtain

that S = ∑∞
m=0[S/(λ1n + λ2)] relates to the Riemann Zeta

function [22] and is infinite. Therefore, the solutions that
fulfill Eq. (11) obviously are not a set of particle number
distributions. Moreover, mathematically, l1 norm of coherence
(8) is a concave function in probability space which makes the
KKT conditions also sufficient for the optimality [21]. Then,
we can conclude that analytically for the optimal problem
of the l1 norm of coherence, no maximal coherent state
that satisfies C(4) can be derived. Therefore, the l1 norm of
coherence does not seem to be a well-defined quantification
of coherence in Fock space, because it does not have a well-
defined maximal coherent state, which completes the proof. �

We here note that with a stronger condition (C4′), in which
the second-order moment is finite 〈n̂2〉 < ∞, we can find
a well-defined maximal coherent state for the l1 norm of
coherence and C(ρ̂) < ∞ could be met.

V. RELATIVE ENTROPY OF COHERENCE IN
MULTIMODE FOCK SPACE

We have shown that the relative entropy of coherence Crel.ent.

fulfills the requirements of the quantification of coherence even
for the states in the single-mode Fock space. Then, we gener-
alize this result to the d-mode Fock space H = ⊗d

i=1Hi . It has
the basis {|n〉 = ⊗d

i=1|ni〉i} consisting of the multimode Fock
states and the probability distributions {Pn}, where the vector is
defined as n = (n1,n2 . . . ,nd ) and we define |n|1 = ∑d

i=1 ni .
After simple calculations, the maximal coherent state should
have a distribution as P max

n = n̄
|n|1
t /[(n̄t + 1)|n|1+1Cd−1

|n|1+d−1]
with the finite average total particle number written as n̄t ≡∑

n Pn|n|1 and can be written as

∣∣ψd
m

〉 =
∑

n

n̄
|n|1/2
t[

(n̄t + 1)|n|1+1Cd−1
|n|1+d−1

]1/2 |n〉. (12)

The maximum relative entropy of coherence for d-mode
Fock space can be calculated as

C
max,d
rel.ent. = C

max,d=1
rel.ent. + Sd (n̄t), (13)
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FIG. 2. Relative entropies of coherence of multimode states. (a) Relative entropies of coherence of maximal coherent states with d =
1,2 . . . ,5. (b) For two-mode states d = 2, relative entropies of coherence of the maximal coherent state, two-mode coherent state, TMSV, and
TMSV through a 50:50 beam splitter. (c) For two-mode states d = 2, determinants of the covariance matrices γ ′ of these three states against
the total mean particle number.

where Sd (n̄t) ≡ ∑∞
n=0[n̄n

t /(n̄t + 1)n+1] log(Cd−1
n+d−1) is a con-

vergent series, and C
max,d=1
rel.ent. is given in Eq. (4). Since Sd (n̄t) >

Sd ′ (n̄t) if d > d ′, we show in Fig. 2(a) that given a fixed average
total particle number n̄t, the relative entropy of coherence
increases as the number of modes d increases. This result
is significant because with a finite average particle number,
increasing the number of modes of light can enhance the coher-
ence as a resource in quantum information processing. Also the
advantages of multimode quantum optics have been recently
interpreted in the quantum metrology [23], optical quantum
computation [24], and other photonic technologies [25,26].

For comparison, we then consider the two-mode coherent
state, the two-mode squeezed vacuum (TMSV) state, and the
TMSV passing a 50:50 beam splitter as special examples.
The probability of the last one has been shown to be
efficient to beat the shot noise limit (SNL) in the quantum
metrology [27]. The TMSV can be written as |TMSV〉 =∑∞

n=0 (n̄t/2)
n
2 /(n̄t/2 + 1)

n+1
2 |n〉1|n〉2, and the TMSV through

a 50:50 beam splitter is written as [22,27]

ÛBS|TMSV〉 =
∞∑

n=0

(
n̄t
2

) n
2(

n̄t
2 + 1

) n+1
2

n∑
k=0

(−1)k

× Ck
n[(2n − 2k)!(2k)!]

1
2

2nn!
|2n − 2k〉1|2k〉2,

(14)

where ÛBS := exp[iπ (â†b̂ + âb̂†)/2] is the unitary transfor-
mation of a 50:50 beam splitter with â (â†) and b̂ (b̂†) the
annihilation (creation) operators for two modes, respectively.
Compared with the maximal coherent state for d = 2, we show
in Fig. 2(b) the relative entropies of coherence of these three
Gaussian two-mode states against the total average particle
number n̄t. It is obviously shown that the TMSV through a
50:50 beam splitter has a larger coherence than TMSV. The
reason may be that in each subspace with a definite total photon
number, the state after the beam splitter is spanned by more
bases. Moreover, we show in the appendix and in Fig. 2(c) that
the two-mode maximal coherent state is not a Gaussian state.

VI. CONCLUSIONS

In conclusion, we have investigated the quantifications
of coherence in the infinite-dimensional systems, as there

are very relevant physical situations that require the infinite-
dimensional systems for their descriptions. A new constraint
condition (C4) has been suggested for this problem, with
which the relative entropy of coherence has been shown
to be a well-defined quantification of coherence in infinite-
dimensional systems, but the l1 norm of coherence fails.
We have also considered quantifying the coherence in the
multimode Fock space. Given a fixed average total particle
number, the relative entropy of coherence increases as the
number of modes increases, which is significant because the
coherence as a resource in quantum information processing
is larger when increasing the number of modes. This work
investigates experimentally relevant infinite-dimensional sys-
tems and the most general and easy to use quantifiers, which
is important for experimental and theoretic applications in
quantum physics as well as quantum optics. Moreover, our
results can be easily extended to other infinite-dimensional
systems.
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APPENDIX A: RELATIVE ENTROPY OF COHERENCE OF
THE COHERENT STATE AND THE SQUEEZED VACUUM

STATE

The well-known coherent state can be written as

|α〉 = e−|α|2/2
∞∑

n=0

αn
/√

n!|n〉, (A1)

with the particle number distribution P cs
n = e−n̄n̄n/n! and n̄ =

|α|2. The relative entropy as a quantification of coherence can
be calculated as

Ccs
rel.ent. = e−n̄

∞∑
n=0

n̄n log n!

n!
− n̄ log

n̄

e
, (A2)

which is shown in Fig. 1(b). A squeezed state |α,ξ 〉 may be
generated by first acting with the squeeze operator Ŝ(ξ ) on
the vacuum followed by the displacement operator D̂(α) with
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particle number distribution (ξ = rei2φ) [28],

P ss
n = exp

[ − |α|2 − 1
2 tanh r(α∗2eiφ + α2e−iφ)

]
2nn! cosh r

tanhn r

∣∣∣∣Hn

(
α + α∗eiφ tanh r√

2eiφ tanh r

)∣∣∣∣
2

, (A3)

where Hn(z) is the nth Hermite polynomial. For the squeezed vacuum state, α = 0 and |Hn(0)| = 2n/2(n − 1)!! when n is even,
we obtain

P sv
n = tanhn r[(n − 1)!!]2

n! cosh r
, (A4)

where n̄ = sinh2 r . Then we can calculate the relative entropy using Csv
rel.ent. = ∑∞

n=0 P sv
n log P sv

n in Fig. 1(b).

APPENDIX B: COVARIANCE MATRIX OF PSTD AND THE TWO-MODE MAXIMAL COHERENT STATE

Canonical variables can be written in terms of creation and annihilation operators as

x̂ = 1√
2

(â + â†), p̂ = 1√
2i

(â − â†), � = 1. (B1)

For the state in the one-mode Fock space, by defining a vectorial operator R = (x̂,p̂)T , we can calculate the covariance matrix
as follows:

γ = 2

(
Covρ(x̂,x̂) Covρ(x̂,p̂)

Covρ(p̂,x̂) Covρ(p̂,p̂)

)
− iJ1 (B2)

= 2

(
n̄ + 1

2 + 〈â2〉 − 2〈â〉2 0

0 n̄ + 1
2 − 〈â2〉

)
, (B3)

where J1 = ( 0
−1

1
0), the covariance of two operators is defined as Covρ(Â,B̂) ≡ Tr(ρÂB̂) − Tr(ρÂ)Tr(ρB̂), and

〈â2〉 = n̄

(n̄ + 1)2

∞∑
n=0

(
n̄

n̄ + 1

)n√
n + 2

√
n + 1, (B4)

〈â〉 = Li− 1
2

(
n̄

n̄ + 1

)/√
n̄(n̄ + 1), (B5)

with Lik(z) = ∑∞
n=1 zn/nk the polylogarithm function. The determinant of the covariance matrix in Eq. (B3) is calculated

numerically and shown in Fig. 1(c) against the mean particle number n̄. Then, we conclude the PSTD is non-Gaussian for n̄ > 0.
Similarly, for the two-mode maximal coherent state,

∣∣ψd=2
m

〉 =
∞∑

n=0

[
n̄n

t

(n̄t + 1)n+1(n + 1)

] 1
2

n∑
k=0

|k〉1|n − k〉2, (B6)

the covariance matrix, with b̂† and b̂ the creation and annihilation operators of the second mode, can be written as

γ ′ = 2

⎛
⎜⎜⎜⎝

Covρ(x̂1,x̂1) Covρ(x̂1,p̂1) Covρ(x̂1,x̂2) Covρ(x̂1,p̂2)

Covρ(p̂1,x̂1) Covρ(p̂1,p̂1) Covρ(p̂1,x̂2) Covρ(p̂1,p̂2)

Covρ(x̂2,x̂1) Covρ(x̂2,p̂1) Covρ(x̂2,x̂2) Covρ(x̂2,p̂2)

Covρ(p̂2,x̂1) Covρ(p̂2,p̂1) Covρ(p̂2,x̂2) Covρ(p̂2,p̂2)

⎞
⎟⎟⎟⎠ − iJ1 ⊕ J1 (B7)

= 2

⎛
⎜⎜⎜⎝

n̄′ + 1
2 + 〈â2〉 − 2〈â〉2 0 〈âb̂〉 + 〈âb̂†〉 − 2〈â〉2 0

0 n̄′ + 1
2 − 〈â2〉 0 〈âb̂†〉 − 〈âb̂〉

〈âb̂〉 + 〈âb̂†〉 − 2〈â〉2 0 n̄′ + 1
2 + 〈b̂2〉 − 2〈b̂〉2 0

0 〈âb̂†〉 − 〈âb̂〉 0 n̄′ + 1
2 − 〈b̂2〉

⎞
⎟⎟⎟⎠, (B8)

where n̄′ = n̄t/2. Here, we have used the fact that

〈â2〉 =
∞∑

n=0

n̄n+1
t

(n̄t + 1)n+2

n∑
k=0

√
(k + 1)(k + 2)

(n + 1)(n + 3)
, (B9)

〈â〉 =
∞∑

n=0

n̄
n+ 1

2
t

(n̄t + 1)n+ 3
2

n∑
k=0

√
(k + 1)

(n + 1)(n + 2)
, (B10)
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〈âb̂〉 =
∞∑

n=0

n̄n+1
t

(n̄t + 1)n+2

n∑
k=0

√
(k + 1)(n − k + 1)

(n + 1)(n + 3)
, (B11)

and

〈âb̂†〉 =
∞∑

n=0

n̄n
t

(n̄t + 1)n+1

n∑
k=0

√
(k + 1)(n − k)

n + 1
. (B12)

The determinant of the covariance matrix in Eq. (B8) is calculated numerically and shown in Fig. 2(c) against the total mean
particle number n̄t.
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