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Simultaneous gates in frequency-crowded multilevel systems using fast, robust, analytic
control shapes
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We present a few-parameter ansatz for pulses to implement a broad set of simultaneous single-qubit rotations
in frequency-crowded multilevel systems. Specifically, we consider a system of two qutrits whose working and
leakage transitions suffer from spectral crowding (detuned by δ). In order to achieve precise controllability, we
make use of two driving fields (each having two quadratures) at two different tones to simultaneously apply
arbitrary combinations of rotations about axes in the X-Y plane to both qubits. Expanding the waveforms in
terms of Hanning windows, we show how analytic pulses containing smooth and composite-pulse features can
easily achieve gate errors less than 10−4 and considerably outperform known adiabatic techniques. Moreover, we
find a generalization of the WAHWAH (Weak AnHarmonicity With Average Hamiltonian) method by Schutjens
et al. [R. Schutjens, F. A. Dagga, D. J. Egger, and F. K. Wilhelm, Phys. Rev. A 88, 052330 (2013)] that allows
precise separate single-qubit rotations for all gate times beyond a quantum speed limit. We find in all cases a
quantum speed limit slightly below 2π/δ for the gate time and show that our pulses are robust against variations in
system parameters and filtering due to transfer functions, making them suitable for experimental implementations.
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I. INTRODUCTION

Quantum information processing and offshoots thereof,
such as quantum computing and control, are rapidly evolving
fields in physics. Often these involve physical systems for
which a computational subspace can be singled out of a larger
Hilbert space that is feasible for logical operations. Candidates
for systems with such a structure are, for instance, several types
of superconducting qubits [1], optical lattices [2], quantum
dots [3,4], Rydberg atoms [5,6], neutral atoms [7], diamond
nitrogen-vacancy centers [8], trapped ions [9,10], and nuclear
magnetic resonance [11]. A qubit subspace in these systems
is typically formed by two levels of a multilevel system, such
as an anharmonic ladder. This directly connects to leakage
out of the computational subspace, especially on short-time
scales, since the transition frequencies of successive levels
may sometimes only differ by a few percent [12].

We focus our attention on superconducting qubits embed-
ded in circuit QED architecture, where they are coupled to mi-
crowave cavities [13–15], both because it is a leading candidate
for quantum computation and because of the critical role that
leakage and frequency crowding play in such systems. Like the
other candidate architectures, decoherence will set a time scale
below which gates must be performed. Decoherence may, for
example, arise from the electromagnetic environment [16] as
well as from intrinsic material properties [17]. Optimized de-
signs of superconducting qubits, such as the transmon [16] and
its three-dimensional (3D) version [18,19], avoid decoherence
and allow for coherence times approaching 100 μs, thus an im-
provement by several orders of magnitude compared to previ-
ous designs having coherence times of a few nanoseconds [15].

Experimental progress in implementing fast gates has
been significant, achieving fidelities exceeding 99% for both
single-qubit and two-qubit operations [20,21] and fidelities
∼85% for two-qubit algorithms such as Grover’s search
algorithm [22]. Leakage was removed in these experiments
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using the derivative removal by adiabatic gate (DRAG)
[23–25] technique, which works by considering the adiabatic
effect of driving the leakage transition on the qubit’s transition.

Apart from decoherence and leakage, the addressability of
single qubits in a multiqubit layout [26,27] is another key
challenge for large-scale quantum computing. Often enough
it is impossible to have a single control field for each qubit,
for instance, if more than one qubit is in the same cavity,
hence being spatially too close to be addressed individually
[25]. Then the applied field collectively drives all qubits at
once, necessitating addressing qubit control by an internal
parameter such as carrier frequency. A phenomenon that arises
in such cases is frequency crowding [28–30], e.g., describing
a situation where logical transitions are well separated but, for
instance, the working transition of one qubit is too close to a
leakage transition of another qubit to be driven individually.
In Ref. [28] a situation with two 3D transmons in one cavity
was studied with respect to driving a rotation on one qubit,
leaving alone the other one. They showed that it is possible
to achieve a high fidelity by supplementing a Gaussian pulse
with sideband modulation and a DRAG component, yielding
pulse shapes named WAHWAH (Weak AnHarmonicity With
Average Hamiltonian). Their results reveal that the WAHWAH
ansatz works well if the targeted gate time is well chosen.

A key requirement for quantum computing on a large scale
is for errors arising from leakage, addressability, and frequency
crowding to fall well below a fault-tolerant threshold where
quantum error correction (QEC) schemes [31,32] improve
with system size, as has been recently demonstrated by Kelly
et al. [33] for a linear array of up to nine qubits. Conservative
estimates [34,35] for this threshold state that the average error
per gate should be �10−4, with lower errors also requiring
far fewer physical qubits per logical qubit and with leakage
out of the computational subspace being an additional but
not insurmountable impediment [36]. Thus, it is all the more
pressing that these forms of error be suppressed.

These problems become compounded when multiple gates
need to be operated simultaneously. This operation is crucial
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to reducing computation times, which in turn allows for an
algorithm error linearly smaller in the number of qubits,
as well as lower error budgets in QEC, due to error also
accumulating during memory operations. In the presence
of near resonances in crowded systems on the order of 1%
of the natural frequencies, pulses derived from adiabatic
techniques are too short with respect to the decoherence
time, whereas sideband modulation in the spirit of Ref. [28]
disrupts concurrent gates with which it does not commute,
leading to disruption of the desired final-time spectrum and
even worse leakage than not including it.

In this work we rather consider decoupling the effect of
the leakage transition using interference between the different
portions of the gate, being reminiscent of composite pulses.
This is accomplished by expanding the control pulses in terms
of (Hanning) windows, which include a third harmonic that
can be used to drive three sequential rotations with alternating
direction. The weights of the components are optimized
numerically, yielding high-fidelity simultaneous X and/or Y

gates with a very short quantum speed limit, on the order of
2π/δ, where δ is the detuning between the two most closely
crowded frequencies. The waveform shapes found are similar
to the compensation for off-resonance with a pulse sequence
(CORPSE) [37] and share a robustness to deterministic and
nondeterministic phase shifts during the pulse.

This work is structured as follows. In Sec. II we introduce
the system composed of two (3D) transmons being collectively
driven through a cavity. We derive various frame transforma-
tions that allow for analytically quantifying the error. Within
Sec. III we outline the analytic ansatz that is further optimized
numerically and analyzed with respect to certain properties,
such as quantum speed limit and robustness, within Secs. V
and VII. In Sec. IV we outline the degrees of freedom and show
samples of our pulses. An extended model for WAHWAH
pulses is given in Sec. VI, achieving high fidelities for all gate
times beyond a quantum speed limit.

II. SYSTEM

A. Model in the laboratory frame

The computational subspace used for the qubit system
in superconducting qubits is usually formed by the two
lowest energy levels of an anharmonic oscillator with weak
anharmonicity [16], although this choice is not mandatory. In
order to have a realistic model for the processes occurring in the
system it is inevitable to consider at least the next higher energy
level, which is referred to as a leakage level in the remainder of
this work. Starting in the laboratory frame, we can break down
the Hamiltonian of our system, which is composed of two
superconducting transmon qubits, into a (constant) drift part
Ĥ0 and a controllable part Ĥc. Our bare two qubits are weakly
anharmonic oscillators, described by Ĥ0. Their energy-level
diagram is depicted schematically in Fig. 1. The laboratory
Hamiltonian reads

Ĥ = Ĥ0 + Ĥc,

Ĥ0 =
2∑

k=1

[
ωkn̂k + �k�̂

(k)
2

]
, (1)

Ĥc = �(t)
2∑

j=1

[
λ

(1)
j σ̂

x(1)
j,j−1 + λ

(2)
j σ̂

x(2)
j,j−1

]
.

Qubit 1
|01

|11

|21

Qubit 2
|02
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ω1

Δ
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ωd2

ω2

ω1 + δ

Δ

FIG. 1. Energy-level diagram of the two qubits. The leakage
transition |12〉 ↔ |22〉 of qubit 2 is only slightly detuned by δ, which
we call the crowding frequency in the remainder of this work, from
the working transition |01〉 ↔ |11〉 of qubit 1, i.e., ω1 + δ = ω2 + �.
The dashed lines indicate the level structure if the transmons were
harmonic oscillators with frequencies ω1 and ω2. We collectively
drive the system with pulses at ωd1 and ωd2.

This form of the Hamiltonian can be derived from quantization
of electrical circuits as shown in detail in Ref. [38] and in
Ref. [39] for the two-level case. Given that the system is
operated in the dispersive regime, i.e., the cavity and qubit
are sufficiently far detuned, the effective Hamiltonian can be
recast in the form of Eq. (1). Without loss of generality, we can
assume our anharmonicities to be equal, i.e., �1 = �2 = �.
This will not lead to any degeneracies since the detunings
of different levels remain nondegenerate and independently
tunable. The perpetually used projection and generalized Pauli
operators are defined as

�̂
(k)
j = |j 〉 〈j |(k) , (2)

n̂k =
∑

j

j�̂
(k)
j , (3)

σ̂
x(k)
j,j−1 = |j 〉〈j − 1|(k) + |j − 1〉〈j |(k), (4)

σ̂
y(k)
j,j−1 = i|j 〉〈j − 1|(k) − i|j − 1〉〈j |(k), (5)

where the superscript (k) refers to either qubit 1 or 2. Here
�(t) is a semiclassical dipolar interaction control with a total
of four quadratures, paired into two sets, whereby each set’s
carrier has frequencies ωd1 and ωd2, respectively, so that

�(t) = εx1(t) cos(ωd1t + φ1) + εy1(t) sin(ωd1t + φ1)

+ εx2(t) cos(ωd2t + φ2) + εy2(t) sin(ωd2t + φ2). (6)

The λ
(k)
j are associated with the relative strength at which

the control field �(t) drives the leakage transition |1k〉 ↔ |2k〉
compared to the working transitions |0k〉 ↔ |1k〉. Numerical
values for occurring frequencies and λ

(k)
j are given in Ta-

ble I, where the λ
(k)
j are approximated to be

√
j since the

anharmonicities are assumed to be small (hence eigenstates
are close to those of a harmonic oscillator) and since the
transmons are far detuned from the driving resonator [24]. In
principal, the relative phases φ1,2 between envelope and carrier
need to be taken into account. However, since we apply the
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TABLE I. Definition of the system parameters (taken from
Ref. [28]).

Parameter Qubit 1 Qubit 2 Unit

ωk/2π 5.508 5.903 GHz
�/2π −350 −350 MHz
δ/2π 45 MHz
λ

(k)
1 1 1

λ
(k)
2

√
2

√
2

rotating-wave approximation (RWA) throughout the following
sections, those phases become irrelevant [24,40].

B. Frame transformations

Since we are interested in controllability of our system by
microwave fields (amplitude and carrier) we choose to work
in different frames, such as a frame rotating at a specific
frequency in order to remove any intrinsic oscillation from
the controls. Such a transformation to a frame |�R〉 = R̂† |�〉
rotating at frequencies ω

(1,2)
j is achieved by applying

R̂(t) =
⎛
⎝∑

j

e−iω
(1)
j t �̂

(1)
j

⎞
⎠ ⊗

⎛
⎝∑

j

e−iω
(2)
j t �̂

(1)
j

⎞
⎠ (7)

according to the transformation rule

ĤR = R̂†Ĥ R̂ + i ˙̂R†R̂. (8)

Particular choices of ω
(k)
j can lead to frame representations

with different meaning and application purposes, such as

ω
(k)
j =

{
jωd for a rotating frame with ωd

jω(k) + �
(k)
j for the interaction picture.

Transforming to a different frame along the lines of Eq. (8) will
also affect the unitary time-evolution operator according to

ÛR(t) = R̂(t)Û (t)R̂†(0), (9)

where ÛR(t) is the time-evolution operator inside the rotating
frame.

1. Rotating frame

In order to have better insight in the dependence of our
system on the two driving frequencies we choose to look at
the rotating frame with ω

(k)
j = jωd1. For more controllability

we pick our carrier frequencies with arbitrary fixed detuning

1,2 from the qubits’ resonance frequencies:

ωd1 = ω1 + 
1, (10)

ωd2 = ω2 + 
2. (11)

As Ĥ0 and R̂ are diagonal, our new Hamiltonian reads

ĤR = Ĥ0 + R̂†ĤcR̂ + i ˙̂R†R̂. (12)

In the remainder of this work we will use the shorthand notation

�j (t) = εxj (t) + iεyj (t), (13)

χ (t) = �1(t) + eiγ t�2(t), (14)

with γ = ωd1 − ωd2 = � − δ + 
1 − 
2 being the detuning
between both carrier tones. Performing the RWA, i.e., neglect-
ing terms that oscillate with ±2ωd1,2 and ±(ωd1 + ωd2), leads
to the rotating frame Hamiltonian

ĤR = −
1�̂
(1)
1 + (� − 2
1)�̂(1)

2

+ (δ − � − 
1)�̂(2)
1 + (2δ − � − 2
1)�̂(2)

2

+
⎧⎨
⎩χ (t)

2

2∑
j=1

[
λ

(1)
j |j 〉 〈j − 1|(1) + λ

(2)
j |j 〉 〈j − 1|(2) ]

+ H.c.

⎫⎬
⎭. (15)

Evidence for the validity of the RWA is that the system
frequencies in the rotating frame are of the order of �,
thus more than an order of magnitude smaller than the qubit
frequencies ω1,2. At this point we want to briefly comment
on why a simple DRAG solution alone will not in general
improve results. The main idea behind DRAG is to move to
an adiabatic frame via a transformation V̂ , satisfying V̂ (0) =
V̂ (tg) = 1̂. For simplicity we will restrict the study to only one
driving field, which is equivalent to �2(t) = ωd2 = 
2 = 0 in
Eq. (15). Essentially, the transformation matrix will then be

V̂ (t) = exp

⎛
⎝−i

εx1(t)

κ

2∑
j=1

[
λ

(1)
j σ̂

y(1)
j,j−1 + λ

(2)
j σ̂

y(2)
j,j−1

]⎞⎠. (16)

A key to sufficiently simple DRAG solutions is fast con-
vergence of a series expansion with respect to an expansion
parameter η = εx1/κ � 1 [23]. Performing the corresponding
adiabatic expansion to first order will lead to multiple possible
values for κ and a compensation quadrature εy1 ∝ (1/κ)ε̇x1.
For instance, κ = δ removes the leakage from qubit 2.
However, this choice will leave in considerable phase error on
both qubits and slightly increase errors from the other (less)
crowded frequencies. In principle, similar problems occur for
other choices of κ so that a simple DRAG ansatz will not
be able to effectively address frequency-crowding issues. One
can also optimize within a set of higher derivative functions,
as was done in Ref. [25]. However, we will show that a simpler
nonadiabatic basis will exist for our problem.

2. Interaction frame

Transforming the laboratory frame Hamiltonian according
to Eq. (8) to the interaction frame yields the interaction
Hamiltonian

ĤI = χ (t)

2

2∑
j=1

[
λ

(1)
j eiδ

(1)
j t |j 〉 〈j − 1|(1)

+ λ
(2)
j eiδ

(2)
j t |j 〉 〈j − 1|(2)

] + H.c., (17)

where we have introduced the eigenfrequencies δ
(1)
1 = −
1,

δ
(1)
2 = � − 
1, δ

(2)
1 = δ − � − 
1, and δ

(2)
2 = δ − 
1. In the

remainder of this paper we will be working in the frame defined
by Eq. (17).
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III. SIMULTANEOUS SINGLE-QUBIT GATES

A. Target evolutions

First, we focus on implementing single-qubit rotations
about a rotation angle θ ∈ C so that in the laboratory frame the
desired unitary for each qubit (reduced to the computational
subspace) is given by

Ûred(tg) = eiφ exp

(
− i

2

(
0 θ

θ∗ 0

))
, (18)

with an arbitrary yet unimportant global phase φ. A complex
rotation angle θ gives rise to arbitrary rotations around the X-Y
axis. The real part Re{θ} will rotate around the X axis, whereas
the imaginary part Im {θ} rotates around the Y axis. We will
develop and design pulses starting from the interaction frame,
so that throughout Sec. III B the final time-evolution operator
of the two-transmon system is approximately given by

Û (tg) = eiφ

2⊗
j=1

exp

⎛
⎝− i

2

⎛
⎝ 0 θj 0

θ∗
j 0 0
0 0 0

⎞
⎠

⎞
⎠, (19)

rotating qubit j about an angle θj and neglecting phases on the
leakage level. Consequently, the gate we actually implement
in the laboratory frame is obtained by utilizing Eq. (9) to
transform Eq. (19) back to the laboratory frame. Eventually
this will lead to Ẑ errors (relative phase shifts) that are
quantified in Sec. VIII together with techniques to compensate
for them.

B. Magnus expansion

1. Basic idea

An arbitrary Hamiltonian Ĥ (t) induces a time evolution
after a time tg according to the time-evolution operator

Û (tg) = T̂ exp

(
−i

∫ tg

0
dtĤ (t)

)
, (20)

where T̂ is the time-ordering operator. The latter accounts
for the general impossibility to compute a closed analytical
form for Û (t) due to the fact that Ĥ (t) in general does not
commute with itself at different times. An approximation for
the final unitary Û (tg) can be expressed in terms of the Magnus
expansion [41,42]

Û (tg) = exp

(
−i

∑
k

�̂k(tg)

)
. (21)

The �̂k are Hermitian matrices generated by nested time
integrals over nested commutators of the Hamiltonian at
different times. A major advantage of the Magnus expansion
is the straightforward treatment of time ordering. The first two
orders of the expansion are given by

�̂0(tg) =
∫ tg

0
dt Ĥ (t),

(22)

�̂1(tg) = − i

2

∫ tg

0
dt2

∫ t2

0
dt1[Ĥ (t2),Ĥ (t1)].

Convergence of the series is not always guaranteed. For
a differential equation Ẏ (t) = A(t)Y (t) in a Hilbert space

H with boundary condition Y (0) = 1 it is proven [42] for
bounded operators A(t) that

∫ T

0 dt ‖A(t)‖ < π is a sufficient
condition to guarantee convergence in the time interval [0,T ).
Nevertheless, this condition is only a sufficient one so that
the series may still converge for t > T even if the previous
criterion is not satisfied. In the case of Y (t) being a normal
operator, in particular a unitary one, the series also converges
for infinite-dimensional problems.

2. Lowest-order conditions

Requiring the lowest order �̂0(tg) of the Magnus expansion
to implement the gate of Eq. (18), i.e.,

ÛF (tg) = exp(−i�̂0(tg)), (23)

gives an initial idea about pulse characteristics. That way,
errors may arise from higher orders in the expansion, which
can partially be related to an ac Stark shift or a Bloch-Siegert
shift [43,44]. Such errors can be reduced, for instance, by
requiring higher orders either to vanish or to lead to global
phase factors. Since the interaction Hamiltonian can be written
as a direct sum ĤI = Ĥ

(1)
I ⊕ Ĥ

(2)
I and using the identity

exp(A ⊕ B) = exp(A) ⊗ exp(B) for A = Ĥ
(1)
I and B = Ĥ

(2)
I

(the superscript (k) refers to qubit k), we find the conditions

λ
(1)
1

∫ tg

0
dt e−i
1tχ (t) = θ1, (24a)

λ
(1)
2

∫ tg

0
dt ei(�−
1)tχ (t) = 0, (24b)

λ
(2)
1

∫ tg

0
dt ei(δ−�−
1)tχ (t) = θ2, (24c)

λ
(2)
2

∫ tg

0
dt ei(δ−
1)tχ (t) = 0 (24d)

to implement unitaries having the form of Eq. (19). Here
θ1,2 ∈ C are the rotation angles of qubits 1 and 2, respectively.
In the above equations the corresponding complex conjugate
versions will also hold. For the following calculations we
introduce complex-valued amplitudes a1,2 so that χ (t) =
a1 �̃1(t) + a2 eiγ t �̃2(t) with rescaled pulses �̃1,2. These
rescaled pulses are further decomposed into their real and
imaginary parts, i.e., �̃j (t) = ε̃xj (t) + iε̃yj (t). From Eq. (17)
it follows that Eqs. (24a) and (24c) are the working transitions
of both qubits, whereas the other two equations belong to
their leakage transitions. Semiclassically speaking, conditions
(24b) and (24d) state that there must be no spectral power at the
unwanted transitions, whereas conditions (24a) and (24c) are
instances of the area theorem. Terms arising from �̂1(tg) will
mostly contribute to diagonal elements, thus characterizing Ẑ

errors in the final unitary. Those Ẑ errors mainly stem from
level shifts and population leaking out of the computational
subspace while driving the system.

C. Hanning windows

Gaussian pulse shapes are widely used to implement
single-qubit rotations since they are smooth and have a limited
bandwidth in excitation spectrum. Taking into account leakage
levels and spectral crowding issues, new analytic methods such
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as DRAG and WAHWAH have been developed to counteract
those challenges. However, in the case of simultaneous
gates, the large number of constraints makes the choice of
basis functions (e.g., Hermite, Gaussian, or error function)
especially important for considerations such as smoothness,
boundary conditions, and number of parameters.

Yet WAHWAH pulses only suppress leakage at the end of
a gate, so simply applying a WAHWAH control resonant with
each transmon’s logical transition will not allow simultaneous
gates since there will be too much crosstalk between both
physical qubits. We will choose to use the Hanning window
functions [45]

�H(t) =
N∑

n=1

cn

(
1 − cos

(
2πnt

tg

))
, (25)

which guarantees smoothness and also satisfies the boundary
conditions for the pulse (start and end at zero). Utilizing this
family of functions, we will also show that small errors at short
times using only a small number of parameters can be obtained.

Hanning windows are expected to perform well in large part
due to having both features that include smoothness (which

helps to enforce adiabaticity) and composite-pulse structure
that allow cancellation of errors between different (e.g.,
diabatic) parts of the pulse. Moreover, the composite-pulse
nature (very similar to the composite decoupling sequence
CORPSE [37]) can have intrinsic robustness to frequency
miscalibrations, noise, and time-dependent shifts (e.g., the
Stark shift caused by off-resonance drive of the frequency
crowded level) (see Sec. VII). The performance of these
pulses will be discussed and compared to Gaussian pulses,
derivative-based functions, and the WAHWAH ansatz in the
following sections.

Constraints

From the lowest-order Magnus expansion we find that the
finite Fourier transform

S(�,ρ) =
∫ tg

0
dt �(t)eiρt (26)

gives, to lowest order, a good intuition about the pulses’
characteristics. Solving Eqs. (24a) and (24c) for the am-
plitudes ai so that the controls implement θi rotations
yields

a1 = θ1
(
λ

(1)
1

)−1 − a2S(�̃2,� − δ − 
2)

S(�̃1, − 
1)
,

a2 =
(

θ2

λ
(2)
1

− θ1

λ
(1)
1

S(�̃1,δ − � − 
1)

S(�̃2, − 
1)

)(
S(�̃2, − 
2) − S(�̃1,δ − � − 
1)S(�̃2,� − δ − 
2)

S(�̃1, − 
1)

)−1

. (27)

Since the two logical transitions are detuned by δ − � ∼
400 MHz from each other, it is valid to neglect the influence
of both controls to the working transition they are not
nearly resonant with if their spectrum shows sufficient decay
away from resonances, i.e., if, for instance, S(�̃1,δ − � −

1)/S(�̃2, − 
2) � 1. Thus, we simply want each control to
have an area complying with the desired angle of rotation θi ,
hence

ai = θi

λ
(i)
1

(∫ tg

0
dt �̃i(t)e

−i
i t

)−1

. (28)

In fact, we observe that the approximation giving rise to
Eq. (28) leads to the same performance as the exact amplitude
conditions in Eq. (27). Finally, after picking an ansatz for the
x-y control shapes marked with a tilde, the controls in Eq. (6)
are obtained as

εx1(t) = Re{a1 �̃1(t)}, εy1(t) = Im{a1 �̃1(t)},
(29)

εx2(t) = Re{a2 �̃2(t)}, εy2(t) = Im{a2 �̃2(t)}.

IV. PULSE SHAPING

A. Degrees of freedom and optimization

To quantify our results we make use of the common overlap
gate fidelity

� = 1

d2
|Tr(Û †

targetÛ (tg))|2, (30)

which is insensitive to global phases. Here the trace
is taken over the compound computational subspace
{|00〉 , |01〉 , |10〉, |11〉} with d = 4 being its dimension.

Investigating the performance of multiple Ansätze for the
controls marked with a tilde reveals that it is satisfactory to
choose �̃xj to be a superposition of the first three Hanning
windows, i.e., setting N = 3 in Eq. (25). Since one out of
the three coefficients per control can be incorporated into
the corresponding amplitude ai , there are effectively four
coefficients plus two detunings 
1,2 that determine the full
set of parameters. To account for higher-order errors, such
as level shifts and Ẑ errors, we use the Nelder-Mead (NM)
simplex algorithm [46] to obtain (locally) optimal values for
the degrees of freedom. Since the tendency to get trapped in
local extrema increases with the number of parameters [47] it
is at least necessary to sample over various initial conditions
and pick the best found solution.

We can expect that generalization to more than two qubits
if additional qubits do not add crowding on the order of
δ is straightforward. In this case, all waveforms can be
supplemented by DRAG to reduce the impact of crosstalk to
other qubits, scaling linearly with the number of qubits [25].
Even in case of multiple frequency-crowded qubits, one can in
principle utilize higher-order Hanning windows and/or addi-
tional quadratures to still achieve precise simultaneous gates.
Nevertheless, this will ultimately increase the parameter space
and thereby hamper the optimization. There are indications
[48] that one might still observe reasonable convergence if
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FIG. 2. Control amplitudes for (a) 26 ns and (b) 42 ns together with their respective spectra in (c) and (d). For longer gate times some
controls resemble simple Gaussian pulses, whereas they show characteristics of composite pulses especially at shorter gate times to account
for large Ẑ errors during the sequence. The spectra indicate that Eq. (24) are essential to implement the desired rotations in crowded
systems.

operating far enough away from the quantum speed limit. A
detailed study of this aspect is an area left to future research.

B. Sample pulses

Examples of typical control shapes and their finite Fourier
transforms are shown in Fig. 2. For shorter gate times, i.e.,
26 ns in Fig. 2(a), the εx2,y2 controls have magnitudes much
larger than those required for a simple π rotation. That is,
these amplitudes push the pulses into the diabatic regime,
with large intermediary leakage. Moreover, they show a
compositelike structure very similar to a well-known method
for robust pulses (CORPSE) [37], approximately steering a
+2π/3 → −π/3 → +2π/3 evolution on qubit 2, which is
illustrated on the Bloch sphere in Fig. 3. We will show in
Sec. VII that this composite structure enables robustness to
frequency miscalibrations, noise, and time-dependent shifts.

Our analysis shows that this compositelike shape, which is
especially important for shorter gate times, is needed to achieve
gate errors sufficiently small to make the pulses feasible
for experimental implementations. Since leakage out of the
computational subspace is not suppressed during the drive,
there must be a precise interplay between εx1,y1 and εx2,y2

that ensures the correct ratio between how much population
is pulled back into or out of the computational subspace by

εx2,y2 while εx1,y1 drive a rotation on qubit 1 (still affecting
the leakage transition on qubit 2 due to spectral crowding).

+Ẑ

−Ẑ

+X̂

−X̂

+Ŷ

−Ŷ

FIG. 3. Visualization of the state evolution |ψ2〉 with |ψ2(0)〉 =
|02〉 for the 26-ns pulses shown in Fig. 2(a). Due to the compositelike
structure, Ẑ errors are corrected by approximately applying a
+2π/3 → −π/3 → +2π/3 pulse. The color encodes the amount
of population inside the computational subspace. Red means all of
the population is inside {|0〉, |1〉} space, while blue indicates leakage
by about 25%.
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Owing to severe leakage out of the {|02〉, |12〉} subspace
and due to level shifts, there will be relative phase errors,
manifesting as rotations around Z axis. This kind of error
can be compensated for by properly adjusting the interplay
between all controls with the help of the NM algorithm. For
longer gate times, such as 42 ns in Fig. 2(b), the composite
structure is not that essential anymore: In this domain the type
of control solutions becomes different. While εx1,y1 resemble
simple Gaussian controls with maximal magnitude at t = tg/2,
their counterparts εx2,y2 are dominant at the beginning and
end of the pulse. This also illustrates the interplay between
all controls, leading to the correct cycling into and out of the
leakage subspace of qubit 2. The spectra in Fig. 2 illustrate that
the lowest-order conditions in Eq. (24) are essential to steer
simultaneous rotations. Nevertheless, spectral arguments are
not sufficient because of non-negligible higher-order errors.

V. QUANTUM SPEED LIMIT

A. Leakage error

First, we want to demonstrate that our method efficiently
suppresses leakage arising from spectral crowding in our
system. Figure 4 illustrates that we are able to achieve leakage
errors (due to the critical |22〉 state) that are well below
10−5 after a gate time ∼25 ns, indicating the relationship
to the speed limit found in Sec. V C. The observed limit of
approximately 25 ns for sufficiently suppressing leakage is
largely explained by a bandwidth argument: For pulses of
duration tg � 2π/δ ∼ 25 ns it is expected from spectroscopy
that transitions with frequency close to δ will be excited, hence
notable leakage out of the computational subspace occurs.
Besides its impact on gate errors, leakage plays an important
role in quantum error correction schemes. The majority of
those assume that there will be no information leakage out of
the computational subspace [36], making them vulnerable to
leakage errors.
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FIG. 4. Final leakage error of qubit 2 at different gate times for
Hanning controls. Except for some gate times, we achieve leakage
errors below 10−5 after ∼25 ns. The nonmonotone shape of the curve
is most likely due to the system being overconstrained.
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FIG. 5. Performance of Gaussian pulses (each resonant to ω1,2),
optimized Hanning-based pulses, and derivative-based controls. Off-
resonant controls yield an improvement by two to three orders of
magnitude compared to their resonant counterparts.

B. Simultaneous rotations

In Fig. 5 we show the performance of resonant (dashed ma-
genta) and off-resonant (dash-dotted blue) Hanning controls
together with a naive Gaussian approach, one per qubit (solid
black), and a derivative-based Ansatz (dotted red). Due to the
finite bandwidth of the controls, at least the control resonant to
ω1 will have severe spectral power at the leakage transition δ of
the other qutrit, thus populating its |2〉 state and consequently
leading to high gate errors in general. For instance, the gate
error of Gaussian pulses slowly decreases exponentially with
gate time. Derivative-based pulses perform roughly one order
of magnitude worse compared to resonant Hanning controls,
which is due to less control over phases via compositelike
shapes. Clearly, using at least the first three Hanning windows
(N = 3) is sufficient for precise pulses in a frequency crowded
system. Resonant controls enable average gate errors between
10−3 and 10−4 while detuning the carrier slightly (by a few kHz
to MHz) from the qubits’ resonances further decreases the error
by two orders of magnitude since there is considerably more
control over level shifting effects (Stark and Bloch-Siegert)
than in the resonant case. In fact, it may also be sufficient to
apply only the controls εx2,y2 off-resonantly and leave εx1,y1

resonant with ω1: This will slightly increase the average gate
error, however still being roughly 1.5 orders of magnitude
better than having all controls on resonance. Nevertheless,
the gain in fidelity by introducing more degrees of freedom
comes at the cost of slower convergence, as has been stated
in Sec. IV A. Thus, fewer controls may be preferable in
practical situations. Figure 6 illustrates that our Ansatz allows
precise implementation of all simultaneous rotations around
the X-Y axes. We focus on rotations that are part of the AllXY
sequence [49] that can be used to tune up quantum systems
and identify various error sources in order to underline the
close connection between our results and recent experimental
requests. Simultaneous gates involving identities are also
easily implemented using Hanning-based pulses. However, in
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FIG. 6. Average gate error as a function of gate time tg for
various simultaneous rotations that are important for applications,
for instance, in the AllXY sequence [49].

Sec. VI we present a generalization of Ref. [28] that is exactly
designed for this purpose. Various other single-qubit gates,
such as the Hadamard gate

ÛH = 1√
2

(
1 1
1 −1

)
, (31)

can be decomposed into products of single-qubit rotations.
For instance, ÛH = XπYπ/2 (up to a global phase) may be
implemented in roughly 40 ns, even in the case of very strong
crowding that is primarily analyzed in this work.

C. Dependence on spectral detuning

Because of the inevitable crosstalk between both transmon
qubits, one expects a gate time (as a function of crowding δ)
at which precise control (we refer to the 10−4 error threshold)
is no longer possible. Since excitations of transitions with
frequency δ approximately scale proportionally to 1/δ, we
expect the quantum speed limit to scale in the same manner. In
Fig. 7 we show the optimal average gate error as a function of
gate time tg and crowding frequency δ. The black line depicts
the best fit, substantiating that the speed limit tmin

g (δ) ∼ 2π/δ.

VI. SEPARATE SINGLE-QUBIT ROTATIONS

As mentioned in the previous section, our Hanning-based
pulses can also be utilized to implement 1̂ gates. Nevertheless,
the WAHWAH technique [28] was designed for that purpose.
There only two control quadratures

εx(t) = Aπe
− (t−tg /2)2

2σ2

{
1 − cos

(
ωx

(
t − tg

2

))}
, (32a)

εy(t) = − 1

2�
ε̇x(t), (32b)

resonant with ω1, are exploited to drive a π rotation on qubit
1 while leaving alone the second one, i.e., Û (tg) = X̂ ⊗ 1̂. To
this end, a Gaussian is sideband modulated with a frequency
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FIG. 7. Average gate error as a function of gate time tg and
crowding frequency δ. The solid black line indicates the best fit
for the speed limit (referring to 10−4 error), which is essentially
tmin
g (δ) ∝ 1/δ. This scaling indeed complies with the limit up to which

leakage can be sufficiently be suppressed, as explained in Sec. V A.

ωx that allows cancellation of leakage errors from qubit 2.
The standard deviation is chosen as σ = tg/6 to let the pulses
smoothly start and end close to zero. In order to prevent qubit
1 from leaking, the in-phase control εx is supplemented with
DRAG whereby the factor of 2 in the denominator stems from
the absence of phase control [24].

As pointed out in Ref. [28], there will be a relative phase
error on qubit 2, eventually increasing the gate error measured
via the fidelity in Eq. (30). Therefore, the fidelity functions

�|∗,i〉 = 1
4 |Tr{|0,i〉,|1,i〉}(Û

†
F Û (tg))|2, (33)

�avg = 1
2 (�|∗,0〉 + �|∗,1〉) (34)

are introduced. Here the partial trace is taken over all states
where the second qubit is either in |0〉 or |1〉. Hence, a high
outcome of �|∗,i〉 implies that qubit 2 starts and ends in
state |i〉. Owing to this, the averaged reduced fidelity �avg

is a way to estimate the performance insensitive to relative
phases in qubit 2. Originally, a modulation with ωx = δ/2 was
suggested and turned out to be successful if the gate time was
well chosen. From numerical studies, we derive the optimal
sideband frequency ω̄x = ωx/δ in terms of t̄g = tgδ/2π as

ω̄x(t̄g) =
⎧⎨
⎩2.3 erf

(
2.13

√
t̄g − 3

4

)
, 3

4 < t̄g � 5
4

2.3 erf
(

2.13√
2

) + 0.41
(
t̄g − 5

4

)
, t̄g > 5

4 .
(35)

The model works well in a large range of δ/� and incor-
porates a speed limit for the Ansatz in Eqs. (32), which is
approximately given by 0.75 2π/δ. For gate times close to the
speed limit, there is a nonlinear dependence proportional to
the error function erf(x). After passing through the nonlinear
region t̄g � 5/4 the sideband frequency scales linearly with
the gate time. In Fig. 8 we illustrate the performance of fully
optimized pulses (solid black line), the piecewise model in
Eq. (35) (dash-dotted blue line), the pure linear model for ω̄x

(dashed magenta line), and a naive Gaussian approach (dotted
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FIG. 8. Gate error for numerically optimized WAHWAH pulses
and pulses defined by the model in Eq. (35), compared to a Gaussian
pulse and the original WAHWAH pulses. We observe a speed limit
for the optimized pulses at ∼0.75 2π/δ.

gray line). Phase errors in qubit 2 can be tracked and corrected
by methods presented in Sec. VIII.

VII. ROBUSTNESS ANALYSIS

An important property for experimental application of
control pulses is their robustness against mismatches in, for
instance, carrier frequencies or pulse envelopes, as well as
filtering effects due to experimental hardware. One means
to account for such imprecise knowledge is the Ad-HOC
protocol [50], which combines open- and closed-loop optimal
control, enabling enhancements in gate fidelities by an order of
magnitude. However, since errors can in general occur during
or in between operations of the hardware, e.g., 1/f noise, it is
desired to work with pulses that show intrinsic robustness
against certain errors and thereby go beyond closed-loop
control methods.

A. Filtering effects

When applying optimal control pulses in an experiment,
their shape will be altered according to the transfer function of
used hardware. For instance, filtering effects due to the finite
bandwidth of waveform generators is a crucial part of those
transfer functions. By transforming the controls in Eq. (29)
according to

ufilt(t) = 1

2π

∫ +∞

−∞
dt ′

∫ +∞

−∞
dω F (ω)ei(t−t ′)ωuunfilt(t

′), (36)

we model hardware filters. Here F (ω) is the response
function of the filter, which is assumed to be Gaussian,
i.e., F (ω) = exp(−ω2/ω2

0), whereby ω0/2π = 425.4 MHz
(approximation for Tektronix AWG5014 [40]). Equation (36)
describes a noncausal filter, which was found [40] to be a
better approximation than a causal one. Applying this filter
without further corrections has, up to some exceptions, no
tremendous effect on fidelity, as shown in Fig. 9. We find
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FIG. 9. Performance of optimal control shapes under Gaussian
filtering compared to the unfiltered case. Except for some gate times,
almost all increases of error can be compensated by adjusting the
pulse’s magnitude.

that fine-tuning the control amplitudes’ magnitudes almost
corrects for all additional error, either by precomputing the
effect of the filter or making use of a closed-loop (Ad-HOC)
type of optimization in experiment. In general, if the transfer
function of experimental hardware is known, its inverse can
be incorporated into the input controls to achieve better
performances [40].

B. System parameters

Besides filtering, also uncertainties in system parameters
such as qubit frequencies may give rise to additional errors.
The two most important frequencies that are crucial for the
system dynamics are the anharmonicity � and most notably the
crowding frequency δ. It is expected that the optimal solutions
will strongly depend on those two frequencies, giving rise to
the question about robustness of the solutions against imperfect
knowledge of δ and �. Figure 10 depicts the average gate error
under variations of � and δ, showing that the solutions are very
robust against mismatch in anharmonicity and pretty robust
against uncertainties in δ: Deviations of δ by ±1.5% and ±4%
can still lead to gate errors of 10−4 and 10−3, respectively. The
observed asymmetry in � stems from the fact that � < 0. A
negative deviation of � means that |�| decreases, so leakage
errors inside qubit 1 become more likely, whereas a positive
deviation increases the distance between |1〉 ↔ |2〉. Note that,
in general, also timing jitter from the arbitrary waveform
generator will affect system performance. As it will be small
and can by rescaling usually be compared to system parameter
uncertainty, we expect its impact to be similarly small.

VIII. CORRECTING RELATIVE PHASES

As mentioned before (see Sec. III A), we introduce Ẑ errors
and global phases in our laboratory frame gates by the ansatz
we choose. Since global phases are irrelevant we do not have
to account for them; however, Ẑ errors should be corrected.
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FIG. 10. Error landscape for a X̂ ⊗ X̂ gate at 30 ns. The landscape
illustrates that our pulses are very robust against deviations of the
anharmonicity �. Although δ is expected to be the most crucial
parameter, we are able to achieve errors less than 10−3 if δ is known
up to only ±4%.

We will only focus on the correction inside the computational
subspace because phases on the leakage levels are unimportant.
Neglecting global phases, we calculate the Ẑ errors we make
from Eq. (9) as

exp

(
i
(ωd1 − 
1)tg

2
Ẑ

)
⊗ exp

(
i
(ωd1 + δ − � − 
1)tg

2
Ẑ

)
.

(37)

This can easily be corrected if a Ẑ control is available on both
qubits by applying controls Z1 and Z2 for a duration T so that
their areas are ∫ T

0
dt Z1(t) = − (ωd1 − 
1)tg

2
, (38)∫ T

0
dt Z2(t) = − (ωd1 + δ − � − 
1)tg

2
. (39)

Alternatively it is also possible to account for this error
by properly adjusting the phase of the preceding gate. This

procedure is similar to what is named phase ramping [24,51] or
frame compensation [25]. Essentially the X-Y plane is rotated
by an appropriate angle to account for the error made.

IX. CONCLUSION

We have investigated independent control of two transmon
qubits coupled to the same cavity. Typically, high fidelities
in a system such as this are hindered by spectral crowding,
where, for instance, a harmful leakage transition is close in
frequency to a logical transition (detuning δ) and thereby
renders individual addressability impossible. Our Ansatz,
based on a superposition of Hanning windows, achieves gate
errors well below 10−4 while being subject to a quantum speed
limit slightly below 2π/δ. We have shown that detuning the
controls from resonance by a few kHz to MHz can again
decrease the gate error by two orders of magnitude.

Our pulses outperform adiabatic methods and WAHWAH
pulses for fast and precise implementations of simultaneous
single-qubit rotations. Moreover, the Ansatz theoretically
allows for an easy generalization to more than two qubits,
especially if additional ones do not add crowding on the order
of δ. We have addressed possible limitations in Sec. IV A.

Additionally, we have presented a model that generalizes
WAHWAH pulses to arbitrary gate times and crowding
frequencies, as long as not aiming at times below the quantum
speed limit ∼0.75 2π/δ.

We have shown that pulse oscillations occur on time
scales that are unsusceptible to filtering effects and that
their compositelike shape gives rise to robustness against
off-resonance errors, such as mismatches in characteristic
frequencies. Moreover, the pulses are analytical and allow
for easier debugging and benchmarking compared to fully
numeric control shapes.
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