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Encoding a qubit into a cavity mode in circuit QED using phase estimation
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Gottesman, Kitaev, and Preskill have formulated a way of encoding a qubit into an oscillator such that the
qubit is protected against small shifts (translations) in phase space. The idea underlying this encoding is that
error processes of low rate can be expanded into small shift errors. The qubit space is defined as an eigenspace
of two mutually commuting displacement operators Sp and Sq which act as large shifts or translations in phase
space. We propose and analyze the approximate creation of these qubit states by coupling the oscillator to a
sequence of ancilla qubits. This preparation of the states uses the idea of phase estimation where the phase
of the displacement operator, say Sp , is approximately determined. We consider several possible forms of
phase estimation. We analyze the performance of repeated and adaptive phase estimation as the simplest and
experimentally most viable schemes given a realistic upper limit on the number of photons in the oscillator. We
propose a detailed physical implementation of this protocol using the dispersive coupling between a transmon
ancilla qubit and a cavity mode in circuit QED. We provide an estimate that in a current experimental setup one
can prepare a good code state from a squeezed vacuum state using eight rounds of adaptive phase estimation,
lasting in total about 4 μs, with 94% (heralded) chance of success.
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I. INTRODUCTION

It is to be expected that quantum error correction will be
essential in the implementation of reliable, large-scale, quan-
tum computation. Efforts are underway for superconducting
transmon qubits [1] coupled to microwave resonators (circuit-
QED) to realize components of a surface code architecture in
which robust logical qubits are comprised of many O(10–100)
elementary transmon qubits and resonators [2,3]. As the qubit
and resonator overhead of such encoding is rather daunting and
inefficient, one may ask whether there exist more efficient ways
of using high-coherence qubits and long lifetime microwave
resonators (see some numbers in Table I) to encode robust
logical qubits. In this paper, we will explore the proposal by
Gottesman, Kitaev, and Preskill [4] to encode a qubit into an
oscillator and take a first stab at analyzing how a qubit can be
encoded and preserved in a single mode of a microwave cavity.
This scheme may not only be interesting as an alternative route
towards scalable quantum computation, but also as a way of
generating a highly nonclassical state in a (microwave) cavity
which one can actively protect against photon loss.

The GKP (Gottesman-Kitaev-Preskill) code is of interest as
it offers the possibility to use the cavity mode to store a single
qubit, while a transmon qubit coupled to this cavity mode can
be used to manipulate the state of the cavity. The goal is to
prepare and preserve a qubit in a cavity mode such that it has
a coherence time much longer than that of the cavity or the
transmon qubit itself. The GKP scheme is attractive in that
gates on this qubit are relatively straightforward as Clifford
gates can be realized using linear optical components (see [4]
and Appendix A). In addition, this qubit-into-oscillator scheme
can be concatenated with a surface code or another stabilizer
code for scalable protection (see, e.g., [5] for a surface code
with oscillators).

However, a realistic scheme for preparing the encoded states
and performing quantum error correction has been missing so
far (in Sec. I B we list some of the previous work) and this
is the focus of this paper. In the remainder of this section, we

review and discuss the code states and their highly nonclassical
properties. We argue why, at a heuristic level, using phase
estimation can provide a means for approximately generating
such quantum states. In Sec. I C, we review and introduce some
tools and formalism which are useful in assessing the quality
of a preparation protocol, using a model of displacement or
shift errors. In Sec. I D, we physically motivate the shift error
model by discussing how physical errors can be expanded into
such shifts. The shift error model plays a similar role as a
Pauli error model for qubits. This section partially reviews
some of the insights of [4]; it adds to these by showing
in Sec. I D how an expansion into shift errors can lead to
a reduction in error rate by several orders of magnitude.
Section II is devoted to exploring and understanding how
to prepare an approximate code state using the protocol of
phase estimation, in this case determining the eigenvalue of
a unitary displacement operator. There are many ways to do
phase estimation leading to different approximations for the
code states and using different numbers of photons. These
phase estimation protocols all consist of a coupling sequence
of single-qubit ancillas to an oscillator mode sequentially and
measuring the ancilla qubit. We argue why we focus on two
simplest protocols: one is repeated phase estimation without
feedback (Sec. II B) and a second one is a simple form of
adaptive phase estimation with feedback (Sec. II C). For those
two schemes we explicitly show in Sec. II E how well with a
small number of rounds (ancilla qubits) an approximate code
state can be prepared. We also consider the average number of
photons used and the variance thereof, as these numbers are
relevant in any experimental realization of the protocol.

In Sec. III, we discuss a realization of the code state
preparation protocol in an experimental circuit-QED setup
where the oscillator corresponds to a cavity mode. We
review the circuit-QED transmon-cavity coupling and the
physical strength of various parameters as reported in recent
experiments in circuit-QED. We discuss several aspects of an
implementation such as the use of a tunable coupling and the
implementation of a (transmon) qubit controlled-displacement
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gate by means of a controlled rotation or a direct pulse-driven
controlled displacement (details in Appendix D). In Sec. III A,
we discuss at a qualitative level the dominant sources of
inaccuracy in implementing the protocol; we especially note
that the presence of cavity nonlinearities may require a deeper
analysis. We end the paper with a discussion and outlook for
future work.

In Appendixes A and B, we collect some background
technical results which are relevant for implementing gates
on the code states and performing quantum error correction.
Appendix C gives background on the choice of feedback
phases in the phase estimation protocol in Sec. II C.

A. GKP code states

In order to introduce the code states, we assume a harmonic
oscillator with annihilation operator (creation operator) a

(a†) with which one can define (dimensionless) quadra-
ture operators p = i√

2
(a† − a) (momentum) and q = 1√

2
(a +

a†) (position) obeying the canonical commutation relations
[q,p] = i. The ideal GKP code is simply a prescription
of a two-dimensional subspace in the infinite-dimensional
oscillator space. This subspace, called the code space, is
defined as the +1 eigenspace of two commuting displacement
operators Sp = e−i2

√
πp and Sq = ei2

√
πq (one can verify the

commutation of these operators by using the identity eAeB =
eBeAe[A,B] for A,B linear combinations of p and q). The space
fixed by Sp and Sq is two dimensional as there are additional
operators which we can identify as X and Z which commute
with both Sp and Sq , but which mutually anticommute.

States in this two-dimensional subspace will be called code
states as they encode a qubit. Of course, there are many
possible ways of choosing a two-dimensional subspace of a
harmonic oscillator to define a qubit, e.g., choose two energy
eigenlevels or pick two orthogonal cat states to define |0〉
and |1〉. The subspace of the GKP code is one in which |0〉
and |1〉 are highly nonclassical states and is chosen such that
small phase space displacements can be undone by quantum
error correction. In this sense, the code offers the possibility
to realize a long-lived, well-protected qubit.

What is immediately interesting about a state in this
subspace is that the condition Sp = 1 and Sq = 1 fixes both
momentum p = 0 mod

√
π and position q = 0 mod

√
π to

be sharply determined. A code state thus escapes Heisenberg’s
uncertainty principle by being not localized at a single p and q

but being a superposition of many equally spaced sharp values
for p and q. Due to having low variance in both quadratures, we
can expect that a code state is useful in metrology for detecting
small displacements which shift p or q by less than

√
π .

If we write the operators Sp and Sq as displacements,
one has Sp = D(

√
2π ) and Sq = D(i

√
2π ) [using D(α) =

exp(αa† − α∗a) with D(α) |vac〉 = |α〉 and |α〉 a coherent
state]. In this code space, one can define the qubit states |0〉
and |1〉 as

|0〉 ∝
∞∑

t=−∞
D(t

√
2π ) |q = 0〉 =

∞∑
t=−∞

St
p |q = 0〉 ,

|1〉 ∝
∞∑

t=−∞
D(t

√
2π ) |q = √

π〉 =
∞∑

t=−∞
St

p |q = √
π〉 . (1)

Thus, |0〉 is a uniform superposition of eigenstates of
position q at even integer multiples of

√
π , while |1〉

is a uniform superposition of eigenstates of position q

at odd integer multiples of
√

π . One can also consider
these states as superpositions of p eigenstates, i.e., |0〉 ∝∫

dp (
∑∞

t=−∞ St
p) |p〉 ∝ ∑∞

s=−∞ |p = s
√

π〉 while |1〉 ∝∫
dp e−i

√
πp(

∑∞
t=−∞ St

p) |p〉 ∝ ∑∞
s=−∞(−1)s |p = s

√
π〉

[using that
∑∞

t=−∞ e−i2
√

πpt ∝ ∑∞
s=−∞ δ(p = √

πs)]. Thus,
both |0〉 and |1〉 have nonzero amplitude at integer multiples of√

π in p space, but due to alternating phases, these amplitudes
destructively interfere at odd multiples of

√
π in the state

|+〉 = 1√
2
(|0〉 + |1〉) [6]. The operator X : |0〉 ↔ |1〉 is given

by X = e−i
√

πp, as it shifts each eigenstate |q〉 by
√

π . Note
that X2 = Sp which equals I only on the code space (+1
eigenspace of Sp) (see discussion in Appendix A). One can
write

|+〉 = 1√
2

(|0〉 + |1〉) ∝
∞∑

t=−∞
St

q |p = 0〉 ,

|−〉 = 1√
2

(|0〉 − |1〉) ∝
∞∑

t=−∞
St

q |p = √
π〉 , (2)

with Z : |+〉 ↔ |−〉 given by Z = ei
√

πq and Z2 = Sq .
A simple way to understand the ideal preparation of a code

state |0〉 (or |1〉) is through Eq. (1): one starts with a +1
eigenstate of Z, namely, |q = 0〉 to which one applies �Sp=1 =∑∞

t=−∞ St
p which is the projector onto the +1 eigenspace of

Sp [7].

Approximate GKP code states

Naturally, Ref. [4] realized that the perfect code states in
Eq. (1) are unphysical as their preparation would require infi-
nite squeezing and an infinitely sharp projection onto the +1
eigenspace of Sp. Reference [4] suggested using approximate
code states: we can understand how this approximation comes
about in, say, the definition of |0〉, as follows.

As it would take an infinite amount of squeezing to prepare
|q = 0〉 we replace this state by a finitely squeezed state
(in q) centered around q = 0, that is, a squeezed vacuum
state [Eq. (3)]. Then, we need to implement an approximate
projection onto the Sp = 1 eigenspace. Such projection could
come about by approximately estimating the eigenvalue of
the operator Sp and then post-selecting the measurement
outcome on this eigenvalue being +1 (while discarding other
results). Such approximate projection by post-selection, using
an ancilla qubit, has been considered in [8], without making
reference to any particular technology. However, any post-
selection scheme will have a low probability of success and
is in fact unnecessary. If one can implement a highly accurate
phase estimation measurement of the unitary displacement
operator Sp, estimating its eigenvalue as some eiθ , then one can
also correct for such an eigenvalue shift and shift, or displace,
back to the +1 eigenvalue code space.

The formal definition of the approximate states is as
follows. One replaces each delta function in position q by
a squeezed Gaussian state while the uniform superposition
over these localized states is replaced by a Gaussian envelope.
For example, for the approximate |0〉 state, one starts with
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(a) (b)

FIG. 1. Absolute value of the wave function of the approximate
code state |0〉approx (a) and |1〉approx (b) for � = 0.2.

the squeezed vacuum state |vacsq〉 with squeezing parameter
�2 = e−2r :

|vacsq〉 =
∫

dq

(π�2)1/4
e−q2/(2�2) |q〉 , (3)

to which one applies a sum of displacements, as in Eq. (1),
with a Gaussian filter, i.e.,

|0〉approx ∝
∞∑

t=−∞
e−2π�̃2t2

D(t
√

2π ) |vacsq〉

=
∞∑

t=−∞

∫
e−2π�̃2t2

e−(q−2t
√

π )2/(2�2) |q〉 dq,

|1〉approx ∝
∞∑

t=−∞

∫
e−π�̃2(2t+1)2/2e−[q−(2t+1)

√
π )2/(2�2] |q〉 dq.

(4)

The code state is thus a Gaussian-weighted sum of displaced
squeezed vacuum states. This code state and its Wigner func-
tion W (p,q) = 1/π

∫ ∞
−∞ e2ipx�∗(q + x)�(q − x)dx, where

�(q) is the wave function of the state |0〉approx in the position
basis, are depicted in Figs. 1 and 2 for �̃ = � = 0.2 which
corresponds to 8.3 dB.

Here and elsewhere in the paper, we calculate dB as
10 log10(G) = 10 log10[cosh2(r)] where G is the amount of
gain through the amplifier and r = ln(1/�) [9]. In the limit of

FIG. 2. Surface plot, contour plot, and integral over p,q of the
Wigner function W (p,q) for code states |0〉approx with � = 0.5 (a) and
� = 0.2 (b). For q being an odd multiple of

√
π , the Wigner function

rapidly oscillates between positive and negative values when p is an
even resp. odd multiple of

√
π . Integrating over the p variable thus

leaves, due to destructive interference, little amplitude for q at odd
multiples of

√
π , as can also be seen in Fig. 1.

� → 0 (infinite squeezing) where the width of the Gaussian
envelope becomes arbitrarily broad, one obtains the perfect
code states. It is worth noting that it is not essential that
the parameters �̃ and � are identical, nor that the filter
is Gaussian: in [10] a very general form of approximate
code states depending on two different filter functions was
formulated.

One can obtain the form of the code states in p space
by taking a Fourier transform. For example, the state
|+〉 = 1√

2
(|0〉approx + |1〉approx) has the following form when

�/
√

π,�̃
√

π 	 1 (see [4]):

|+〉approx ∝∼
∞∑

t=−∞

∫
e−�2p2/2e−(p−2t

√
π)2/(2�̃2) |p〉 dp

≈
∞∑

t=−∞

∫
e−2π�2t2

e−(p−2t
√

π)2/(2�̃2) |p〉 dp, (5)

where one observes that the roles of � and �̃ are interchanged.
If one encodes in a bosonic mode, it is natural to choose
similar approximations in p and q as free evolution of the
state evolves these quadratures into each other. This means
that the choice � = �̃ is natural. The filter is Gaussian, so
that we can use squeezed states which are Gaussian in their
quadrature spread. It can be seen in Eqs. (4) and (5) that
the wave functions of approximate code states are even in q

and p, respectively. As the photon parity operator P = eiπa†a

transforms q → −q, p → −p, these code states will always
have an even number of photons [this is not true for the
approximate shifted code states in Eq. (8)].

For an approximate code state with parameter � one
can explicitly calculate the mean number of photons n =
〈a†a〉 and its variance σ 2(n) = 〈(n − a†a)2〉. Using that n =
〈 1

2 (p2 + q2) + 1〉 = 〈q2〉 + 1, � 	 1/� and approximating
the infinite sum over t by an integral, one obtains n ≈ 1

2�2 . A
similar calculation yields

σ (n) ≈ 1

2�2
∼ n, (6)

to leading order in 1/�. This shows that the approximate code
states are highly nonclassical states with large fluctuations in
photon number, i.e., scaling with the total number of photons
while the approximation parameter � controls the number of
photons in the state. We will return to the number of photons
in the approximately prepared code states in Sec. II E.

B. Previous work

The preparation of the code states has been discussed in
several papers (see, e.g., [4,8,11–13]). In [4] it was noted that
an interaction Hint = qb†b where q is the position operator
of the oscillator (e.g., a cooled micromechanical system) in
which the code state is to be encoded and b is the annihilation
operator of a different bosonic mode, would be useful in
preparing the code states. The protocols discussed in [8,12]
use post-selection in preparing the code states making the
success probability extremely small, while we find that (almost
no) post-selection is required by understanding the preparation
step as phase estimation (see details in Sec. II E).
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In [14], the use of cat states |0〉 ∝ |α〉 + |−α〉 and |1〉 ∝
|iα〉 + |−iα〉 was explored for encoding a qubit in a cavity
mode and dissipative dynamics was considered to preserve
the even photon-number code space. Even though dissipative
dynamics can drive a state to this code space, it does not
imply that such dissipative dynamics realizes quantum error
correction as it has to approximately drive an encoded state
in this subspace to itself. Unlike the approximate GKP code,
the cat-state code by itself (implemented in circuit-QED in
[15,16]) is not fully protected against loss of photons. The
detection of a photon-number change by 1 constitutes a
reversible change (which can be undone), but when one does
not detect this change, the cat states decay irreversibly, nor
is the code protected against the simultaneous loss of two
photons.

In [17], multicomponent cat states were dynamically
generated in a cavity mode using the Kerr nonlinearity of the
cavity (see, e.g., the description of such a protocol in [18]). A
multicomponent cat state is a superposition of coherent states
spaced at equal distances on a circle in phase space while
the approximate code states are created by translations along
a line. It seems hard to define two approximately orthogonal
qubit states using these multicomponent cat states such that (1)
the phase space amplitude peaks for |0〉 , |1〉 are sufficiently
separated (so as to protect against small shift errors) and (2) |+〉
and |−〉 are similarly superpositions of sufficiently separated
peaks.

C. Quantum error correction and protection

The primary reason for defining the two-dimensional code
space as the +1 eigenspace of Sp and Sq is that the code states
are protected against small shift errors in phase space, of the
form e−iup and e−ivq with |u|,|v| <

√
π/2. Such shifts move

the peaks of the code state in Fig. 1 as e−iup |q〉 = |q + u〉 and
e−ivq |p〉 = |p − v〉. Thus, when the shift error is less than half
the shift represented by the operators X or Z in magnitude, one
can undo the error by shifting back the state by the minimal
amount.

Imagine that a shift error e−ivq has occurred and the
eigenvalue of the check operator Sp is perfectly measured by
some means. One will estimate the eigenvalue of Sp as ei2

√
πv

(as Spe−ivq |ψ〉 = ei2
√

πve−ivq |ψ〉 for a state ψ in the code
subspace, as follows from the commutation between e−ivq

and Sp). For |v| <
√

π/2, the phase θ = 2
√

πv ∈ (−π,π ) is
uniquely given and thus one can correct the shift error by
learning the phase θ (and shifting back). For larger |v|, θ

is consistent with two values of v and choosing the wrong
one leads to a logical qubit error. Error correction for shift
errors e−iup works similarly by measuring the eigenvalue of
Sq (which becomes ei2

√
πu). In the phase estimation protocols

that we propose, the goal is to approximately measure the
eigenvalues of the unitary operator Sp (and Sq). Once one
knows the approximate eigenvalue of, say, Sp, one could in
principle apply an appropriate corrective displacement such
that the eigenvalue of Sp equals 1. In Appendix A, we argue
that it is not necessary to do so as any subspace characterized
by fixed eigenvalues of Sp and Sq is a good code space (one
can compare this phase frame to a Pauli frame used in the
description of stabilizer codes).

Perfect code states which are eigenstates of Sp and Sq can
be parametrized [11] as basis vectors |u,v〉 (which form a
complete orthonormal basis for the oscillator space) defined
as

|u,v〉 = e−iupe−ivq |0〉 ,

u ∈ (−√
π,

√
π ], v ∈ (−

√
π/2,

√
π/2]. (7)

Note that one has Sp |u,v〉 = ei2
√

πv |u,v〉 and Z |u,v〉 =
ei

√
πu |u,v〉. One can observe that a state |u,v〉 in q space is

simply a sum of peaks where the location of the delta functions
is shifted by u, while the wave function at each peak obtains a
complex phase given by exp(−ivq). One can similarly define
approximate shifted code states as

|u,v,�〉 ≡ e−iupe−ivq |0〉approx

∝
∞∑

t=−∞

∫
e−2π�2t2

e−(q−2t
√

π)2/(2�2)e−ivq |q+u〉 dq.

(8)

For such an approximate shifted code state, the Gaussian
envelope is identical, but each peak within the Gaussian
envelope has obtained a phase factor e−ivq (we omit an overall
phase factor) and the peaks are located at the shifted positions
q = u mod 2

√
π . Of course, the width of the Gaussian

envelope with standard deviation σ = 1/� should be larger
than the maximal shift, i.e., � 	 1/

√
π ≈ 0.56, so that all

shifts lead to approximate code states within the same overall
envelope. It is the goal of the phase estimation protocols in
this paper to produce such approximate shifted code states
|u,v,�〉.

It has been shown in [11] that it is possible to do
quantum error correction using perfect code states which have
undergone some (coherent or stochastic) distribution of shift
errors of strength |u|,|v| <

√
π/6, assuming otherwise perfect

linear optical circuits. In Appendix B, we review this way
of doing quantum error correction. We will use the

√
π/6

value, corresponding to a phase uncertainty δθ of the stabilizer
checks of at most π/3 (but a phase uncertainty of π/6 for
the measurement of X or Z), as a rough figure of merit
to represent how well one can prepare a code state using
phase estimation. We will refer to this threshold as the

√
π/6

shift error threshold. The “Steane quantum error correction”
analyzed by Glancy and Knill already assumes the existence
of an approximately prepared code state for which we devise a
phase estimation method in this paper. Through approximate
phase estimation one can perform quantum error correction,
hence, the Glancy-Knill method may not be necessary to use
at all.

More formally, we define an effective shift error rate P
√

π/6
error

of a state which makes reference to the
√

π/6 threshold as
follows. Any density matrix ρ, i.e., an approximately prepared
code state, can be written in the basis |u,v〉 [11] as

ρ =
∫ √

π

−√
π

du

∫ √
π

−√
π

du′

×
∫ √

π/2

−√
π/2

dv

∫ √
π/2

−√
π/2

dv′ρuv,u′v′ |u,v〉 〈u′,v′| . (9)
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The effective shift error rate P
√

π/6
error is defined as

P
√

π/6
error = 1 −

∫ √
π/6

−√
π/6

du

∫ √
π/6

−√
π/6

dv ρuv,uv, (10)

so that for a pure state |ψ〉 = ∫ √
π

−√
π

du
∫ √

π/2
−√

π/2 dv c(u,v) |u,v〉,
one has P

√
π/6

error = 1 − ∫ √
π/6

−√
π/6 du

∫ √
π/6

−√
π/6 dv|c(u,v)|2. For the

approximate code state in Eq. (4) [11] has shown that with n ≈
22 photons, � = 0.15, the probability for shift errors beyond
the

√
π/6 shift error threshold is at most 1%. If the shift

errors are due to independent processes and the probability
distribution ρuv,uv = ρuρ̃v , then one can use the effective shift

error rate in p or q alone, i.e., P
√

π/6
error,q = 1 − ∫ √

π/6
−√

π/6 du ρu and

P
√

π/6
error,p = 1 − ∫ √

π/6
−√

π/6 dv ρ̃v to estimate the total error P
√

π/6
error .

Note that this error rate is only a rough figure of merit
as it makes reference to the shift error threshold of

√
π/6

which has no intrinsic meaning if quantum error correction
is performed through other means. For an approximate code
state one can also estimate the X or Z error probability.
The X error probability is the probability that the state
|0〉approx is incorrectly identified as encoding |1〉 by means
of perfect quantum error correction. This is equal to the

probability P
√

π/2
error,q as shifts with |u| � √

π/2 lead to the
state being incorrectly identified. In [4] this error probability
was approximately upperbounded by 2�

π
exp(−π/4�2) which

leads to a 1% error probability for � = 0.5. Naturally, this
error probability is more optimistic than the

√
π/6 threshold

value, but since we expect the presence of additional (shift)
errors during all protocols, using the threshold value seems a
reasonable figure of merit.

In practice, the code states are realized through an
approximate noisy implementation of the phase estimation
measurement of Sp and Sq . Phase estimation by finite means
(see Sec. II) will typically output an estimate θ̃ for θ such
that Prob(|θ̃ − θ | < δ) > 1 − ε for some ε and δ. This means
that with probability at least 1 − ε, one has |θ̃ − θ | = δθ < δ

phase uncertainty, which in turn corresponds to δv = δθ

2
√

π
<

δ/(2
√

π ) shift uncertainty or error with probability at least
1 − ε. Note that when one measures the eigenvalue of an
operator such as Z = ei

√
πq with phase uncertainty δθ < δ

(with high probability), then this corresponds to having a shift
error of strength at most δu < δ/

√
π .

D. Physical sources of errors as shift errors

In this section, we discuss how levels of decoherence or
inaccuracy of an arbitrary nature on the oscillator can be
expanded into shift errors in p and q of small strength, at
least when this noise is acting on states with a sufficiently low
numbers of photons. We will consider this for natural physical
sources of noise and inaccuracy such as dephasing, photon
loss, and quartic (self-Kerr) interactions of the bosonic mode.

Following [4], any operator E acting on a single
bosonic mode can be expanded as E = ∫ ∞

−∞ dγ c(γ )D(γ )
with complex coefficients c(γ ), i.e., an expansion into
linear combinations of translations D(γ ) with complex γ

in phase space. One can formally obtain the coefficients
c(γ ) as c(γ ) = 1

π
Tr[ED(−γ )] = 1

π2

∫
dα 〈α| ED(−γ ) |α〉 =

1
π
CE

W (−γ ) where CE
W (λ) is the symmetrically ordered char-

acteristic function of the operator E [18,19], whose Fourier
transform is the Wigner function of the operator E. Here,
dα = d Re(α)d Im(α). Thus, in principle, one can find an error
expansion for any operator by evaluating c(γ ) and considering
whether its support is concentrated on small values of γ . For
example, the identity operator I has c(γ ) = δ2(γ ), a delta
function in the real and imaginary parts of γ .

At a more intuitive level, one can understand, however,
that the extent to which an expansion into small shifts
is warranted should depend on the number of photons
in the state. Consider the action of an undesired rotation
exp(−iδa†a) [or photon decay operator exp(−δa†a)] in phase
space. For simplicity, we apply it to a coherent state |α〉:
it is clear that such rotation corresponds to a larger state-
dependent translation for larger α, i.e., exp(−iδa†a) |α〉 =
|α exp(−iδ)〉 ∝ D{α[exp(−iδ) − 1]} |α〉 ≈ D(−iαδ) |α〉 for
δ 	 1. If exp(−iδa†a) = ∫

dγ c(γ )D(γ ) were only supported
on γ with |γ |2 � f (δ) with some function f (δ) which is
independent of the number of photons, then this contradicts
the fact that there are states |α〉 with n = |α|2 large enough to
be undergoing a large displacement |αδ| > |γ | [20].

This implies that one should consider expansions (of
physical noise operators in terms of shifts) which assume
an upper bound on the number of photons in the oscillator
space: let us call this upper bound on the number of photons
nmax. In that case, it is clear from the above example that
one can only make an expansion in small shifts, of strength
at most

√
π , of exp(−iδa†a) when at least one satisfies the

inequality |δ|n1/2
max <

√
π . A similar argument can be given for

a quartic interaction of form exp[−iε(a†a)2]. For such quartic
interaction one can write, assuming ε 	 1,

〈α| exp[iε(a†a)2]a exp[−iε(a†a)2] |α〉
≈ α exp(−i|α|2ε) exp(−|α|2ε2/2). (11)

Thus, ignoring fluctuations, one has an average phase space
rotation (nonlinear phase shift) in addition to coherent state
amplitude decay. As before, such average rotation and decay
is only expressible in terms of small shifts of strength less than√

π when at least one obeys the inequality |α|3|ε| � |ε|n3/2
max <√

π .
We note that these conditions are necessary, but not here

proved to be sufficient as we have only applied these operators
to coherent states |α〉 {while for example a superposition
of Fock states |vac〉 + |nmax〉 undergoes a rate of change
proportional to εn2

max by exp[−iε(a†a)2]}.
Since the approximate code states are superpositions of

displaced squeezed vacua, we believe however that these
criteria do give a good indication of whether a small-shift
expansion is warranted and also capture the strength of shift
errors. For the proposed protocol in Sec. III, we will show that
the expected process of photon loss during the preparation
of the code state has sufficiently small error rate so as to
be deeply into this small-shift error regime. We will also
discuss the (unwanted) cavity nonlinearities in the effective
transmon qubit cavity Hamiltonian given the physical strength
of parameters in a possible experiment.
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Shift error expansion

Here, we describe a general method to expand an error
operator E in terms of shift errors. The error operator E can
arise either from open system dynamics or an unwanted unitary
transformation. General open system dynamics of the bosonic
mode can be modeled by a Lindblad equation of the form

ρ̇ = −i[Hideal(t) + V (t),ρ] + D(
√

κa)(ρ) + D(
√

γ a†a)(ρ),

(12)

with the compactly defined superoperator D(X)(ρ) =
XρX† − 1

2 (X†Xρ + ρX†X). Here, Hideal(t) is some ideal
(time-dependent) dynamics (the execution of the phase estima-
tion protocol of Sp say, or some gate implementation) and V (t)
a possible perturbation or correction [e.g., an unwanted self-
Kerr term K(a†a)2]. The Lindblad equation can model photon
loss D(

√
κa) of rate κ or dephasing D(

√
γ a†a) of rate γ . For

simplicity, one can consider the effects of the different sources
of noise separately [and ignore Hideal(t) + V (t)] and construct
a superoperator for the evolution in a short time interval, as
S(ρ(t + τ )) = ∑

i Aiρ(t)A†
i . For the process of photon loss

one has A0 = I − τκ
2 a†a + O((τκ)2n2

max) and A1 = √
κτa.

For dephasing one has A0 = I − τγ

2 (a†a)2 + O((τγ )2n4
max)

and A1 = √
γ τa†a. These Kraus operators are examples of

error operators E. It is clear that one can express such operators
as low-order polynomials in a and a† and we will describe how
such a low-order polynomial can be expanded in shift errors.

Similarly, a unitary error operator E can be an over-rotation
exp(−iδa†a) or a nonlinearity exp[−iε(a†a)2] where δ,ε are
given by an error strength times a time scale. Assuming that
δnmax 	 1 or εn2

max 	 1, one can Taylor expand this in terms
of I and low powers of a and a†.

We now write a simple Taylor expansion in terms of
correctable and incorrectable shift errors for the operator√

δa ≡ x1 + ix2 with x1 = p
√

δ/2 and x2 = q
√

δ/2 assuming
δnmax 	 1. This expansion and its Hermitian conjugate can
then be used to expand operators such as a2,a†a, etc. With the
Taylor expansion of arcsin(x) ≈ x + x3

6 + 3x5

40 + 5x7

112 + O(x9),
we can expand x1 + ix2 in terms of sin(x1), sin3(x1) and
sin(x2), sin3(x2), etc. For example, in lowest order one has
√

δa = sin(p
√

δ/2) + sin3(p
√

δ/2)/6

+ i[sin(q
√

δ/2) + sin3(q
√

δ/2)/6] + O((δnmax)5/2),

(13)

where the sin(p
√

δ/2) and sin3(p
√

δ/2) function [and sim-
ilarly sin(q

√
δ/2)] can be expanded in terms of e±ip

√
δ/2,

e±2i
√

δ/2, e±3i
√

δ/2, etc. In general, we can thus write E =√
δa = Ecorrectable + Eincorrectable where Ecorrectable contains all

terms in the Taylor expansion up to odd kth order such that
k
√

δ/2 ≈ √
π/2 and ||Eincorrectable|| � O((δnmax)1+k/2). We

can use this to expand an operator (
√

δa)p [or (a†a)p/2 or (a†)p]
as (

√
δa)p = Ecorrectable + Eincorrectable where ||Eincorrectable|| =

O((δnmax)1+k/2) with k
√

δ ≈ √
π/p. This shows that on an

encoded state, the amplitude of an incorrectable error can be
reduced by several orders of magnitude, depending on the
strength of the errors.

One thing to note is that in order to systematically expand
noise processes in terms of shift errors, one should develop the

full Kraus error operator or undesired rotation to a certain order
in δnmax. In other words, depending on which order in δnmax

one chooses, one includes higher-order terms in the expansion
of the error Kraus operators Ai or the unitary.

One can interpret the protection that the code offers with
the following example. Assume that photon loss from a cavity
occurs for some time t at rate κ such that P ≡ κtnmax < 1.
Without encoding, the error operator E = √

κta produces
an incorrectable error with probability ∼P . For a cat-state
encoding (see Sec. I B) this process is correctable, but for the
cat encoding, a two-photon loss error operator E = κta2 is
incorrectable (as it is proportional to Z). Hence, incorrectable
errors happen with probability ∼P 2.

If we expand the two-photon loss error operator in terms
of correctable and incorrectable shift errors, the probability
for the incorrectable term is of order (κτnmax)1+k/2 = P 1+k/2

where k ≈ 1
2

√
πnmax

P
. Thus, for small P 	 1 the probability

for an incorrectable error resulting from two-photon loss can
be much reduced if one uses a code that can correct shift errors
as compared to a code which can only correct single-photon
loss events.

II. PHASE ESTIMATION

The measurement of the eigenvalue eiθ of a unitary operator
U , and the simultaneous projection of the input state onto the
corresponding eigenstate U |ψθ 〉 = eiθ |ψθ 〉, is called phase
estimation for U . In our case, we have U = Sp = D(

√
2π ),

say. Phase estimation can be executed by repeatedly running
a circuit of a general form depicted in Fig. 3 for varying k

and phases ϕ. Many variants of phase estimation exist (see,
e.g., a recent analysis in [21]) depending how or whether one
varies k and/or whether one allows ϕ to depend on earlier
qubit measurements, so using feedback, and how one infers
the phase from the information obtained from the sequence of
qubit measurement outcomes.

We will first consider standard phase estimation as it is used
in Shor’s factoring algorithm and argue that this method does
not give the kind of approximate code state that we are looking
for, at least not when we wish to use low numbers of photons.
The standard phase estimation has the same performance
as Kitaev’s phase estimation described in [22]; both require
realizations of U 2k

for increasing k.
The best form of approximate phase estimation optimizes

the accuracy on the phase given a mean number of photons
n in the approximately prepared code state as we always
work with a bounded number of photons. In this respect, it
can be noted that for the standard phase estimation protocol
described in the following, the phase uncertainty scales as δθ ∼
2−M ∼ 1√

n
, that is, shot-noise limited. Protocols which can

achieve Heisenberg-limited scaling, that is δθ ∼ 1
n

, have been
considered and analyzed in detail in [23–25] (with an improved
accuracy analysis in [26]). One scheme that can reach the
Heisenberg limit is a modified form of the Kitaev’s phase
estimation in which the circuit for each controlled-D(2k

√
2π )

in Fig. 3 is repeated a number of times depending on k and
M [25]. One can thus expect that this Heisenberg-limited
scheme performs optimally, but we do not consider it here
as the experimental realization of the simpler schemes will
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storage cavity D(−2k π/2) D(2k
√

2π)

qubit |0 H • diag(1, eiϕ) H

FIG. 3. Phase estimation for the unitary operator Sp = e−i2
√

πp = D(
√

2π ) where D(α) is the displacement operator. Assume that phase
estimation uses M ancillas prepared in |00 . . . 0〉. The circuit in this figure is repeatedly executed for k = M − 1, . . . ,0 starting at k = M − 1.
The phase ϕ in the single-qubit rotation around the z axis, diag(1,eiϕ), will depend on the outcomes of all the previously measured ancillas. This
sequential realization of phase estimation is identical to normal phase estimation as it merely uses a semiclassical realization of the quantum
Fourier transform. Note that the circuit is identical to one in which diag(1,eiϕ) is moved before the controlled-displacement gate, which is the
form of the quantum circuit in [23]. Prior to the controlled-displacement gate, the cavity is (unconditionally) displaced so that the code states
are symmetrically centered around the vacuum state and we minimize the total number of photons.

already be demanding. When one allows for a larger number
of ancilla qubit rounds, one can expect that switching to such
scheme which uses U 2 or U 4, etc., is better.

In Secs. II B and II C, we analyze two simple phase
estimation protocols, repeated or nonadaptive phase estimation
and phase estimation by feedback or adaptive phase estimation.
These schemes only use U and thus no increasingly large
displacements (microwave power).

A. Standard phase estimation

Any method for estimating the phase by sequentially
acquiring bits of information is information-theoretically
bounded: it is clearly optimal if each acquired bit gives us,
with certainty, one additional bit of the binary expansion of
θ

2π
= 0.θ1θ2 . . . , starting with the most significant bit θ1, etc.

This is close to what the standard phase estimation protocol,
as it is invoked in Shor’s algorithm, achieves [27]. It is
known that this phase estimation protocol can be realized
sequentially (see e.g. [28–30]) by coupling a sequence of M

single qubits to the input state and applying controlled-U 2k

gates (k = 0, . . .) with the ancilla qubit as control. This can be
understood by replacing the Fourier transform in the standard
phase estimation by the semiclassical Fourier transform whose
quantum circuit is one in which the first qubit is measured
and its outcome is used to apply single-qubit gates on the
remaning M − 1 qubits. The next qubit is measured and again
its outcome determines single-qubit gates on the remaining
M − 2 qubits, etc. (see Fig. 5.1 in [27]). In this way, the whole
procedure can be implemented sequentially, in rounds with
one active control qubit per round. We depict one round of
such a phase estimation protocol for U = Sp = D(

√
2π ) in

Fig. 3. We can consider the measurement operator Mx that
is applied to the input state, upon getting an M-bit outcome
x ∈ {0,1}M , with U = D(

√
2π ), including the compensating

displacements in each circuit in Fig. 3 which center the code
state around the vacuum state. One obtains Mx |ψinput〉, with

Mx = 1

2M

∑
t∈{0,1}M

e−2πixt/2M

D(
√

2πt)D

(
−

√
2π

2M − 1

2

)

∝∼
2M−1∑

t=−2M−1

e−2πixt/2M

D(
√

2πt). (14)

[Here, ∝∼ relates to the fact that we simply approximate

(2M − 1)/2 ≈ 2M−1.] For phase estimation one can prove
that, using M = M̃ + log2( 1

2 + 1
2ε

) ancilla qubits, we obtain
the best possible M̃-bit estimate of the binary expansion
of θ

2π
with probability of success at least 1 − ε (when one

chooses M̃ = M , Psuccess = 4
π2 ). Let θ̃ ∈ (−π,π ] represent

this M̃-bit estimate. Let xround be the bit-string outcome x

rounded off to its M̃-most significant bits. For xround/2M̃ � 1
2 ,

we choose θ̃ = 2πxround

2M̃
, while for xround/2M̃ > 1

2 , one takes

θ̃ = 2πxround

2M̃
− 2π .

Knowing the first M̃ bits of θ/(2π ) leads to an error δθ �
2π2−M̃ . This means that one can prepare an approximate Sp

eigenstate with Psuccess � 9
16 (for which M = M̃ + 2) such

that the shift error is less than the
√

π/6 shift error threshold
(correspond to π/3 phase error, see Sec. I C) if we take M � 4.

There are a few ways to see that this method of measuring
the eigenvalue of Sp is not well suited for the approximation
that we are seeking. The protocol requires the implementation
of controlled-D(2k

√
2π ) for k = 0, . . . M − 1 (Fig. 3). This

means that the number of photons in the cavity mode grows
exponentially with the number of ancilla qubits used. More
precisely, one can calculate the number of photons in an
approximate code state produced by applying phase estimation
of Sp onto the squeezed vacuum state in Eq. (3), |ψx〉 ∝
Mx |vacsq〉. One has

nx = 〈vacsq| M†
xa

†aMx |vacsq〉
〈vacsq| M†

xMx |vacsq〉
≈ 2π

1

2M

2M−1∑
k=−2M−1

k2 + nsq

= 2π

(
22M−2

3
+ 2M−1

2
+ 1

6

)
+ nsq,

where nsq is the expected number of photons of the squeezed
vacuum state |vacsq〉. Here, we have used that D(−α)aD(α) =
a + α and 〈vacsq| D[

√
2π (t − t ′)] |vacsq〉 ≈ 0 for |t − t ′| � 1

[the numerical value is O(10−13) for � = 0.2]. In principle,
nx depends on the outcome x, but the fluctuations with
x vanish when we approximate overlaps between different
displaced squeezed states by 0. To leading order in M we have
nx ≈ 2π 22M

12 + nsq, scaling exponentially with M as expected.
For M = 4, one has n ≈ 134 + nsq. This number is very high
compared to the 22 photons in a Gaussian-approximate code
state with � = 0.15 which has high probability to be below
the shift error threshold.
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|ψθ Ueiϕ U

=

qubit |0 H • H H • diag(1, eiϕ) H

FIG. 4. Phase estimation for a unitary operator U , with varying (feedback) phase ϕ, and U |ψθ 〉 = eiθ |ψθ 〉. For repeated phase estimation
one chooses either ϕ = 0 and π/2 for half the number of rounds. In a simple form of phase estimation with feedback the phase ϕ is changed
after each outcome so as to optimize the sensitivity of the probability distribution with respect to the currently estimated value for θ .

Another way to understand this is to consider the form of
the measurement operator in Eq. (14). Equating x ≈ xround,
we have Mx→θ̃ ∝∼

∑2M−1

t=−2M−1 e−iθ̃ tD(
√

2πt). One can compare

this measurement operator to the projector onto the space with
Sp = eiθ which equals

�Sp=exp(iθ) =
∞∑

t=−∞
e−iθ tD(

√
2πt), (15)

and note the similarity between the two operators. This shows
that the filter used in standard phase estimation is a wide
box-car filter with a hard cutoff, while we are seeking a smooth
Gaussian filter. If we were to choose controlled-displacement
operators with exponentially growing displacements, one has
to show that the duration of these gates is not necessarily
exponentially increasing as such growth in time would lead
to more loss and decoherence during the QEC cycle and code
state preparation. In principle, large controlled displacements
can be obtained by large microwave power (see Appendix D),
but one may expect that the inaccuracy and undesired side
effects of exponentially large displacements are also exponen-
tially increasing.

B. Phase estimation by repetition (nonadaptive)

The simplest way to estimate θ ∈ (−π,π ] of a unitary
operator U |ψθ 〉 = eiθ |ψθ 〉 is to repeat the quantum circuit
in Fig. 4 with ϕ = 0 and π/2. For the ϕ = 0 measurement,
each ancilla qubit then has a probability for outcome 0
equal to Pϕ=0(0|θ ) = 1

2 [1 + cos(θ )] while for the ϕ = π/2
measurement one has Pϕ=π/2(0|θ ) = 1

2 [1 − sin(θ )]. Note that
a simple repetition of the ϕ = 0 measurement is insufficient
since Pϕ=0(0|θ ) is the same for θ and −θ . Thus, one chooses
ϕ = 0 for half of the number of rounds and ancilla qubits and
ϕ = π/2 for the other half [28].

In an adaptive phase estimation (see Sec. II C), one takes
into account that the sensitivity of the probability distribution
Pϕ(0|θ ) = 1

2 [1 + cos(θ + ϕ)] to θ , i.e., dPϕ (0|θ)
dθ

, is a function
of θ . One would like to optimize this sensitivity by choosing
values for the feedback phase ϕ which depend on previous
measurement outcomes. In this optimization one chooses a
next phase ϕ such that the measurement with that ϕ maximizes
the sharpness of the resulting inferred probability distribution
over θ . This method has been analyzed and described in detail
in [25,31].

One round of phase estimation for U = Sp is depicted in
Fig. 5. Instead of starting with an eigenstate, one would like to
understand how one approximately projects onto an eigenstate
of Sp using this repeated measurement. We can first consider
the action of this circuit on a coherent state |α〉 when the qubit

is measured as x = 0,1:

|α〉 → |α −
√

π/2〉 + (−1)xeiϕ |α +
√

π/2〉 , (16)

where the resulting state has not been normalized. Repetition
of such a circuit on the resulting output state will thus produce
a sum of coherent states on a line, each with a phase which
depends on the feedback phase and the measurement outcome.
If all phases add constructively, this distribution of amplitudes
and weights of coherent states will be as in a Pascal triangle,
hence binomial, as each coherent state gets split in two
equidistant coherent states at every round [see, e.g., Fig. 14(a)
in Appendix D].

A more formal way of showing that the filter of this
protocol is binomial and thus approximately Gaussian is as
follows. Consider the measurement operator for M rounds with
ϕ = 0. An outcome bit string x ∈ {0,1}M will correspond to a
measurement operator which can be labeled by the Hamming
weight k = wH (x) as the order of the outcomes of 1s and 0s

is irrelevant. The measurement operator equals

Mk ∝ [I + D(
√

2π )]M−k[I − D(
√

2π )]kD(−M
√

π/2)

=
k∑

p1=0

M−k∑
p2=0

(
k

p1

)(
M − k

p2

)
(−1)p1 [

√
2π (p1+p2−M/2)].

When all measurement outcomes xi = 0 (from which one
would conclude that θ = 0) the measurement operator has
the simple form of a binomial sum of displacements:

Mk=0 ∝
M∑

m=0

(
M

m

)
D[

√
2π (m − M/2)]

∝∼
M/2∑

t=−M/2

e−2t2/MD(
√

2πt).

storage cavity D(− π/2) D(
√

2π)

qubit |0 H • diag(1, eiϕ) H

FIG. 5. One round of phase estimation for the unitary operator
Sp = e−i2p

√
π = D(

√
2π ) where D(α) is the displacement operator.

The phase eiϕ of the Rz-qubit rotation can be either fixed to ϕ = 0 and
π/2 or adaptively changed per round depending on previous outcomes
as in phase estimation by feedback (Sec. II C). Prior to the controlled-
displacement gate, the cavity is (unconditionally) displaced so that
the code states are symmetrically centered around the vacuum state
and we minimize the total number of photons.
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One can roughly identify this measurement operator with the
Gaussian-filtered projection operator onto approximate code
states in Eq. (4) with �̃2 ≈ 1

πM
(note that the measurement

operator inevitably has a hard cutoff while the Gaussian filter
does not). This shows that for �̃ = 0.2 one can choose M =
25/π ≈ 8 with a much lower number of photons than in regular
phase estimation.

Instead of post-selecting on this outcome, we want to use
the measurement data to estimate the value of θ , and include
the data from the ϕ = π/2 measurement. We can analyze
the efficiency of this method using the Chernoff bound; this
argument is explicitly developed in [24]. Section II E gives
numerical details on the phase uncertainty and the number of
photons. Assume that we use M/2 ancilla qubits for ϕ = 0
and M/2 qubits for ϕ = π/2 such that Pϕ=0(0) is estimated as
P̃ϕ=0 and Pϕ=π/2(0) is estimated as P̃ϕ=π/2. The estimate θ̃ is
chosen as

θ̃ = arg[2P̃ϕ=0 − 1 − i(2P̃ϕ=π/2 − 1)],

θ̃ ∈ (−π,π ]. (17)

Using a Chernoff bound in both cases, Prob(|P̃ − P | � δ) �
2e−2δ2M and some further bounding arguments [24], one can
show that Prob[δθ � π

3

√
f (M)/M] � 4 exp[−3f (M)/16]

for any function f (M) � M for M � 1. This implies that
the probability to prepare a code state with phase uncertainty
below π/3 is at least 1 − 4 exp(−3M/16). This argument
shows that the number of ancillas should be at least M � 8
and the probability of failure will then rapidly vanish. We can
note that the phase uncertainty δθ ∼ 1√

M
for M rounds, each

of which adds O(1) photons to the state, hence scaling in the
expected (shot-noise) way.

C. Phase estimation with feedback (adaptive)

The uncertainty of a probability distribution P (θ ) over
phases θ can be measured by the Holevo phase variance defined
as V [P (θ )] = S[P (θ )]−2 − 1 with the sharpness S[P (θ )] ∈
[0,1] given by

S[P (θ )] ≡ |〈eiθ 〉| =
∣∣∣∣
∫ π

−π

dθeiθP (θ )

∣∣∣∣. (18)

For a δ-function distribution in θ , the variance is 0, while for
a flat distribution V [P (θ )] → ∞. One can show (see, e.g.,
[31]) that for small phase variance V [P (θ )] ≈ �2(θ ) where
�2(θ ) = 〈(θ − 〈θ〉)2〉 is the usual variance.

Assume that we execute the circuit in Fig. 4 for M rounds
so that one gets an M-bit estimate θ̃ of the phase θ and let
x[m] be the m-bit string of 0 or 1 measurement outcomes
after m rounds. The adaptive phases will be set to the values
ϕ1, . . . ϕm, m = 1, . . . ,M , and the question is how these will
be chosen to maximize the sharpness and thus minimize the
Holevo phase variance. We assume no prior knowledge on the
phase θ , i.e., the initial probability distribution over θ , P (θ ),
is assumed to be a flat distribution. This is reasonable as the
squeezed (in q) vacuum state to which the Sp measurement
is applied is a superposition over eigenstates with rather
uniformly distributed phases θ of Sp. If we assume no prior
knowledge about θ , one may as well choose the first phase
ϕ1 = 0, which is what we do.

It can then be argued (see the self-contained analysis in
Appendix C) that one should choose the next phases
ϕ2, . . . ,ϕM as follows, depending on the previous measure-
ment outcomes:

ϕm = arg max
ϕ

∑
xm=0,1

∣∣∣∣
∫

dθ eiθPϕ(x[m]|θ )

∣∣∣∣, (19)

where the probability Pϕ(x[m]|θ ) is the probability of ob-
taining measurement outcomes x1, . . . ,xm given an eigenstate
|ψθ 〉. This probability has a simple expression as the measure-
ment results of each round are independent, i.e.,

Pϕ=ϕm
(x[m]|θ ) =

m∏
i=1

Pϕi
(xi |θ ) =

m∏
i=1

cos2

(
θ + ϕi

2
+ xi

π

2

)
.

(20)
For a (small) number of measurements, say, M = 1, . . . ,20,
one can simply solve this expression for the optimal values
for ϕ2,ϕ3, . . . numerically given all previous possible mea-
surement outcomes and store these optimal values as a lookup
table, which is what we have done.

Given that one has obtained a final measurement record
x[M], how does one choose an estimate for the phase θ̃? In
[31] it is argued that the estimated value θ̃ should be chosen as

θ̃ = arg
∫ π

−π

dθ eiθP (θ |x[M]) = arg
∫ π

−π

dθ eiθP (x[M]|θ ).

(21)
Here, we have used that P (θ |x[M]) = P (x[M]|θ )P (θ )/
P (x[M]). Note that P (θ ) is a flat distribution and P (x[M]) =
2−M which do not influence the arg function. The probability
P (x[M]|θ ), which implicitly depends on the feedback phases
ϕ1, . . . ,ϕm, was given in Eq. (20). If all feedback phases are
set to 0, then θ̃ will be estimated as 0 or π as the function
of which we take the argument is real: this will, however, not
occur since ϕ2 �= 0 after the first bit has been generated. If we
do not use any feedback, the value of this estimate θ̃ coincides
with the estimate in Eq. (17).

In Fig. 6, we plot the probability for obtaining a phase error
δθ = |θ̃ − θ | given a fixed number of rounds M , averaged over
random input phases θ and runs through the protocol for both
the nonadaptive phase estimation protocol and the adaptive

π 6 π 3 π 2
0.005
0.010

0.050
0.100

0.500
1.000
P δθ

M
4, PE
4, APE
8, PE
8, APE

FIG. 6. Total probability P (δθ > ε) with δθ = |θ̃ − θ | versus ε

for M = 4,8 (averaged over θ ∈ (−π,π ]). APE is the adaptive phase
estimation protocol described in this section. PE is the nonadaptive
protocol where one sets the feedback phase ϕ = 0 for M/2 rounds
and ϕ = π/2 for M/2 rounds. For δθ < π/3, one is below the shift
error threshold.

012315-9



B. M. TERHAL AND D. WEIGAND PHYSICAL REVIEW A 93, 012315 (2016)

phase estimation protocol. One important difference between
the two schemes is that in the nonadaptive scheme with ϕ = 0
and π/2 one has a total of ( M

2 + 1)2 possible outcomes, as the
order of the outcomes for a fixed value of ϕ does not affect
the measurement operator which is applied. This is clearly
not true for adaptive phase estimation. Setting ϕ1 = 0, we
have two possible values for ϕ2 = ϕ

x1
2 ,x1 = 0,1. Then, there

are four possible values for ϕ
x1x2
3 , etc., as the optimization in

Eq. (19) depends on all previous outcomes. The final estimate
for θ in Eq. (21) will depend on all these phases ϕ

x1...xi−1
i and θ̃

can thus take on 2M possible values. These arguments suggest
that the adaptive protocol can give a more accurate estimate
of θ . Figure 6 shows indeed how adaptive phase estimation
(APE) outperforms such simple phase estimation by repetition
(PE) for a small number of rounds M . This difference will
become more pronounced for larger M (see, e.g., [31]), but
the improvement is relatively small here.

In order to understand better how well these phase esti-
mation methods project the input state onto an approximate
eigenstate, we explicitly numerically generate the states that
are created through these protocols in Sec. II E.

D. Preparing the input state: Two methods

One has two alternatives for preparing a code state such
as |0〉 (or |+〉) approximately. As we have argued, one can
start the protocol in a sufficiently squeezed vacuum state
|vacsq〉 and approximately measure Sp (or squeeze in the other
quadrature and measure Sq to prepare |+〉). Since the squeezed
vacuum state is an approximate eigenstate of Z, one produces
an approximate |0〉 state. How many dB of squeezing does
one need in order to get a good eigenstate of Z? Let the
squeezed vacuum state be |vacsq〉 = ∫

dq αq |q〉 [Eq. (3)],
with � = e−r and αq = 1

4√π
er/2e−q2e2r /2. The probability for

shift errors above the shift error threshold is given by P
√

π/6
error,q �∫ √

π/6
−√

π/6 dq |αq |2 = Erf(er
√

π/6). One sees in Fig. 8 that the
approach to 100% success probability happens around 8 dB
of squeezing. Squeezing of itinerant microwave fields, instead
of a confined cavity field, can be achieved using a Josephson
parametric amplifier (JPA). For example, in [32] one obtains
�2 = (�qsq)2/(�qvac)2 ≈ 12% corresponding to � ≈ 0.35
and squeezing around 4.1 dB. More recent work has achieved
squeezing of at least 10 dB [33]. A more recent proposal was
considered in [34]: in this paper it is analyzed how a squeezed
microwave drive can be used to produce a squeezed vacuum
state as the stationary state of the cavity field (under dissipative
photon loss dynamics).

An alternative is to start the entire protocol in the vacuum
state of the cavity mode and execute the phase estimation
protocol both for Z as well as Sp. The approximate mea-
surement of Z is thus also an effective means of producing
a squeezed state from the vacuum state in the cavity mode.
The phase uncertainty δθ in the estimate of the eigenvalue
of Z needs to be at most π/6 in order to be below the shift
error threshold (instead of π/3), twice as small as compared
to the Sp measurement. This suggests that if the phase of
Sp is measured in M rounds, then the phase of Z should be
measured in 4M rounds in order to give an overall similar
shift error contribution. As Z = D(i

√
π/2) as compared to

Sp = D(
√

2π ) the average number of photons added per Z

round is 1
4 of a Sp round, hence, the total contribution to the

number of photons would be about the same. These arguments
show that it may be most advantageous to start with a squeezed
vacuum state instead of selecting the code state by phase
estimation of Z as the Z measurement would be rather lengthly
(at least 32 rounds for M � 8) during which the code state is
also decohering. At the same time, the Z-phase estimation
protocol by itself may be an interesting way to prepare a
squeezed state.

E. Numerical analysis of two phase estimation schemes for Sp

We apply the nonadaptive and adaptive phase estimation
schemes for Sp with M rounds to a squeezed vacuum
state with parameter � in order to create an approximate
code state |0〉approx. The state obtained through the sequence
of measurements is a superposition of displaced squeezed
vacuum states, each with a phase which depends on the
feedback phase and the measurement outcome x[M]:

|�(x[M])〉 = 1√
N

M∑
j=0

cj (x[M])D[
√

2π (j − M/2)] |vacsq〉 ,

(22)

with normalization N ≈ ∑M
j=0 |cj (x[M])|2 {the approxima-

tion in the normalization comes from 〈vacsq| D[
√

2π (t −
t ′)] |vacsq〉 ≈ 0 for |t − t ′| � 1}. Here, the coefficients
cj (x[M]) = ∑

{Sj }
∏

k∈Sj
ei(ϕk+xkπ) where the subsets Sj are

subsets of j = |Sj | indices chosen from 1, . . . ,M (without rep-
etition). There are

(
M

j

)
such subsetsSj . Also, ϕk is the feedback

phase for round k and xk is the outcome bit of round k. From the
phase estimation one infers a value θ̃ ∈ (−π,π ], upon which
one corrects |�(x[M])〉 → |0(x[M])〉approx = eivq |�(x[M]]〉
with v = θ̃

2
√

π
. Note that the additional displacement to center

the code state around the vacuum does not affect the eigenvalue
of Sp as it commutes with Sp.

A few examples of the wave functions of states that one can
obtain are shown in Fig. 7. These examples show that one is not
always guaranteed to get a good wave function and the effective
probability of error can vary depending on the measurement
outcomes. Because the relation between the effective error

(a) (b)

FIG. 7. Absolute values of two examples of wave functions of
code states which can be generated by nonadaptive phase estimation
for M = 4 and � = 0.2. After the eigenvalue measurement, the states
are shifted onto an approximate code state using the phase estimate.
The left state (a) is obtained if the first and the second measurements
of both U and iU yield the same result, the right state (b) is obtained
if both results differ.
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(a) (b)

FIG. 8. (a) Upper bound on the effective error probability Perror =
P

√
π/6

error,q for a squeezed vacuum state in the squeezed quadrature.
(b) The average number of photons in the squeezed vacuum state
depending on the gain G in dB.

rate and the measurement result is known, it is possible to use
heralding or effectively use some post-selection. If we know
(by simulation) that the obtained code state is bad, one would
repeat the protocol.

In Fig. 15 at the end of the paper we plot the total probability

P to prepare a code state with effective error rate P
√

π/6
error,p for

the (adaptive) phase estimation. As the effective error rate
due to finite squeezing and the effective error rate due to
the phase estimation scheme are unrelated (one corresponds
to shifts in q, while the other corresponds to shifts in p),

only the part P
√

π/6
error,p due to the phase estimation scheme is

shown. The effective error rate including both effects can

be computed using P
√

π/6
error = P

√
π/6

error,p + P
√

π/6
error,q − P

√
π/6

error,pP
√

π/6
error,q .

The error rate P
√

π/6
error, q is shown in Fig. 8.

Both protocols show a moderate probability to obtain
code states with low error rates. What is striking is that the
adaptive version of the protocol is much more reliable than the
nonadaptive version and produces code states with an effective
error rate below 1% in up to 94% of the cases.

It is noteworthy that in most cases, both protocols require
some heralding or post-selection, as there is a finite probability
to prepare a code state with a large effective error rate. It should
also be clear that using phase estimation in this way is much
superior to simply post-selecting on obtaining the outcome
x1 = x2 = · · · = xM = 0 which occurs with an exponentially
small probability in M . If phase estimation is used for quantum
error correction, then post-selection is not an option, as we do
not wish to throw away the encoded state.

Number of photons

We also consider the mean number of photons and
fluctuations thereof for the adaptive and nonadaptive phase
estimations of Sp, applied to a squeezed vacuum state with
parameter �. The expected number of photons in |�(x[M])〉
(which is only slightly different from the number of photons
in |0(x[M])〉) approximately equals

n(x[M]) ≈ sinh2[ln(�)]+ 1

N

M∑
j=0

|(j−M/2)cj (x[M])
√

2π |2,

(23)

where we again used that 〈vacsq| D[
√

2π (t − t ′)] |vacsq〉 ≈ 0
for |t − t ′| � 1 and the normalization N has been given
above. In Fig. 8, we plot the contribution from squeezing
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(b)

FIG. 9. The average number of photons 〈n〉θ after (a) adaptive
phase estimation (APE) of Sp and (b) nonadaptive phase estimation
(PE) of Sp using M ancilla qubits (rounds) with parameter � =
0.2. The fluctuations

√
〈(n̄ − 〈n̄〉θ )2〉θ around the average number of

photons reflect the different measurement outcomes in the protocol.
It is noteworthy that these fluctuations are much smaller for the APE
than for the PE protocol.

on the mean photon number. In Fig. 9, we plot the total
photon number after the measurement of Sp. There, we
see 〈n〉θ = 1

2π

∫
dθ P (x[M]|θ ) n(x[M]) with n(x[M]) as in

Eq. (23) as a function of M . We also plot the standard deviation√
〈(n̄ − 〈n̄〉θ )2〉θ . Note that this is not the standard deviation

σ (n) of the state itself which, as we discussed in Sec. I,
scales as n. As the contributions from squeezing and the phase
estimation cannot be separated for finite squeezing, we show
the photon numbers for � = 0.2. Note that both mean value
and deviation depend on �.

One can observe that n ≈ Mπ/2 + nsqueeze: this is what we
expect as in each round we symmetrically displace the input
state further out to the left and right by an amount α = √

π/2,
increasing the expected photon number thus by π/2. The total
expected number of photons in the cavity for M = 8 and � =
0.2 (8.3 dB) is below 25 such that n ± σ (n) is below 50.

F. Usage of adaptive phase estimation in quantum
error correction

Adaptive phase estimation of Sp and Sq can in principle
be used for quantum error correction. One cycle of quantum
error correction will then consist of phase estimation of Sp

followed by phase estimation of Sq , each taking a certain
number of M rounds. Each time one starts measuring Sp one
has prior information about its phase which should be used in
choosing the next feedback phases. If the entire QEC protocol
is noiseless, then the choice for the feedback phase of the
first round of the Sp measurement is simply estimated using
the previous feedback phases and outcomes of the previous
measurement of Sp, as determined by Eq. (19). It is clear that
for such a noiseless protocol, the number of photons thus keeps
increasing round by round while the state gets closer and closer
to a true eigenstate of Sp (and Sq). In the implementation (see
Sec. III), the number of photons is limited and at high number
of photons the interactions that are invoked to execute the
protocol are no longer accurate. In addition, photon loss is
occurring continuously from the cavity during the protocol.
This means that for quantum error correction, the choice of
feedback phases should ideally take into account an error
model of the dynamics during the Sq measurement and how
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TABLE I. Ranges of some relevant parameters. The quality factor values (and lifetimes) represent the internal losses inside the cavity
while in our protocol the total quality factor of the cavity Qtot, including its intended but flexible coupling to the outside world, is the relevant
parameter.

Transmon qubit ωq

2π
and bare cavity frequency ωr

2π
3–11 GHz

Qubit T1/T2 time 10–100 μs
3D (storage) cavity lifetime Tcav 55 μs [15], 1 ms (Q > 107) [36]
2D CPW (storage) cavity lifetime Tcav 200 μs (Q > 106) [37]
Controlled-displacement pulse time Tpulse 25–100 ns [38]
Dispersive shift χ/2π 1–20 MHz
Qubit measurement time tmeas 200–300 ns [15,39]
Single-qubit gate 5–10 ns

this dynamics changes the current estimate phase for Sp. We
leave such more complete analysis to future work.

III. PROPOSAL FOR REALIZATION IN DISPERSIVE
QUBIT-CAVITY SETUP

We consider the following physical setup. A super-
conducting transmon qubit is capacitively coupled to a
two-dimensional (2D) or three-dimensional (3D) microwave
high-Q storage cavity, as well as a low-Q readout cavity. The
storage cavity will be used to prepare a code state and the
readout cavity will be used to measure the state of the qubit.
This is the same setup as the cat-state code experiments in, e.g.,
[16] and we will use values for physical parameters which
are similar as in this setup (see Table I). We assume that a
particular cavity mode a with resonance frequency ωr couples
most strongly to the transmon qubit and neglect the interactions
of the qubit with other cavity modes, as well as the coupling
to all higher-energy levels beyond the states |0〉 and |1〉.

We assume that the interaction between qubit and storage
cavity mode is approximately described by a simple Jaynes-

Cummings Hamiltonian HJC = −ωbare
q

2 Z + ωra
†a + g(σ−a† +

σ+a). In the dispersive regime when g

�
	 1 (� = ωbare

q − ωr

is the detuning), one can make a perturbative expansion in g

�

and derive an effective Hamiltonian which equals

Heff = (ωr − χZ)a†a − 1

2
ωqZ + O

(
g4

�3

)
, (24)

with dispersive shift χ ≈ g2

�
+ O(g4/�3). Here, ωq = ωbare

q +
χ where ωbare

q is the bare qubit frequency when the qubit
is uncoupled to the cavity. The perturbative expansion is
warranted when n < ncrit = �2/(4g2) where n is the mean
number of photons in the cavity. The effective Hamiltonian
shows that the resonant frequency of the cavity is shifted
depending on the state |0〉 (+) or |1〉 (−) of the qubit, i.e.,
its frequency ωr → ω±

r = ωr ∓ χ . In this approximation, we
neglect a nonlinear term in the effective Hamiltonian of the
form 5g4

3�3 Z(a†a)2 ≡ χ ′Z(a†a)2, a nonlinear dispersive shift.
In a more systematic approach, the qubit-cavity Hamil-

tonian can be obtained through first determining the normal
modes of the coupled LC circuits, after which the nonlinearity
due to the Josephson junction is treated as a perturbation [35].

This gives rise to an effective Hamiltonian of the form

Heff = ωra
†a + ω̃qb

†b − χrr

2
(a†a)2 − χqq

2
(b†b)2

−χqra
†ab†b, (25)

with χrr ≡ 2K = χ2
qr

4χqq
. Thus, both qubit and cavity are

represented as coupled nonlinear oscillators such that the
anharmonicity for the qubit χqq is relatively large. When one
restricts the b oscillator to the lowest two levels, one can
identify ωq ≈ ω̃q − χqq/2 and χqr ≈ 2χ . Higher-order terms
in Eq. (25) of the form (a†a)2b†b would describe the nonlinear
dispersive shift. Note that in the model in Eq. (24) the cavity
self-Kerr nonlinearity is not present, while its nonzero value
has been determined in the experiments. The coupling of the
qubit to the readout cavity is described by a similar effective
Hamiltonian as in Eq. (24) with a weaker dispersive coupling.

In Table I, we give the ranges of the relevant physical
parameters and we choose several specific values in these
ranges to demonstrate how well the protocol can be executed.
We will take χ/2π = 2.5 MHz and let the detuning be
�/2π = 1 GHz in which case ncrit ≈ �

4χ
= 100. This upper

limit on the number of photons is sufficient for creating good
code states: for an eight-round protocol M = 8, n ≈ 25 (see
Fig. 9), so that n ± σ (n) � 50 [with σ (n) ∼ n], well below
this limit. For this choice of parameters g/2π ≈ 50 MHz.
The strength of the neglected nonlinear term in Eq. (24)
then equals χ ′/(2π ) ≈ 5g4

6π�3 = 10 kHz. In the experiment
described in [16] in which cat states are created with about
55 photons, a value for χ ′/(2π ) ≈ 4.2 kHz is estimated for a
detuning �/2π = 1.18 GHz and χ/2π = 2.4 MHz which is
considerably lower. The strength of the self-Kerr nonlinearity
K(a†a)2 in this experiment is estimated as K/(2π ) ≈ 3.61
kHz. The authors estimate ncrit � 300 which is a bit more
optimistic than the estimate above.

One round of phase estimation will last a total time Tround.
During this time, a quantum circuit depicted in Fig. 5 is to be
executed. The protocol of a round consists of a short [O(10) ns]
interval Tprep in which qubit (and storage cavity) are prepared.
For the qubit this means it is put in the state 1√

2
(|0〉 + |1〉)

[by a Hadamard of Rx(π/2) gate]. After Tprep, qubit and
storage cavity should be coupled by a controlled-displacement
transformation or a D(Z

√
π/2) gate (in phase estimation for

Sp). For this gate there are two options, as has been discussed
in [16,38].
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In some physical setups, the dispersive cavity-qubit cou-
pling (both storage and readout cavity) is not tunable and is thus
always “on.” Such a setup is nonideal in various ways. When
the dispersive coupling is always on, it means that one should
prepare the code states in a rotating frame (not the laboratory
frame) which depends on the qubit state. For example, one
chooses the frame in which the qubit is in the state |0〉 as
the frame in which the cavity state should be unchanging,
stationary (and we also look at the qubit in its rotating frame
as gates on the qubit are done relative to that). In this frame, the
effective Hamiltonian in Eq. (24) equals H̃eff = 2χ |1〉 〈1| a†a.
It is important that during the qubit measurement, which takes
up a considerable amount of time, this effective Hamiltonian
induces no further rotations on the partially prepared code state
(or if it induces rotations, one should know what they are). This
means that during qubit measurement the qubit has to quickly
be reset to |0〉, in order to induce no further rotational dynamics
on the cavity state.

Another disadvantage of using a nontunable χ is that the
accuracy of single-qubit rotations depends on the number of
photons in the cavity. The qubit frequency given a storage
cavity with n photons is, by Eq. (24), given by ωq + 2χn. A
microwave pulse which should rotate the qubit independent of
the number of photons in the cavity should thus qualitatively
take at least time Tpulse = 2/W [40] with frequency width
W � 2χσ (n). This assumes that one sets the center frequency
of the pulse at ωq + 2χn. Here, σ (n) is the standard deviation
in a code state, given in Eq. (6), which scales with n. In [16] it
was argued that the unwanted entangling of qubit and cavity
due to single-qubit rotations is a leading source of inaccuracies
when one goes to higher photon numbers. Even though the
number of photons in our proposed protocol for M = 8 will
never be larger than 50, the protocol consists of many more
single-qubit gates than the experiments in [16] so that these
errors will accumulate. With a nontunable χ , the dispersive
coupling to the readout cavity is of course continuously on
during the entire round, while in the figures it is suggested
that measurement only occurs at the end of the protocol. It
is understood that the coupling between transmon qubit and
readout cavity mode is smaller than the coupling between
transmon qubit and storage cavity, for example, in [15] the
dispersive coupling χ/2π to the readout cavity was estimated
as 0.930 MHz. At the same time, this coupling needs to be
sufficiently strong to provide a relatively short measurement
time for the qubit as Tround will be largely determined by the
length of the controlled-displacement transformation and the
qubit measurement time.

A third disadvantage of a nontunable χ is the the cavity
Kerr nonlinearity which is present in Eq. (25) due to the linear
coupling between the LC oscillators: the “cavity mode” is
in fact a “dressed” cavity mode which sees the Josephson
nonlinearity. If χ is turned to a small value, then this Kerr
nonlinearity will be correspondingly small.

For these reasons, we imagine that the dispersive coupling
χ is tunable and can be turned “on and off” during the
execution of a round. Thus, during each round, the dispersive
storage cavity-qubit coupling χ (t) is “off” (i.e., to a low value)
during qubit preparation and single-qubit rotation (lasting time
Tprep) and possibly unconditional cavity displacements [of
the form D(−√

π/2)]. Then, χ is rapidly turned on after

Tprep and stays on for a time interval T during which the
controlled-displacement gate in Fig. 5 acts. The coupling
χ is again rapidly turned off during the last interval Tpost

during which the qubit state undergoes further single-qubit
rotations and is being measured. One can similarly imagine
that only during the measurement time the coupling to the
readout cavity is turned on. The turning off and on of χ

could be achieved in two possible ways. One can increase the
cavity-qubit detuning � (and hence reduce χ ) by altering the
qubit resonant frequency ωbare

q using a flux-tunable transmon
qubit; such switching can take place in O(1) ns. An alternative
is to have a variable qubit-cavity capacitive coupling [41,42]
which is turned on and off in a O(1) ns time window.

Let us now discuss the realization of the controlled-
displacement gate. Note that if χ is in principle turned “off,”
unless the cavity state needs to be manipulated, it means
that we are preparing the code states in the rotating frame
of the cavity at frequency ωr (while single-qubit gates are
performed in the frame rotating at ωbare

q ). When the coupling
is turned on, the effective Hamiltonian in these rotating frames
is then H̃eff = −χZa†a − 1

2χZ (neglecting nonlinearities).
The additional Z rotation in this Hamiltonian leads to a
phase accumulation on the prepared qubit state 1√

2
(|0〉 + |1〉)

which should be taken into account when considering what
single-qubit Z rotation of the form diag[1, exp(iϕ)] is done
during Tpost.

In principle, one can enact a controlled-displacement gate
by supplementing this dynamics by driving the cavity with
a microwave pulse. During the time interval T , a microwave
drive of duration Tpulse ≈ T is applied. The drive tone of this
pulse ωd = ωr + χ is resonant with the cavity mode when the
qubit is in the state |1〉 but off-resonant when the qubit is in
state |0〉. Hence, one expects a large cavity displacement in
the resonant case and a small negligible displacement when
the drive tone is off resonant, thus enacting a controlled-
displacement gate. Again, at an intuitive level, the frequency
width W of the pulse should be sufficiently narrow as compared
to 2χ , which is the difference in resonance frequencies of
the oscillator given the qubit state, so that the pulse has
few photons at frequency ωr − χ . If we center the pulse at
ωr + χ , then for a Gaussian pulse with Tpulse = 2/W , one
should at least require that 2χ > W

2 = 1/Tpulse or χTpulse > 1
2 .

This heuristic argument assumes that the cavity decay rate κ

which sets the width of the resonance obeys κ 	 W which is
warranted for high-Q storage cavities.

During this pulse, the qubit-cavity coupling −χZa†a also
induces a qubit-state-dependent phase space rotation on the
cavity state, i.e., of the form exp(iχZa†at), which is in fact
undesired (see Fig. 14 in Appendix D). It is thus important
to choose the interaction time T such that this difference in
rotation angle is 2π which implies that the newly created
superposition of displaced squeezed states stays on a line.
This warrants a precise choice for T , namely, χT = π . In
the analysis in Appendix D we model the drive and the
corresponding displacements and rotations assuming a simple
square pulse (with zero rise time). The conclusion of this
analysis is much less negative than what has been stated in
[38] where it is written that a direct controlled-displacement
gate requires a time Tpulse ≈ 30/χ which would be quite
long. The alternative is to do a controlled-displacement gate
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cavity
R(−Zπ/2)

D(−iα/2)
R(−Zπ/2) D(−Zα/2)

D(−α/2) D(α)
= =

qubit X X •

FIG. 10. Realization of a controlled-displacement gate via two controlled rotations for one round of phase estimation of Sp with α = √
2π

or Sq with α = −i
√

2π (see Fig. 5). Here, R(−Zπ/2) = exp(ia†aZπ/2).

through a sequence of two controlled rotations interspersed
with an unconditional displacement [43], explicitly shown in
Fig. 10.

Let R(θ ) = exp(−iθa†a) be a rotation in phase space. The
conditional rotation R(−Zπ/2) = exp(ia†aZπ/2) is obtained
by H̃eff , i.e., coupling the transmon qubit for time t with
tχ = π/2 to the cavity mode. The inverse rotation equals
R(Zπ/2) = XR(−Zπ/2)X where X is a Pauli X (π rotation)
on the qubit. The advantage of this way of doing a controlled
displacement is that its implementation is always fast, as it
requires O(10) ns unconditional displacements and single-
qubit rotations as well as a total qubit-cavity interaction
time of T = π/χ during which the cavity state is rotated
depending on the qubit state. For our chosen χ , one has
T = π/χ = 200 ns. Note that the last X gate on the qubit
can be absorbed in the post-processing stage during which one
thus applies a single-qubit rotation which is composed of Pauli
X in Fig. 10, the possible feedback rotation diag[1, exp(iϕ)],
including corrections for accumulated phases, and then a
Hadamard gate, shown in Fig. 5. However, in order for this
implementation to work, one needs to turn off the dispersive
coupling χ in the middle period during which an unconditional
displacement and a single-qubit rotation act. Thus, this scheme
would require one to turn χ on (and off) twice during a round,
while a direct conditional displacement would allow one to
turn χ on and off once.

In either implementation of the controlled-displacement
gate, Tround will be largely determined by the duration of
the controlled-displacement gate and the qubit measurement
time. If we assume that the qubit measurement time is
approximately 300 ns, we have Tround ≈ 500 ns. During
this time qubit decoherence (see Table I) is negligible as
Tround/T1(= 50 μs) = 1 × 10−2. If we assume a 3D storage
cavity lifetime of 1 ms (see Table I), then during the execution
of M = 8 rounds for the full phase estimation of Sp, in total
lasting TPE = 4 μs, one has TPE/Tcav = 4 × 10−3. One cycle
of quantum error correction using the measurement of Sp and
Sq will thus last TQEC-cycle = 8 μs, still considerably faster than
the cavity decay time.

For 3D cavities, no flux-tunable transmon qubits have been
used so far. For a 2D coplanar waveguide cavity, to which
transmon qubits have been coupled with a tunable χ , the best
lifetime can be 200 μs (see Table I) which would give estimates
which are factor of 1

5 worse as compared to a 3D cavity.
The adaptive phase estimation protocol uses feedback

which implies that the phase in a single-qubit rotation in
the next 500 ns round depends on the outcome of the qubit
measurement in the previous round. In current technology, it
is possible for a qubit measurement outcome to determine the
execution of a single-qubit gate 200 ns later, so this does not
pose a problem in the implementation.

A. Shift error and noise during the protocol

There are two sources of errors during a round of the
protocol, namely, errors on the transmon qubit and direct errors
on the cavity mode. We first consider errors on the transmon
qubit which can propagate to the cavity mode in two ways.

We can call a protocol strictly fault tolerant if an error
with low probability (or amplitude) on the qubit can induce a
shift error u or v with low probability and amplitude and low
strength |u|,|v| 	 √

π/2 on the cavity mode.
An error on the qubit during a round can alter the

measurement outcome of this qubit (for example, an error
which flips the measurement outcomes). This will lead to an
incorrect estimate for θ̃ . However, if the rate at which these
errors take place is sufficiently low, so most rounds are error
free, then it should be clear that the error on the estimate is
also small, hence the induced shift error is small, implying
fault tolerance. One can see this as fault tolerance which arises
from the repetition of the rounds; how well this works will
depend on whether the rate of qubit errors is sufficiently low.

Another type of error on the qubit can directly result in
a shift error on the cavity mode. For example, during the
execution of the direct controlled displacement or rotation,
the qubit state decays to |0〉, resulting in a displacement error
which can be as large as D(

√
2π ). Such error shows that the

phase estimation protocol is not strictly fault tolerant since,
even though this error is very unlikely, it does lead to a large
incorrectable shift error. Using several, say k, ancilla qubits per
round and putting them into a cat state |00 . . . 0〉 + |11 . . . 1〉
so that each one of the k qubits is only used to perform a much
smaller controlled displacement D(

√
2π/k) can mitigate this

problem and make the protocol more fault tolerant. Effectively,
we are trading a low probability for a large shift error to a
larger probability (as one uses more qubits) to have only small
correctable shift errors.

Given the fact that the accuracy of single-qubit gates and
controlled rotations is quite high and qubit decoherence on the
time scale of a round very low, we do not anticipate that qubit
errors are the dominant source of errors.

Let us next consider direct errors on the cavity mode
which can result from photon loss, a self-Kerr nonlinearity,
or a nonlinear dispersive shift. In principle, for short enough
time intervals all these processes can be expanded as linear
combinations of shift errors, and these shift errors can be
propagated through the ideal circuit in a round, or in-between
rounds, such that they remain shift errors which gradually add
up in strength. This is true as the ideal circuit only contains
(conditional) displacements and (conditional) rotations.

Given the points made in Sec. I D, one can consider the
effect of cavity decay during preparation and the presence
of nonlinearities which we expect to be the dominant
source of shift errors. For cavity decay with rate κ with
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κ = 1/Tcav of a 3D cavity, one can easily meet the condition
δ ≡ κTPE ≈ 4 × 10−3 	 1

nmax
when nmax created during

the eight-round protocol is no more than 50 photons. The
arguments in Sec. I D then imply that cavity decay modeled
by some Lindblad equation induces dimensionless shift errors
u,v of strength |u|,|v| � O(

√
κTPE) ≈ 0.06 [using only the

first term in the shift expansion in Eq. (13)] during the phase
estimation measurement of Sp.

We can also consider the effect of the self-Kerr nonlinearity
in Eq. (25) or the nonlinear dispersive shift χ ′Z(a†a)2 where
the strength of χ ′/(2π ) and K/(2π ) can be taken to be, say,
4 kHz. If we represent the overall nonlinearity during the
protocol as exp[−iε(a†a)2] one has |ε| = KTPE = 2π × 16 ×
10−3 ≈ 0.1 which is two orders of magnitude larger than 1

n2
max

for nmax = 25. This means that the shift errors due to the
nonlinearity will add up throughout the protocol and do not
necessarily remain small correctable shift errors.

Even though the physical values of these numbers are not
clad in stone, there is a simple argument which demonstrates
that higher-order terms in a perturbatively derived dispersive
coupling Hamiltonian will lead to errors which require a more
thorough analysis. This argument comes about from the fact
that the running time of the protocol, let us say Tround, is
determined by χ ∼ g2/�, i.e., Tround ∼ 1/χ . The next order
in the perturbative coupling between cavity and qubit scales
as g4

�3 and we want that its overall effect during Tround to be
sufficiently small, but still have a sizable number of photons
in the cavity. We consider

|ε|n2
max ∼ g4

�3
Troundn

2
max ∼ g2

�2
n2

max = n2
max

4ncrit
	 1, (26)

while nmax should be 10–100 photons in order to obtain a good
code state. One has nmax < ncrit but the stringent condition in
Eq. (26) would require making ncrit much larger. Since ncrit

should be enlarged without making the protocol last much
longer (as this would enhance the strength of other sources of
errors), it would be best to work at a larger detuning � rather
than a smaller capacitive coupling between transmon qubit and
cavity (coupling g).

One should note that this problem rapidly gets better at
higher-order terms in perturbation theory. Assume that the first
unwanted term comes in at kth order in perturbation theory,
i.e., with strength g( g

�
)k−1, so that Troundg( g

�
)k−1

n
k/2
max 	 1.

One then obtains the condition

4ncrit

(
nmax

4ncrit

)k/2

	 1. (27)

For a quartic term k = 4 this condition is quite demanding,
but for the next higher-order term k = 6 and nmax 	 4ncrit the
condition is much more mild.

These arguments suggest that it is better to not treat the
nonlinear dynamics as a source of errors, but rather treat it as
a source of known systematic errors. One approach is to try to
actively cancel their effect during the evolution so as to obtain
the same code states [44]. Another approach is to take as a
given that these interactions exist and seek a code formalism
that captures their effect. Assuming that χ is tunable, one
may at least hope to reduce the nonlinear dispersive shift and

the self-Kerr nonlinearity in strength during the time that the
dispersive interaction is off.

These arguments show that further numerical analysis
including the nonlinearity and open system dynamics modeled
by a Lindblad equation are warranted to assess their overall
effect during the phase estimation protocol.

IV. DISCUSSION

In order to implement phase estimation in a shorter amount
of time, it is possible to couple several transmon qubits simulta-
neously to a 2D (or possibly 3D) cavity. It may be interesting to
consider whether a form of Shor quantum error correction (us-
ing cat-state ancillas) instead of Steane quantum error correc-
tion is possible for the GKP code states. It will be worthwhile
to numerically study the code state preparation protocol in-
cluding the effect of nonlinearities and open system dynamics.

A somewhat different scheme for preparing code states,
eigenstates of Sp and Sq , involves two oscillators as follows,
borrowing an idea in [45]. The basic idea is that by (se-
quentially) coupling a qubit to the oscillator to gather phase
information, we are getting little information, at most one
bit, per qubit used. At the same time, this transmon qubit is
effectively realized as a nonlinear oscillator as in Eq. (25).
So, can one not get information faster by coupling the storage
cavity to another oscillator?

Assume that we can prepare one ancilla oscillator in the
state |qa = 0〉 where qa is its position quadrature (or some
squeezed version thereof) and the other “storage” oscillator
is in some initial state |ψs〉 = ∫

dp αp |p〉. Assume an inter-
action between the oscillators of the form Hint = ps ⊗ pa

for some time t = 2
√

π so that e−iHintt |ψs〉 ⊗ |qa = 0〉 =∫
dp αp |p〉 |qa = 2p

√
π〉. If we can measure the q quadrature

of the ancilla oscillator modulo 2π , i.e., we determine
qmeas = qa mod 2π , we project the system oscillator into a
superposition of states with p = qmeas

2
√

π
mod

√
π . Shifting back

this projected state depending on qmeas gives the output state∑∞
k=−∞ αp |p = k

√
π〉, thus preparing an eigenstate of Sp. A

similar procedure for Sq on this state would then prepare the
full code state. The linear coupling between the two oscillators
is very natural; superconducting LC circuits with capacitive
coupling realize such interaction. However, measuring a
quadrature modulo 2π is not simple: one has to make sure
not to get too much information. If the ancilla oscillator were
modified to include a Josephson junction, it would make one of
the quadratures, namely, the phase variable, 2π periodic and
thus suitable. A rapid turning on of the Josephson junction,
and thus a rapid change of the quadratic potential in q or φ to
a periodic cosine potential U (φ) = −EJ cos(φ) could freeze
this state (taking EJ � EC , potential energy much larger than
kinetic energy) and information could be read out. It is an
open question whether a rapid turning-on of a Josephson
junction (see, e.g., [10] for a similar circuit switch idea) is
experimentally feasible and what the details of such a scheme
would look like.
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APPENDIX A: USE OF PHASE OR DISPLACEMENT
FRAME AND LOGICAL GATES

We prepare a code state or perform error correction through
phase estimation of the displacement operators Sp and Sq .
The phase estimation protocol outputs an estimate for the
eigenvalue eiθp (eiθq ) of Sp (Sq), while simultaneously project-
ing the input state onto an approximate eigenstate |ψθp,θq

〉 of Sp

and Sq . Error correction would then correspond to displacing
this oscillator state by the corrective displacement Dθp,θq =
eiqθp/(2

√
π )eipθq/(2

√
π ) such that Dθp,θq |ψθp,θq

〉 ≈ |ψθp=0,θq=0〉,
an approximate code state.

Here, we show that it is not necessary to do these additional
displacement operations, but one can work with a phase frame
similar as the Pauli frame for stabilizer codes [5,46]. We
will use the notation X = X and U for operators which
have the action of Pauli X and a unitary gate U on the
states in the code space. We call such operators logical
operators or logical gates. In addition, we write Xθp

for the
Pauli X operator on a code space labeled by a phase θp

for Sp.
Let us first assume that we work with perfect phase

estimation and perfect code states. The operator e−i
√

πp has
been called X because it maps the perfect state |0〉 onto |1〉 and
vice versa. We can note that X is not Hermitian, we have in fact
X = X

†
Sp. The action of X and X

†
on the perfect code space

is, however, identical, thus on the code space X ≡ X
†

so that

X
2 = I . If we use a code space labeled by the eigenvalue eiθp of

Sp, we have X
2 = eiθp I . This means that we need to redefine

the logical X operator on the code space characterized by
eigenvalue eiθp as Xθp

= D
†
θp,θq

XDθp,θq
= Xe−iθp/2 for which

X
2
θ = I on the θp code space. Similarly, Zθq

= D
†
θp,θq

ZDθp,θq
.

Clearly, Xθp
and Zθq

only differ from X and Z by phases, so
transform similarly.

It is known what operations are necessary to perform logical
gates on the code states in the θp = 0, θq = 0 code space, such
as the Clifford gates (the CNOT gate, the Hadamard gate, the S

gate) and the T gate (see [4]), as one can verify their proper
action on the logical operators X and Z.

The logical Clifford group gates can be realized by linear
optical transformations, i.e., linear transformations on the set
of positions and momenta of n oscillators (q1,p1, . . . ,qn,pn),
which preserve their commutation relations. A circuit for
the CNOT gate is shown in Fig. 12. The Hadamard gate
represents a π/2 phase delay enacting q → p and p → −q.
The S = diag(1,i) gate enacts the transformation q → q and
p → p − q.

Under the action of these gates, shift errors (displacements)
remain shift errors, i.e., a general displacement operator on
these n oscillators of the form D = exp[i

∑n
i=1(αipi + βiqi)]

(with real αi,βi) transforms to D′ = UDU † where D′ has
coefficients {α′

i ,β
′
i}. One can propagate the shift errors through

a Clifford circuit: small shift errors in several modes can add
up to large shifts in one mode, similar as Pauli errors can
propagate to become high-weight incorrectable Pauli errors.
Furthermore, even though the Clifford gates do not amplify
shift errors, shift errors inside, say, the realization of a CNOT

gate can get somewhat deamplified or amplified in strength as

the circuit uses squeezing and squeezing acts, e.g., as p →
erp,q → e−rq.

For logical Clifford gates U one can verify their action on
the θp,θq code space. One has

U |ψθp,θq
〉 = UD

†
θp,θq

U
†
U |ψ0,0〉 = D̃θp,θq

U |ψ0,0〉 , (A1)

where D̃θp,θp
is the new shift correction (displacement). This

means that one never needs to do the corrective displacement,
but can just keep track of the phase frame in software, just as
for the Pauli frame in a computation with only Clifford gates.

When the encoding is only approximate (and we know the
eigenvalues of Sp and Sq approximately), every code state is
in principle given by a perfect code state and a distribution of
shift errors, i.e., a density matrix expanded in the shift error
basis as in Eq. (9). The gates are still defined by their action
on the perfect code states. The distribution of shift errors or
the approximate encoding may be slightly different for every
code state when these are generated, say, by the protocol in this
paper. It is important to note that this does affect the proper
functioning of the Clifford group gates as these gates only
propagate the shift errors between logical qubits.

For quantum universality, one needs a T =
diag[1, exp(iπ/4)] gate. This gate can in principle be
realized using an ancilla T |+〉 or alternatively the ancilla
|H = 1〉 ∝ SHT |+〉 which is a +1 eigenstate of the
Hadamard gate, in addition to Clifford group gates (see,
e.g., [5]). The logical Hadamard gate H : X ↔ Z equals
exp(i π

2 a†a) which means that a +1 eigenstate of this operator
has a photon number which is 0 mod 4. One can create
the state |H = 1〉 by doing phase estimation for Sp and Sq

on the vacuum state |vac〉 for which ei π
2 a†a |vac〉 = |vac〉

and post-selecting on the outcomes Sp ≈ 1 and Sq ≈ 1. The
resulting state is encoded and a +1 eigenstate of H as H

commutes with Sp and Sq . One can imagine that noisy ancillas
|H = 1〉 are further distilled into fewer higher-quality ancillas
before being used. It is important to note that a +1 eigenstate
of H for the phase frame θq = θp = 0 is not related by a
displacement to a +1 eigenstate of H in an arbitrary phase
frame θq,θp. So, before one uses such ancillas one has to at
least know or physically fix the phase frame that is in use. We
leave a realistic method to implement T (and Clifford) gates
on the approximate code states in circuit-QED hardware to
future work.

APPENDIX B: QUANTUM ERROR CORRECTION USING
ENCODED ANCILLAS

In this section, we briefly review a form of quantum error
correction suggested in [4] and a simplified implementation
in [11], which, for stabilizer codes, is called Steane error
correction. In Steane error correction, the errors are corrected
by coupling the encoded data to an encoded ancilla using a
CNOT gate and measuring the encoded ancilla. The advantage
of using this procedure for quantum error correction is
that the quantum circuit is fault tolerant, made from linear
optical elements, phase shifters, and squeezers and is fully
deterministic. Fault tolerance means that shift errors are not
amplified in strength by the circuit (but they do propagate) as
it involves only linear optical components. A disadvantage of
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e−iup̂ Ψ̄ • D − q mod
√

π Ψ̄

|+̄ q

FIG. 11. Steane error correction for shifts in q generated by the
error shift operator e−iup which are detected by the stabilizer check
Sq . The measurement of the ancilla in the encoded |+〉 state is a
homodyne measurement of q. The displacement D(−q mod

√
π)

is a correction which is like a Pauli frame for a stabilizer code and
does not physically need to be realized. Note that the modulo function
should be taken in the interval (−√

π/2,
√

π/2]. In the main text we
have referred to |+〉 as |+〉.

the method is that it requires an ancilla code state which has
to be first prepared with sufficient accuracy.

The basic circuit for correcting shifts in q (detected by
Sq) is shown in Fig. 11. A similar circuit holds for Sp where
the encoded ancilla is prepared in |0〉 (denoted as |0〉 in the
main text). The CNOT gate (a linear optical gate) has the
following effect on the two quadratures of control (c) and
target (t) mode: qc → qc,qt → qc + qt ,pc → pc − pt ,pt →
pt . The CNOT gate cannot be implemented with only beam
splitters and phase shifters as the symplectic transformation
matrix of the CNOT, i.e., the matrix applied to the vector
(qc,pc,qt ,pt ) is not orthogonal, while it is always orthogonal
for any passive linear optics transformation (see, e.g., [47]).
The CNOT gate can be realized by beam splitters and squeezing
[48]. The optimal CNOT circuit expressed in terms of these
elementary components is depicted in Fig. 12.

In the Glancy and Knill method in [11] the CNOT gate
which uses two beam-splitters and two squeezers is replaced
by a single beam splitter and a single (but stronger) squeezer.
In addition, the simple corrective displacement is replaced
by a displacement by a more complicated function fGK(q)
of the measurement result, which is given explicitely in [11].
The

√
π/6 shift error bound is arrived at by arguing how shift

input errors on data and ancilla propagate through the quantum
error correction circuit leading to shift errors which have to be
corrected in the next round.

Basically, a shift error exp(−iup) exp(−ivq) that needs
to be properly corrected in steady state (which requires
|u|,|v| <

√
π/2) results from the propagation of three separate

shift errors u = uI + up + uq,v = vI + vp + vq , which are
the initial errors uI ,vI and the errors that occur somewhere

In

Target

Control

π/2

50:50

31.7◦

S 4.2 dB

31.7◦

50:50

π/2

−31.7◦

S 4.2 dB

−31.7◦

Out

Control

Target

FIG. 12. A CNOT gate on two bosonic modes, target and control.
S denotes squeezing and its strength in dB [see squeezing convention
below Eq. (4)]. The phase shifters shown explicitly can of course be
absorbed in the action of the squeezers or the 50:50 beam splitters.

e−iup̂ Ψ̄

|+̄
50:50

S 12.3 dB D(fGK(q))

q

Ψ̄

FIG. 13. Steane quantum error correction using the method of
Glancy and Knill for shifts e−iup which are detected by the stabilizer
check Sq . The circuit only uses a single beam splitter, a homodyne
measurement of q, and much stronger squeezing followed by a
different corrective displacement D(fGK(q)) which is explicitly given
in [11].

in the quantum error correction circuits for Sp (up,vp) and
Sq (uq,vq), hence, all |ui |,|vi | <

√
π/6. Thus, if all initial

shift errors on encoded data and ancilla state are of strength
at most |u|,|v| <

√
π/6, errors remain correctable through

the repeated application of these circuits, assuming that the
linear optical circuits themselves are faultless. If the linear
optical circuits are faulty, one has to propagate the shift errors
that occur during the circuit forward, which will result in a
somewhat lower threshold value.

APPENDIX C: CHOICE OF FEEDBACK PHASES

Let us assume that the feedback phases ϕ1, . . . ,ϕm−1 have
been fixed and the bit string x[m − 1] ≡ {x1 . . . xm−1} has
been generated. How do we choose the next phase ϕm in
an optimal way? Using conditional probability distributions
[i.e., the identities P (A|BC) = P (C|AB)P (A|B)/P (C|B)
and P (C|AB) = P (CB|A)/P (B|A)], the probability distri-
bution for θ after obtaining the measurement result x[m] =
{xm,x[m − 1]} equals

Pϕ(θ |x[m]) = P (θ |x[m − 1])Pϕm
(xm|θ,x[m − 1])

Pϕ(xm|x[m − 1])

= P (θ |x[m − 1])Pϕ(x[m]|θ )

Pϕ(xm|x[m − 1])P (x[m − 1]|θ )
. (C1)

Here, we have explicitly kept the dependence of probability
distributions on the phase ϕ which is chosen for the mth qubit
measurement as this is the quantity that one wants to optimize
over. This phase ϕ is chosen as the one which maximizes
the sharpness of the a posteriori probability distribution
Pϕ(θ |x[m]) averaged over possible outcomes xm (given the
previous outcomes and choices for phases), or using Eq. (18),

ϕm = arg max
ϕ

∑
xm=0,1

Pϕ(xm|x[m − 1])S[Pϕ(θ |x[m])]

= arg max
ϕ

∑
xm=0,1

∣∣∣∣
∫

dθ eiθ P (θ |x[m − 1])Pϕ(x[m]|θ )

P (x[m − 1]|θ )

∣∣∣∣.
(C2)

The expression for Pϕ(x[m]|θ ) is simple as the measure-
ment results of each round are independent, i.e.,

Pϕ=ϕm
(x[m]|θ ) =

m∏
i=1

Pϕi
(xi |θ ) =

m∏
i=1

cos2

(
θ + ϕi

2
+ xi

π

2

)
.

(C3)
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If we assume no prior knowledge on θ one can show
that P (θ |x[m − 1]) ∝ P (x[m − 1]|θ ) where the proportion-
ality constant c is independent of θ and ϕm (but may
depend on previous phases ϕm−1, etc.). The argument is
as follows. For the first measurement we write Pϕ1 (θ |x1) =
Pϕ1 (x1|θ )P (θ )/P (x1) ∝ Pϕ1 (x1|θ ) if we assume that P (θ )
is a flat distribution (we have no prior knowledge about
θ ) and P (x1) = 1

2 . Using Eq. (C1) we see that this then
holds for for all measurement outcomes by induction, i.e.,
P (θ |x[m − 1]) ∝ Pϕm

(x[m − 1]|θ )/Pϕm−1 (xm−1|x[m − 2]).
This implies that the optimization in Eq. (C2) is equivalent

to

ϕm = arg max
ϕ

∑
xm=0,1

∣∣∣∣
∫

dθ eiθPϕ(x[m]|θ )

∣∣∣∣,

which can also be rewritten as

ϕm = arg max
ϕ

∑
xm=0,1

∣∣∣∣∣∣
∫

dθ eiθ cos2

(
θ + ϕ

2
+ xm

π

2

) m−1∏
j=1

× cos2

(
θ + ϕi

2
+ xi

π

2

)∣∣∣∣. (C4)

APPENDIX D: DIRECT CONTROLLED DISPLACEMENT

We model the effect of applying a microwave drive to the
cavity mode without including cavity decay. The reason for not
including cavity decay is that the parameters of the protocol
should be chosen to work without cavity decay such that the
loss of photons from the cavity acts as a source of (shift) errors
during this ideal protocol.

The drive field is represented as a term Hdrive(t) = λ(t)(a +
a†) where λ(t) = �x(t) cos(ωdt) + �y(t) sin(ωdt) with ωd the
drive frequency and �x(t),�y(t) the envelope of the pulse.
The drive frequency ωd is chosen as ωd = ωr + χ . The
total Hamiltonian Htot(t) = Heff + Hdrive(t) (in the laboratory
frame) with Heff in Eq. (24) equals

Htot(t) = [ωrI − χ (t)Z]a†a + λ(t)(a + a†) − ωqZ

2
. (D1)

In order to analyze the effect of the dynamics due to Htot(t),
we use the following useful tool (fact). For a Hamiltonian of the
form H (t) = ωa†a + λ(t)(a + a†), the unitary time evolution
can be written as a product of an overall rotation, an overall
displacement, and a phase shift, i.e.,

T e−i
∫ T

0 dt ′H (t ′) = R(ωT )D(γ ) exp(i�), (D2)

with γ = −i
∫ T

0 dt ′λ(t ′)e−iωt ′ and � = ∫ T

0 dt∫ T

t
dt ′λ(t)λ(t ′) sin[ω(t ′ − t)]. We have R(ωT ) =

exp(−iωT a†a). This equality can be derived using the

(a) (b)

FIG. 14. Phase space sketches: the size of the blobs represents
amplitude not quadrature uncertainty. (a) A cat state |α〉 + |−α〉
with α = √

π/2 (blue dots) gets displaced by ±√
π/2 depending

on a qubit state |0〉 or |1〉 along the Re(α) line producing the green
dots. Assuming constructive interference of phases, the amplitude for
|vac〉 is double that of the outlying states. Repetition of this scheme
with constructive interference produces a binomial distribution of
coherent states according to a Pascal triangle. In the phase estimation
protocol, the input state is not a cat state but the squeezed vacuum
[along the Re(α) direction] and the protocol generates superpositions
of displaced squeezed vacua on a line. In (b) it is shown how an
additional phase space rotation which is different for |0〉 as for |1〉
produces a superposition of three states (red dots) which are no longer
on a line, hence will not represent a code state. When the condition
2χT = 2π is met, this relative unwanted rotation vanishes.

Suzuki-Trotter decomposition:

T e−i
∫ T

0 dt ′H (t ′)

= lim
n→∞

n∏
j=1

⎛
⎜⎝e

−iT
n

λ(tn)(a+a†)︸ ︷︷ ︸
Dtj

e
−iωT

n
a†a︸ ︷︷ ︸

Rn

⎞
⎟⎠

= lim
n→∞ Rn

n

(
R−n

n DtnR
n
n

)
. . .

(
R−2

n Dt2R
2
n

)(
R−1

n Dt1Rn

)

= R(ωT )D

⎡
⎣ lim

n→∞

n∑
j=1

−iλ(tj )T

n
e−iωT

j

n

⎤
⎦ei�,

where � is determined using D(α)D(β) =
exp[iIm(αβ∗)]D(α + β) and taking the limit n → ∞.

We can apply this equality to the cavity-transmon dynamics
V (0,T ) ≡ T exp[−i

∫ T

0 dt ′Htot(t ′)] as it is diagonal in the
{|0〉 , |1〉} basis:

V (0,T ) = R[(ωr − χ )T ]D(γ−)ei(�−+ωqT /2) |0〉 〈0|
+ R[(ωr + χ )T ]D(γ+)ei(�+−ωqT /2) |1〉 〈1| ,

where �± = ∫ T

0 dt
∫ T

t
dt ′λ(t)λ(t ′) sin[(ωr ± χ )(t ′ − t)] and

γ± = −i
∫ T

0 dt ′λ(t ′)e−i(ωr±χ)t ′ , the Fourier transform of λ(t)
at frequencies ωr ± χ . We note that the relative rotation
when qubit is in state |1〉 versus |0〉 is R(2χT ). Thus,
without constraining χT , the interaction between qubit and
cavity field realizes a controlled rotation in addition to the
desired controlled-displacement transformation D(γ±). We
can understand the undesired effect of the relative rotation
in the sketch in Fig. 14 in which a controlled-displacement
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FIG. 15. Probability P to prepare a code state with an effective error rate P
√

π/6
error,p using M ancilla qubits (rounds) and an infinitely squeezed

vacuum state as initial state, binned to 0.2%. Errors due to finite squeezing are uncorrelated to the effective error rate shown here and can

be taken into account using Fig. 8. The wide bin P
√

π/6
error,p � 10% contains all measurement outcomes with effective error rate � 10%. Left:

nonadaptive phase estimation of Sp . Right: adaptive phase estimation of Sp .

gate (and a some relative controlled rotation) is applied on,
say, a cat state.

If we demand that T is chosen such that χT = πk, the
relative rotation acts trivially R(2χT ) = I . One thus has to
choose T = π/χ which for χ/2π = 2.5 MHz (which is the
same as χ/2π in the experiment in [16]), equals 200 ns.

We can write the expressions for the displacements D(γ±).
For a square displacement pulse (with fictitious zero rise time)
which is turned on for the entire interval T , the displacements

D(γ±) are given by

γ+ = (−i�x − �y)T

2
+ δ+,

γ− = (−i�x − �y)T

2
e−iωrT sinc(ωrT )

+ (−i�x + �y)T

2
eiχT sinc(χT ), (D3)
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with sinc(x) = sin(x)/x and a displacement error δ+ =
e−i(ωr+χ)T T (−i�x−�y )

2 sinc[(ωr + χ )T ]. We wish that γ− ≈ 0
(cavity is off resonance) and note that this depends, in
principle, on sinc(χT ) and sinc(ωrT ). One can always bound
|sinc(x)| � 1/|x|, which shows that the dominant term in
the expression for the off-resonant displacement γ− scales in
strength like |�x+i�y |T

2χT
. However, for our chosen pulse length

T = π/χ , sinc(χT ) = 0 and this analysis is too pessimistic.
For ωr/2π = 10 GHz (for example), one has

ωrT
2π

= ωr

2χ
= 2 × 103 so that |sinc(ωrT )| < 0.5 × 10−3.

For the well-justified approximation ωr � χ ,
|δ+| ≈ |γ−| ≈ |γ+|sinc(ωrT ) < |γ+| × 0.5 × 10−3. This
means that the off-resonant displacement is a factor 103 less
than the on-resonant displacement.

For the Sp measurement, one can then choose �x = 0 and
γ+ = √

2π = −�yT

2 (assuming γ− ≈ 0). Similarly, for the Sq

measurement one can choose �y = 0, etc. The value of the
parameter �y (or �y) depends on the external coupling of the
cavity with the drive line as well as the applied microwave
power, e.g., �y ∝ √

κextFt where Ft is the photon flux per
unit time. For the square pulse this photon flux per unit time
is assumed to be constant during the interval T . Thus, P ∝
ωdT Ft = ωdnpulse is the total input power and npulse the total
number of photons in the displacement pulse. We thus find that
one can enact the controlled-displacement gate when 2π ≈
κextnpulseT . Given that T is fixed, depending on χ , and κext

is required to be small in order to have a high-Q cavity, this
shows that by increasing npulse or the total input power one can
always achieve the desired displacement.

It is important to note that if the condition T = π/χ is
not accurately fulfilled, and one uses the pessimistic bound
|sinc(x)| � 1

x
, the relative difference in displacement equals

|γ−|/|γ+| ∼ 1
χT

= 1
π

. Also, it is not required that γ− ≈ 0 as
long as the value of the relative displacement (for, say, Sp)
is large enough, i.e., γ+ − γ− = √

2π and the values for γ±
are known (calibrated). This means that we do not need to
fulfill the condition Tpulse = T = π/χ exactly. What happens
when Tpulse < T and we also include the finite rise time of the
pulse? The expressions derived above will remain valid, but
lead to a different γ± (and �±) which could be fine tuned using
the pulse shape �x(t), �y(t). These values of γ± can also be
calibrated by testing the controlled-displacement gate on the
vacuum state.

Let us comment on the phases �± which affect the transmon
qubit and thus need to be taken into account if the qubit
undergoes further rotations. Obviously, only the relative phase
�+ − �− will affect the qubit state. If this relative phase
remains fixed for every round of the Sp phase estimation
measurement (and possibly different but fixed for the Sq

measurement), it will not affect the accuracy of the prepared
code states, even if this relative phase is unknown. It essentially
means that whenever one does controlled-Sp in the protocol,
one implements controlled-Spei(�+−�−) instead. If the phase
difference is not fixed, but known (so it represents a systematic
error), it can be corrected with a rotation of the qubit. A
fluctuating phase difference �+ − �− will, however, lead to a
noisier estimate in the phase estimation algorithm, hence shift
errors in the resulting code state.
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