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Single-photon sources (SPSs) are a fundamental building block for optical implementations of quantum
information protocols. Among SPSs, multiple crystal heralded single-photon sources seem to give the best
compromise between high pair production rate and low multiple photon events. In this work, we study
their performance in a practical quantum-key-distribution experiment, by evaluating the achievable key rates.
The analysis focuses on the two different schemes, symmetric and asymmetric, proposed for the practical
implementation of heralded single-photon sources, with attention on the performance of their composing elements.
The analysis is based on the protocol proposed by Bennett and Brassard in 1984 and on its improvement exploiting
decoy state technique. Finally, a simple way of exploiting the postselection mechanism for a passive, one decoy
state scheme is evaluated.
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I. INTRODUCTION

The goal of quantum-key distribution (QKD) is to allow
two distant parties, Alice and Bob, to share a secret key
even in the presence of an eavesdropper, Eve. Since in
quantum mechanics measurements irremediably perturb the
systems, it is impossible for an eavesdropper to extract useful
information without being noticed. Quantum-key-distribution
protocols, like the Bennett-Brassard 1984 (BB84) protocol
[1], are proven to be unconditionally secure, when using
single photons. However, due to the spread of laser systems
and the difficulty of realizing true single-photon sources,
most QKD implementations use attenuated pulsed lasers as
sources. The need to avoid multiphoton pulses, that can leak
information through the photon number splitting (PNS) attack
[2], requires a low mean photon number per pulse. This,
however, increments the incidence of pulses containing no
photons, thus limiting the key generation rate. The incidence of
the PNS attack can be limited using the decoy state technique
[3–5], at the expense of the necessity to modulate the laser
intensity. These limitations have encouraged the research of
sources emitting a single photon for each pulse.

One possible implementation of these sources is based
on localized quantum structures, such as color centers [6],
quantum dots [7,8], atoms [9], or ions [10] in a cavity. These
schemes, however, show some major drawbacks: the need
of expensive equipment for their operation and limitations
in wavelength and bandwidth selection [11]. An alternative
scheme for single-photon sources exploits the process of spon-
taneous parametric down conversion (SPDC) in a nonlinear
crystal. An intense laser pump on a nonlinear crystal leads to
the probabilistic emission of pairs of photons, called signal and
idler. The idler photon can be used to “herald” the presence
of the signal photon, giving the so-called heralded source
(HS). If the duration of the pulse is much greater than the
reciprocal of the phase-matching bandwidth the statistics of
the pairs is still poissonian [11]. There are some strategies
for improving the single-photon character of the heralded
source. One strategy consists of using a single HS with photon
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number resolving detector on the idler channel and selecting
the pulses where only one photon has been detected [12]. An
alternative strategy uses parallel HS units and postselection:
each unit is pumped with low intensity to suppress multiphoton
events, while keeping the overall rate at an acceptable level.
The scheme of multiple HS with postselection (MHPS) has
been originally proposed by Migdall et al. [13]: it used an
m-to-1 optical switch triggered by a detector on the idler
photon of each HS. Migdall et al. took into account also
the finite efficiency of single-photon detectors but, as pointed
out by Shapiro and Wong [11], the current low efficiency of
m-to-1 optical switches strongly limits the performance of
this architecture. To overcome this limitation, they proposed
a symmetric scheme (SMHPS) using m HS units linked by
m − 1 binary polarization-based photon switches in a tree
structure [11]; see Fig. 1. They studied the probability of
single-photon and multiphoton pulses, with real detectors
and optical switches. Their scheme has been subsequently
implemented using four crystals, both with bulk optics [14]
and using hybrid photonic circuits [15].

A thorough analysis of multiple heralded sources with
postselection has been performed in Ref. [16]. From their
work, it emerges that, in the case of imperfect devices, the
symmetric scheme suffers from a scalability issue, with a
decrease in one photon probability when increasing the number
of crystals. In Ref. [16], an asymmetric scheme (AMHPS)
that does not present this problem was also proposed. The
scheme is shown in Fig. 2 for completeness. The SMHPS and
AMHPS schemes were also referred to respectively as log-tree
and chained scheme in Ref. [17].

Subpoissonian sources have already been demonstrated to
give an improvement over poissonian ones in the key rate of a
QKD system [12,18]. This article specializes the analysis to the
case of the multiple-crystal heralded photon sources studied
in Ref. [16], parametrizing them using their design parameters
instead of the more experimentally relevant efficiency and
second-order correlation. Moreover, the security analysis is
extended to the case of general attacks by Eve [19].

In this work, we follow [16], and compare the performances
of the different architectures and their efficacy in a practical
QKD implementation. An ideal MHPS in the configuration
proposed by Migdall et al., with perfect heralding efficiency
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FIG. 1. Schematic of the SMHPS [11]. Each nonlinear crystal
(NLC) is fed with pulses such that the mean number of generated
pair per pulse is μ/γ k , with k = log2 m and γ is the transmittance of
2-to-1 optical switches. The idler of each NLC is fed into a detector
with quantum efficiency η.

and an m-to-1 optical switch with no losses, is studied first, in
order to give an account of the maximum performance that can
be obtained with this kind of source. Next, two architectures
for implementing a multiplexed source in a realistic scenario
are analyzed, based on symmetric and asymmetric networks of
2-to-1 switches. Finite heralding efficiency and optical switch
transmittance are considered in order to illustrate the potential
of these source with state-of-the-art technology. The different
types of sources are inserted in a common model of QKD,
based on the BB84 protocol and taking into account channel
and detector inefficiencies [19]. The optimization maximizes
the key generation rate for the different architectures, with
different numbers of HS units, for a wide range of channel
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FIG. 2. Schematics of the AMHPS [16]. Each nonlinear crystal
(NLC) is pumped with a different intensity in order to compensate
the different number of traversed 2-to-1 optical switches, each
characterized by its transmittance γ . The idler of each NLC is fed
into a detector with quantum efficiency η.

losses. The obtained values are then compared with the key
generation rate of both an ideal single-photon source and an
attenuated laser.

The symmetric and asymmetric schemes are also optimized
when used with decoy states [3,4], both in an active [5] and
in a passive scheme [20,21]. The active scheme, where Alice
actively changes the output statistics of its apparatus, allows
her to choose an arbitrary number of decoy states, giving
her the ability to estimate channel parameters with arbitrary
precision. Passive decoy, on the other hand, is implemented
by exploiting photon number correlations of the two outputs
of nonlinear crystals [20]. This gives less flexibility in the
choice of the decoy states, thus limiting the precision of
parameter estimation, but allows us to reach a key generation
rate comparable with active decoy without introducing further
complexity in Alice’s apparatus.

II. MODEL

To evaluate the performances of the heralded single-photon
sources, we consider the Bennett-Brassard 1984 (BB84) QKD
protocol [1] with polarization encoding. Alice, the transmitter,
encodes the random bits into the Z ≡ {|H 〉,|V 〉} or the X ≡
{|D〉,|A〉} basis, where H , V , D, and A refer to the horizontal,
vertical, diagonal, and antidiagonal polarization respectively.
Bob randomly measures the incoming photon into the Z or X

basis. After the transmission, Alice and Bob discard the events
in which the sent and measured bases are different. On the
remaining events, they evaluate the secret key rate, namely the
amount of unconditional secret bits that they have produced.

The single-photon source held by Alice is completely
described by its output statistics. We indicate the probability
of emitting n photon by P M

n (μ; m) for the MHPS and
P S

n (μ; m,η,γ ) and P A
n (μ; m,η,γ ) for the SMHPS and the

AMHPS, respectively [16] (see Appendix A for a more
detailed description of the different architectures and the
explicit expressions of P M

n , P S
n , and P A

n ). The source is
pumped by a pulsed laser, with phase randomization between
each pulse [19]. The variable μ is proportional to the intensity
of the pump laser, which is related to the mean number of pairs
generated by each HS per pulse. The sources are parametrized
by the number of nonlinear crystals (i.e., of HS units) m

and, for the SMHPS and the AMHPS, by the efficiency of
the heralding detectors η and the transmittance of the optical
switches γ . For γ → 1, the scheme used in the switching
network is no longer significant, therefore the output statistics
of the two architectures coincide. If the heralding efficiency
η → 1 as well, the two architectures become equivalent to the
ideal MHPS.

We used as a model for the QKD channel a depolarizing
lossy channel (DLC), characterized by a transmittance t =
10−L/10, with L the loss level in decibel, and a depolarization
effect with visibility V , that takes into account also alignment
and stability issues.

The receiver consists of an optical apparatus, characterized
by transmittance tB , and two single-photon detectors, each
with quantum efficiency ηB and dark count probability pd .
They are threshold detectors, i.e., they cannot discriminate
the number of incident photons. Assuming the effects of the
channel on each photon of an n-photon pulse are independent,
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the probability that a detector clicks, when an n-photon signal
is sent, is

ηn = 1 − (1 − ηDtBt)n. (1)

The parameters used for the evaluation of the secret key rate
are the gain Q, defined as the probability that a pulse gives
a click in Bob’s measurement apparatus, and the quantum
bit error rate (QBER) E, i.e., the error probability in Bob’s
detection events. These are the only measurable parameters
during a QKD experiment. For the DLC they can be estimated
as follows (see also Ref. [5]).

The gain is defined as

Q =
∞∑

n=0

YnPn, (2)

where Pn is the probability of having n photons in a pulse
and Yn is the yield of an n-photon signal, i.e., the conditional
probability of a detection event at Bob’s side given that Alice
sends n photons. Assuming independence between signal and
background, the yield of an n-photon pulse for a DLC can be
predicted to be

Ỹn = Ỹ0 + ηn − Ỹ0ηn � Ỹ0 + ηn, (3)

where Y0 is the probability of a dark count event, which is
Ỹ0 � 2pd in the case of two independent detectors and small
dark count probability. From now on we use the convention of
indicating with a tilde the predicted parameters for a DLC. The
negative term, coming from the fact that real detection events
and dark counts are not mutually exclusive, can be neglected,
since Y0 � 1.

The QBER is defined by

E = 1

Q

∞∑
n=0

enYnPn, (4)

where en is the n-photon error rate, i.e., the probability of
an error when Alice sends a n-photon state. For a DLC the
n-photon error rate can be predicted to be

ẽn = ẽ0Ỹ0 + ẽdηn

Ỹn

, (5)

where ẽ0 = 1
2 is the error probability of a dark count event,

which is assumed to be random, and ẽd = 1−V
2 is the

probability that a photon hits the wrong detector.

III. SECRET KEY RATE

After the transmission, Alice and Bob use postprocessing
to extract a shared, secret key from the exchanged symbols.
The secret key rate R is defined as the fraction of pulses that
produce a secret bit (without counting those discarded in the
sifting phase) [19]. Its high dependence on source statistics
makes it the most suitable parameter for the comparison of the
different configurations.

A. BB84 without decoy state

The rate of the BB84 protocol is limited by the fact
that Eve can, in principle, obtain full information from a
multiphoton pulse through the photon number splitting (PNS)

attack, without introducing any error [2]. In the asymptotic
limit of infinite key, the achievable key rate is

R = Q

{
(1 − �)

[
1 − h

(
E

1 − �

)]
− fECh(E)

}
, (6)

where � is the multiphoton rate, defined as

� = 1 − P0 − P1

Q
, (7)

fEC is the error correction efficiency, and h(x) is the binary
Shannon entropy [19,22]. For true single-photon sources � =
0 and the secret key rate is written as R = Q[1 − h(E) −
fECh(E)]: the correction term 1 − � in (6), indeed, takes into
account the possible PNS attack on the multiphoton pulses.

B. BB84 with active decoy

The decoy state technique has been introduced to counteract
the PNS attack [4]. It consists of randomly varying the source
statistic, so that Eve can no longer adapt her attack to Alice’s
state. After the transmission, Alice communicates to Bob the
state she used for every pulse, allowing them to estimate
channel parameters conditioned to that knowledge.

The decoy state technique is active in the sense that
Alice chooses the output statistics using a random number
generator and (typically) a variable attenuator after the source.
In principle, she can choose an arbitrary number of decoy
states: however it has been shown that just using the vacuum
and a weak decoy state gives tight bounds on the relevant
parameters [5]. In the asymptotic limit of infinite key, the key
rate is

R = P0Y0 + P1Y1[1 − h(e1)] − QfECh(E), (8)

where P0 and P1 are given by the source statistics in the
signal state and the parameters e1, Y0, and Y1 are the channel
parameters estimated using decoy states [5,23]. Following
[19], we make the simplifying assumption that the parameters
have been determined exactly.

C. BB84 with passive decoy

In passive decoy state QKD, the source statistics is not under
Alice’s direct control, but is conditioned on some random event
at Alice’s side. A typical example consists of an attenuate
coherent state passing through a 50/50 beam splitter (BS) with
a single-photon detector at the reflected output: the photon
statistic at the transmitting output of the BS changes when
Alice detects or not a photon. In the case of heralded sources,
we denote by P (c)

n or P (nc)
n the output statistics if, respectively,

at least one detector or no detector clicks (see Appendix B
for the explicit form of these probabilities for the different
architectures). We note that P (nc)

n is not trivial since in both
schemes the postselection mechanism outputs the first HS if
no detector fires [16]. This feature can be used to implement
a passive decoy state, since Eve has no way of distinguishing
the statistics of each pulse before it is publicly announced.

Assuming the postprocessing is done separately for each
statistics, the key rate is

R = P cRc + P ncRnc, (9)
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where Rc and Rnc are the key rates for, respectively, the case
of at least one detector and no detector clicking. The key rate
is, in the limit of infinite key,

Rξ = P
(ξ )
0 YL

0 + P
(ξ )
1 YL

1

[
1 − h

(
eU

1

)] − QξfECh(Eξ ), (10)

where ξ ∈ {c,nc}, Qξ and Eξ are the parameters estimated
from the pulses in the corresponding statistics and YL

0 , YL
1 , eU

1
are the lower (L) and upper (U) bounds for the parameters
estimated from {Qc,Ec,Qnc,Enc} and the known source
statistics. The explicit formulas for parameter estimation,
derived from [24], are given in Appendix B in Eqs. (B10),
(B13), and (B19).

IV. RESULTS

In the present section we compare the performances of the
SMHPS and AMHPS sources for different values of m, namely
the number of HS units considered. The parameter μ, related to
the number of generated pairs per pulse, is the free parameter
used to numerically maximize the rate.

For the channel and detector parameters, we used typical
values of present day fiber-based QKD systems [19]. We
consider a channel with visibility V = 0.99 and losses ranging
from 0 to 55 dB (we note that 55 dB corresponds to 275 km if
we consider the typical fiber attenuation of α = 0.2 dB/km).
Bob’s apparatus is characterized by optical transmittance
tB = 1 and detectors with quantum efficiency ηB = 0.25
and dark count probability pd = 2 × 10−7, corresponding to
the state-of-the-art of infrared semiconductor single-photon
detectors [25]. The efficiency of the error correction code is
fEC = 1.05 [26].

All the simulated key rates are compared with the one
obtained with an weak coherent source (WCS) of poissonian
output statistics Pn = e−μμn/n!, where μ is the mean number
of photons per pulse, both without and with a decoy state. In the
passive scheme, the comparison is extended to the one decoy
state with attenuated laser described in Ref. [5], where also the
inefficiencies in parameter estimation are taken into account.
Furthermore, all schemes are compared with the single-photon
case, representing an upper bound of the rate attainable in a
given configuration.

In the following subsections the performances of the
heralded single-photon source are compared in different cases.

A. Performances of BB84 without decoy state

The ideal MHPS gives the maximum key rate attainable
with this kind of source [16]. This value is shown in Fig. 3. The
key rate increases with the number of HS units and approaches
the single-photon case for m = 128, in the low loss regime.
Indeed, for m → ∞, � = O(μ) and Q � 1, approximating
the single-photon case for μ � 1. At increasing losses,
however, the contribution of multiphoton pulses increases and
the source shows the same behavior as the attenuated laser.
This had already been observed in Ref. [18], with the difference
that, for low m, not only is the fraction of multiphoton pulses
higher, determining the lower maximum tolerable loss level,
but also the incidence of pulses with zero photons is stronger,
determining the lower key rate at L = 0 dB.
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FIG. 3. Key rate for the MHPS architecture in function of channel
losses.

While these limitations are proper of the multiple-crystal
architecture itself, the implementation using finite efficiency
devices further reduces the key generation rate. Using η = 0.7
and γ = 0.5 as, respectively, heralding efficiency and switch
transmittance [16], the key generation rate of the SMHPS and
the AMHPS has the values shown in Fig. 4. Both the key
rate and the maximum tolerable losses are lower than for the
ideal MHPS, since the low switch transmittance requires a
higher mean number of generated pairs per pulse in order to
avoid zero-photon pulses, thus increasing also the incidence
of multiphoton pulses. This effect is particularly evident in the
case of the SMHPS, where, independently from the HS unit
triggered to output, the number of switches crossed scales as
k = log2 m. For few HS units, where the number of crossed
switches is low, the predominant effect is the suppression of
multiphoton events, therefore the key rate increases with m.
For a higher number of HS units (such as m = 32 or m = 128),
the source shows a low key rate for low losses (not much
higher than the attenuated laser one) and a high maximum
tolerable loss level. In the limit m → ∞, any advantage over
the attenuated laser is lost.

On the other hand, the AMHPS has a more stable behavior,
since its key rate never decreases by increasing m, but reaches
an optimal value and then remains unchanged (the key rates
for m = 8 and m = 128 are almost equal). This is due to the
fact that, when a certain number of HS units has been reached,
the addition of further HS units does not yield significant
improvement, since the probability that the rightmost HS units
are triggered to the output is negligible and the output is given
only by the leftmost HS units, whose configuration does not
change (see Fig. 2).

The different behavior of the two architectures is even more
evident when studying their key rate at the variation of the two
relevant source parameters, the detection efficiency η and the
switch transmittance γ . The key rate of the SMHPS and the
AMHPS is shown, respectively, in Figs. 5 and 6, when fixing
η = 0.7 and changing γ on the left and with fixed γ = 0.5
and changing η on the right. The behavior of the SMHPS is
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FIG. 4. Key rate of the SMHPS (left) and the AMHPS (right), with η = 0.7 and γ = 0.5 for BB84 without decoy state. For the AMHPS
(right), the curves for m = 8, m = 32, and m = 128 are superposed.

highly dependent on the switch transmittance. For low γ , the
benefits deriving from multiple HS units do not compensate
the higher absorption rate. As evident from Fig. 5, for γ < 0.5
the SMHPS does not perform much better than the attenuated
laser. This is consistent with the results from [16], where it
has been shown that, in the asymptotic limit m → ∞, the
SMHPS performs better than the attenuated laser for γ � 0.5.
The curve γ = 0.5 corresponds to the transition between the
laserlike regime and the MHPS-like one.

The effect of the detector efficiency η is evident in the
high loss regime, where the influence of the lower number of
multiphoton pulses is more important. This can be evinced
from the right plot of Fig. 5, where the detection efficiency
η is varied for the case γ = 0.5. In the low loss regime,
the key rate is the same for all values of η, showing that
in this region the dominating effect is photon absorption in
the optical routing. On the other hand, the high loss regime

shows an improvement in the maximum tolerable loss level
from 21 dB for η = 0.1 to 26 dB for η = 1. The increased
detection efficiency allows a better choice of the HS unit to
route to output, thus allowing the HS units to be pumped
with less intensity and decreasing the incidence of multiphoton
pulses.

The key rate curves of the AMHPS, on the contrary,
show the same trend for all tested combinations (η,γ ). In the
asymmetric scheme, indeed, photons emitted by the leftmost
HS units pass a low number of optical switches before being
routed to output, therefore the effect of photon absorption
never dominates over multiphoton pulses.

B. Performances of BB84 with decoy state

The key rate for active decoy is obtained by using Eq. (8),
with e1, Y0, and Y1 calculated by using the channel parameters
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FIG. 5. Key rate (without decoy state) for the SMHPS for m = 32 and (left) η = 0.7 and different values of γ , (right) γ = 0.5 and different
values of η.
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FIG. 6. Key rate (without decoy state) for the AMHPS for m = 32 and (left) η = 0.7 and different values of γ , (right) γ = 0.5 and different
values of η.

given in (5) and (3). The results of simulations are shown in
Fig. 7. The normalized mean number of generated pairs that
maximizes the key rate is almost constant for both sources in
the range ∼0.6–0.9, with a steep fall in the regime where dark
counts become important. The rate of the SMHPS decreases
as the number of crystals increases, thus further underlining
the detrimental effect of the increased absorption in optical
switches. The AMHPS, on the other hand, does not show
any improvement for more than four HS units, because the
probability of triggering the rightmost HS units is negligible
(see Appendix A).

Since in the proposed implementation of passive decoy the
bound on channel parameters is no longer optimal, simulations
have to take into account also this effect on the key rate.
Therefore, the key rate is calculated by inserting the bounds
for e1, Y0, and Y1 into (10) and taking into account the fraction
of pulses using each statistics with Eq. (9). Simulation results

are shown in Fig. 8. The use of just two different statistics
gives a nonoptimal parameter estimation, so a lower key rate
than the schemes using active decoy. To account for this, the
rates in Fig. 8 are compared also with a similar, one decoy
scheme implemented with attenuated laser pulses [5]. The
worse bound on the parameters gives a worse estimation of
the information leaked to Eve, thus requiring the sources to be
pumped with lower intensity than in the case of active decoy
(the normalized mean number of generated pairs oscillates,
in this case, between 0.2 and 0.3). The performance of the
SMHPS is comparable, or slightly worse, to the one of decoy
state with attenuated lasers, because of the already discussed
detrimental effect on the source caused by optical switch
attenuation. On the other hand, the key rate of the AMHPS is
always higher than the one obtained with the attenuated laser
in the one decoy scheme and almost reaches the maximum
tolerable loss level of the attenuated laser with decoy. As in all
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FIG. 7. Key rate of active decoy state QKD for the SMHPS (left) and the AMHPS (right), with η = 0.7 and γ = 0.5. For the SMHPS
(left), the curves are very close, with m = 32 the lowest curve. In the AMHPS case (right), the lowest curve has m = 2, while all the others are
superposed.
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FIG. 8. Key rate for passive decoy state QKD for the SMHPS (left) and the AMHPS (right), with η = 0.7 and γ = 0.5.

previous schemes, the AMHPS shows no improvement after a
certain threshold of HS units is reached (in this case, m = 4).

The comparison of the two sources in the two different
decoy schemes of Fig. 9 directly shows the advantage of the
AMHPS over the SMHPS. Indeed, the asymmetric scheme
performs better than the passive one in both active and passive
decoy. Furthermore, the key rate of the AMHPS in the passive
scheme almost equals both the SMHPS and the attenuated laser
with decoy, despite the worse parameter estimation caused by
the use of just one decoy state.

V. CONCLUSION

The multiple-crystal heralded sources have shown better
performance than the attenuated laser in all the studied cases,
with the only exception of the SMHPS in the one decoy
scheme, where the high absorption in optical switches, together
with an imperfect parameter estimation, completely overrules

Losses L [dB]
0 10 20 30 40 50

K
ey

 r
at

e 
R

10 -6

10 -4

10 -2
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FIG. 9. Key rate for the SMHPS and the AMHPS for both active
and passive decoy with m = 8, η = 0.7, and γ = 0.5.

the enhancement given by the multiple crystal configuration.
The AMHPS shows better scalability than the SMHPS, since in
the latter the addition of HS units can degrade the performance
while in the former it has, in the worst case scenario, no effect.

In addition to this, the key rate of the AMHPS is generally
higher than for the SMHPS. The asymmetric structure of
the AMHPS, on the other hand, makes its implementation
harder than the SMHPS, since each crystal much be fed
a different pump intensity and the different HS units must
be carefully synchronized. Both architectures have shown
a stronger dependence of the key rate on optical switch
transmittance than on detector efficiency.

The effect of multiphoton pulses, even if less important than
for the attenuated laser, still limits the maximum tolerable
loss level. The use of the decoy state solves this problem
also for multiple-crystal heralded sources. The best results
are given by active decoy, where a variable optical attenuator
and a random number generator are used to change the
output statistics. The much more complex statistics of these
sources, however, makes the calculations needed for the
determination of the optimal decoy parameters impractical.
Therefore, the simplifying assumption of exact determination
of the parameters has been adopted and the obtained results
just give a superior limit on the attainable key rate. The optimal
decoy parameters must be calculated on a case by case basis,
once the characteristics of the source have been chosen.

These limitations might make it preferable the use of a
passive decoy scheme, which can be easily implemented in
both sources by exploiting the postselection mechanism. In
this case, the optimization has taken into account also the
inefficiencies of parameter estimation, thus the obtained results
give the effective key rate attainable with each configuration
and not just a superior limit.

All the results here presented are subjected to the approx-
imation of infinitely long key. We leave finite key effects
for future studies. These effects are important especially for
the schemes with decoy state, since each photon statistics
requires a sufficiently high number of events. In the passive
decoy scheme the effect is still more important, since the
need of considering also the relative frequency of the two
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photon statistics can drastically change the optimal source
parameters.

The recent advances in integrated photonics suggest an
increasing role of multiple-crystal heralded sources. If built
into a single chip, they might be a valid alternative to lasers
in quantum-key distribution and other quantum information
tasks requiring single photons to work properly. Our analysis
shows the supremacy of the asymmetric scheme with respect
to the symmetric one for QKD applications.
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APPENDIX A: MULTIPLE CRYSTAL HERALDED
SOURCES WITH POSTSELECTION

The multiple crystal heralded source with postselection
(MHPS) consists of an array of m HS units, simultaneously
pumped with a laser pulse with intensity such that the mean
number of generated pairs per pulse is μ [13]. For each HS
unit, labeled with index i = 1 . . . m, the idler photon is used
as a trigger for the signal one, which is injected into an optical
switch, as shown in Fig. 10. In the ideal case of perfect detector
and optical switch, a postselection mechanism that selects
one of the channels whose detector has fired gives the output
statistics

P M
n (μ; m) = μn

n!
e−μ 1 − e−mμ

1 − e−μ
(1 − δn) + δne

−mμ, (A1)

where δn is the Kronecker δ (δ0 = 1 and δn>0 = 0) [16].
Taking into account real devices, the MHPS would face the

low efficiency of m-to-1 optical switches. This can be avoided
by replacing the m-to-1 switch with a tree structure of 2-to-1

N

APD

NLC

μ

APD

NLC

μ

APD

NLC

μ

APD

NLC

μ

−−−−

O.S.

FIG. 10. Schematic of the MHPS [13]. Each nonlinear crystal
(NLC) is fed with a pulse such that the mean number of generated
pairs is μ. The idler photon is fed into a detector (APD), while the
signal one is routed through an optical switch (O.S.) to the output.

switches, giving the symmetric MHPS (SMHPS) [11] shown
in Fig. 1.

The structure of this scheme requires the number of HS
units m to be a power of 2. The idler photon of each HS unit is
fed into a detector with quantum efficiency η, while the signal
photon is directed to a 2-to-1 optical switch of transmittance γ .
Since the photons produced by each HS unit pass k = log2 m

switches before reaching the output, the crystals are pumped
with an intensity such that the mean number of generated
pairs per pulse is μ/γ k . The postselection mechanism in each
optical switch gives priority to the left HS unit and, in case no
HS unit triggers, always outputs the left one [16]. The photon
statistics at the output is

P S
n (μ; m,η,γ ) = (1 − η)μe−(1−η)μ

n!
e−ημ(2k/γ k )

+ μne−μ

n!

1 − (1 − η)ne−η(1/γ k−1)μ

1 − e−η(μ/γ k)

× (
1 − e−ημ(2k/γ k )). (A2)

In the asymmetric MHPS (AMHPS), the m HS units are
arranged following the scheme shown in Fig. 2 [16]. Each
HS unit, whose idler photon is fed into a detector of efficiency
η, is pumped with an intensity such that the mean number
number of generated pair per pulse is μ/γ ki , with

ki =
{
i i � m − 1
m − 1 i = m

, (A3)

in order to compensate the different number of traversed 2-
to-1 optical switches. The postselection mechanism of each
optical switch is the same as for the SMHPS, i.e., it gives
priority to the left HS unit and, if none triggers, outputs the left
one. Differently from the SMHPS, this architecture requires
delay lines to be introduced, in order to compensate the longer
transmission time of the rightmost HS units [16]. The statistics
at the output is

P A
n (μ; m,η,γ ) = [(1 − η)μ]e−(1−η)μ

n!

× e−ημ{[(2−γ )γ 1−m−1]/(1−γ )}

+ μne−μ

n!

m∑
i=1

e−ημ[(γ 1−i−1)/(1−γ )]

× [
1 − (1 − η)neημe−ημ/γ ki

]
. (A4)

APPENDIX B: PARAMETER ESTIMATION IN PASSIVE
DECOY STATE QKD

The parameters Y0, Y1, and e1, necessary in postprocessing,
are not directly measured during the key exchange session,
but must be estimated from the experimental data Q and
E. If Alice registers, for each pulse, whether at least one
or no detector has clicked, a different gain and QBER
for each case can be measured and these can be used for
parameter estimation. Since both statistics depend on the
same μ, parameter estimation can be included in the general
optimization process, thus giving the real key rate and not just
a superior limit.
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The probability that no detector clicks in a pulse is

P nc(μ; m,η,γ ) = e−μη(2k/γ k) (B1)

for the SMHPS and

P nc(μ; m,η,γ ) = e−μη{[(2−γ )γ 1−m−1]/(1−γ )} (B2)

for the AMHPS, where k = log2 m. The statistics in the case of no click is the same for both sources (in both cases the first HS
unit is routed to the output) and is

P (nc)
n = [μ(1 − η)]n

n!
e−μ(1−η), (B3)

while the statistics for the case of at least a detector click is

P (c)
n = μne−μ

n!
[1 − (1 − η)ne−ημ(1/γ k−1)]

1

1 − e−μη/γ k
(B4)

for the SMHPS and

P (c)
n = μne−μ

n!

m∑
i=1

[1 − (1 − η)ne−μη[(1/γ ki )−1]]
e−μη[(γ 1−i−1)/(1−γ )]

1 − e−μη{[(2−γ )γ 1−m−1]/(1−γ )} (B5)

for the AMHPS [16].
After the key exchange session, Alice tells Bob for which pulses at least one detector has clicked, so that they can estimate the

gain and the QBER separately for the two cases. From these values, referenced to as {Qc,Ec,Qnc,Enc}, and the known source
statistics P (c)

n and P (nc)
n , they can estimate the parameters of the channel using the method described in Ref. [24].

The first parameter to be estimated is Y0. Its upper bound YU
0 can be calculated starting from the relations

QcEc =
∞∑

n=0

P (c)
n Ynen � P

(c)
0 Y0e0, (B6)

QncEnc =
∞∑

n=0

P (nc)
n Ynen � P

(nc)
0 Y0e0. (B7)

Since both inequalities must hold, the parameter Y0 is upper bounded by

Y0 � YU
0 = min

{
QcEc

P
(c)
0 e0

,
QncEnc

P
(nc)
0 e0

}
. (B8)

Its lower bound YL
0 can be calculated from

P
(c)
1 Qnc − P

(nc)
1 Qc =

∞∑
n=0

(
P

(c)
1 P (nc)

n − P
(nc)
1 P (c)

n

)
Yn �

(
P

(c)
1 P

(nc)
0 − P

(nc)
1 P

(c)
0

)
Y0, (B9)

that gives

Y0 � YL
0 = max

{
P

(c)
1 Qnc − P

(nc)
1 Qc

P
(c)
1 P

(nc)
0 − P

(nc)
1 P

(c)
0

,0

}
, (B10)

since, for both the SMHPS and the AMHPS,

P
(c)
1 P (nc)

n − P
(nc)
1 P (c)

n = An,1[(1 − η)n − (1 − η)]

{
�0 for n � 2
�0 for n = 0, (B11)

with An,1 a positive constant.
The lower bound on the single-photon yield Y0 is calculated starting from

P
(c)
2 Qnc − P

(nc)
2 Qc =

∞∑
n=0

(
P

(c)
2 P (nc)

n − P
(nc)
2 P (c)

n

)
Yn �

1∑
n=0

(
P

(c)
2 P (nc)

n − P
(nc)
2 P (c)

n

)
Yn, (B12)

which leads to

Y1 � YL
1 = max

{
P

(c)
2 Qnc − P

(nc)
2 Qc − (

P
(c)
2 P

(nc)
0 − P

(nc)
2 P

(c)
0

)
YU

0

P
(c)
2 P

(nc)
1 − P

(nc)
2 P

(c)
1

,0

}
, (B13)
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since

P
(c)
2 P (nc)

n − P
(nc)
2 P (c)

n = An,2[(1 − η)n − (1 − η)2]

{
�0 for n � 2
�0 for n � 1 (B14)

with An,2 positive.
Similarly, the upper bound on e1 is calculated from

P
(nc)
0 QcEc − P

(c)
0 QncEnc =

∞∑
n=0

(
P

(nc)
0 P (c)

n − P
(c)
0 P (nc)

n

)
enYn �

(
P

(nc)
0 P

(c)
1 − P

(c)
0 P

(nc)
1

)
e1Y1, (B15)

since

P
(nc)
0 P (c)

n − P
(c)
0 P (nc)

n = An,0[1 − (1 − η)n] � 0 (B16)

for all n, and

QcEc =
∞∑

n=0

P (c)
n Ynen � P

(c)
0 Y0e0 + P

(c)
1 Y1e1, (B17)

QncEnc =
∞∑

n=0

P (nc)
n Ynen � P

(nc)
0 Y0e0 + P

(nc)
1 Y1e1, (B18)

thus obtaining

e1 � eU
1 = min

{
P

(nc)
0 QcEc − P

(c)
0 QncEnc(

P
(nc)
0 P

(c)
1 − P

(c)
0 P

(nc)
1

)
YL

1

,
QcEc − P

(c)
0 YL

0 e0

P
(c)
1 YL

1

,
QncEnc − P

(nc)
0 YL

0 e0

P
(nc)
1 YL

1

}
. (B19)
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