
PHYSICAL REVIEW A 93, 012311 (2016)

Shortcut to adiabatic gate teleportation
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We introduce a shortcut to the adiabatic gate teleportation model of quantum computation. More specifically,
we determine fast local counterdiabatic Hamiltonians able to implement teleportation as a universal computational
primitive. In this scenario, we provide the counterdiabatic driving for arbitrary n-qubit gates, which allows to
achieve universality through a variety of gate sets. Remarkably, our approach maps the superadiabatic Hamiltonian
HSA for an arbitrary n-qubit gate teleportation into the implementation of a rotated superadiabatic dynamics of
an n-qubit state teleportation. This result is rather general, with the speed of the evolution only dictated by the
quantum speed limit. In particular, we analyze the energetic cost for different Hamiltonian interpolations in the
context of the energy-time complementarity.
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I. INTRODUCTION

Quantum teleportation [1] is a valuable tool for a number of
quantum tasks. In quantum communication, it makes available
a quantum channel for transmission of unknown states between
two agents (Alice and Bob) separated by a large distance
(currently more than 100 km in optical fibers [2] or 143 km
in a free-space link [3]). In quantum information processing,
quantum teleportation can be applied as a primitive for
universal quantum computation (QC), as remarkably shown
by Gottesman and Chuang in Ref. [4]. In this approach, a
third party (Charlie) provides rotated Bell states to Alice and
Bob, who can implement universal QC by solely performing
single-qubit operations and Bell measurements. In particular,
this method is a precursor of the paradigm of measurement-
based QC (see, e.g., Ref. [5]). More recently, QC via quantum
teleportation has been formulated via adiabatic evolution by
Bacon and Flammia [6], providing a hybrid approach for QC
(see also Ref. [7] for an alternative adiabatic hybrid approach).
In this scenario, a quantum circuit can be mapped in a sequence
of piecewise Hamiltonian evolutions implementing single- and
double-gate teleportation protocols, allowing for universality
through the set of one-qubit rotations joint with an entangling
two-qubit gate [8,9]. However, since these processes are ruled
by the adiabatic approximation, it turns out that each gate of
the adiabatic circuit will be implemented within some fixed
probability (for a finite evolution time). Moreover, the time for
performing each individual gate will be bounded from below
by the adiabatic time condition [10].

In order to speed up the adiabatic evolution in the Bacon-
Flammia hybrid model, we propose here a general shortcut
to adiabatic gate teleportation via counterdiabatic assistant
Hamiltonians within the framework of the superadiabatic
theory [11–14]. In particular, we introduce the concept of
superadiabatic gate teleportation, showing that it can be used
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as a fast primitive for universal QC. The use of superadiabatic
evolutions for universal QC via local interactions has recently
been proposed in Ref. [15], where it is shown how to implement
arbitrary n-controlled gates with minima ancilla requirements.
The physical resources spent by this strategy will be governed
by the quantum circuit complexity, but no adiabatic constraint
will be required in the individual implementation of the
quantum gates. Moreover, the gates will be deterministically
implemented with probability one as long as decoherence
effects can be avoided. This analog approach allows for fast
implementation of individual gates, whose time consumption
is only dictated by the quantum speed limit (QSL) (for closed
systems, see Refs. [16–19]). Indeed, the time demanded for
each gate will imply an energy cost, which increases with the
desired speed of the evolution.

The paper is organized as follows. In Sec. II, we discuss the
adiabatic gate teleportation protocol as originally proposed
in Ref. [6], by explictly extending it to arbitrary n-qubit
gates. In Sec. III, we derive a shortcut for the adiabatic
teleportation of N -qubit gates, showing that it can be used
to implement universal QC. Moreover, since no adiabaticity is
required, we also analyze the energetic cost for implementing
superadiabatic universal QC via adiabatic gate teleportation.
Section IV is devoted to our conclusions.

II. UNIVERSAL QC VIA ADIABATIC TELEPORTATION

A. Adiabatic teleportation of one-qubit states

Given an unknown state |ψ〉 = a|0〉 + b|1〉, where |a|2 +
|b|2 = 1, adiabatic teleportation can be implemented through
the Hamiltonian [6]

H0(s) = ηi(s)Hi + ηf (s)Hf , (1)

where ηi(0) = ηf (1) = 1, ηi(1) = ηf (0) = 0, and

Hi = −ω�(1XX + 1ZZ) , (2)

Hf = −ω�(XX1 + ZZ1) , (3)
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FIG. 1. Adiabatic teleportation of a single qubit (red particle).
The quantum state initially encoded in qubit 1 (t = 0) is teleported
to qubit 3 (t = τ ), with a Bell pair (blue particles) used as a resource
for the protocol.

where X and Z are Pauli spin- 1
2 operators and s = t/τ

is the normalized time, with τ the total evolution time.
The state of the system at t = 0 is prepared as |φ(0)〉 =
(1/

√
2)|ψ〉(|00〉 + |11〉). To prove that teleportation happens,

we must show that the final state of the system is given by
(1/

√
2)(|00〉 + |11〉)|ψ〉. A scheme of the process is shown in

Fig. 1.
It is important to notice that the Hamiltonian H0(s) acts

only on qubits 2 and 3 for s = 0, only on qubits 1 and 2
for s = 1, and on all the 3 qubits for 0 < s < 1. Since H0(s)
is doubly degenerate, the adiabatic theorem implies solely in
the decoupled evolution of the eigenspaces of H0(s). Then,
in order to show the success of the adiabatic teleportation via
H0(s), Bacon and Flammia [6] proceeded by developing an
analysis based on logical qubits. Here, we devise an alternative
derivation, which is based directly on the symmetries of H0(s).
First, consider the commutation relations

[H0(s),�z] = [H0(s),�x] = 0 , (4)

with �z = ZZZ and �x = XXX. For a state of the compu-
tational basis {|nmk〉} we have

�z|nmk〉 = (−1)n+m+k|nmk〉 , (5)

�x |nmk〉 = |n̄m̄k̄〉, (6)

where we have defined |0̄〉 ≡ |1〉 and |1̄〉 ≡ |0〉. Notice that
�z and �x are parity operators, each of them associated with
a Z2 symmetry of the Hamiltonian. Now, let us define the
sets {|nmk〉±} given by vectors of the computational basis
with �z eigenvalues ±1. Then, from the commutation of
the Hamiltonian H0(s) with �z, we obtain that parity is
conserved throughout the evolution, which means that we can
conveniently write H0(s) in a block-diagonal basis

H0(s) =
(

H+
4×4(s) ∅4×4

∅4×4 H−
4×4(s)

)
, (7)

where the basis has been ordered in terms of
{|nmk〉+,|nmk〉−}. In addition, the symmetry �x ensures a
relationship between the elements of H+

4×4(s) and H−
4×4(s)

so that, if we conveniently sort the computational basis in
the parity subspaces {|nmk〉+} and {|nmk〉−}, we find that
H+

4×4(s) = H−
4×4(s). In fact, by computing the matrix elements

of H+
4×4(s) and H−

4×4(s) and by using that �x |nmk〉+ =

|n̄m̄k̄〉−, we get

−〈n̄′m̄′k̄′|H0(s)|n̄m̄k̄〉− = +〈n′m′k′|H0(s)|nmk〉+ . (8)

Then, by computing the spectrum of H±
4×4(s), we com-

pletely determine the spectrum of H0(s). More specifically,
the energies associated with H±

4×4(s) read as

E0(s) = −2ω�

√
η2

i (s) + η2
f (s) , (9)

E1(s) = E2(s) = 0 , (10)

E3(s) = 2ω�

√
η2

i (s) + η2
f (s), (11)

with the gap between the ground state and the first excited state
given by

ε(s) = 2ω�

√
η2

i (s) + η2
f (s). (12)

We can observe that ε(s) �= 0 ∀ s ∈ [0,1] because ηi(s)
and ηf (s) never simultaneously vanish. To conclude the
teleportation of the initial state, it remains to show that the
final state of the third qubit is exactly |ψ〉. To this end, let us
write the initial and final states as

|φ(0)〉 = 1√
2

(a|0〉1 + b|1〉1)(|00〉23 + |11〉23), (13)

|φ(1)〉 = 1√
2

(|00〉12 + |11〉12)(α|0〉3 + β|1〉3), (14)

where the form of |φ(1)〉 is ensured by the adiabatic theorem,
with general coefficients α = α(a,b) and β = β(a,b). Now
notice that Eq. (13) implies that the coefficients a and b

multiply the states of parity +1 and −1, respectively. In
addition, Eq. (14) implies that the coefficients α(a,b) and
β(a,b) also multiply states of parity +1 and −1, respectively.
Due to the symmetry �z, it follows that states of different
parities evolve independently. Then, α = α(a) and β = β(b).
Moreover, since the evolution of the system is unitary, we
have that 〈φ(0)|φ(0)〉 = 〈φ(1)|φ(1)〉 = 1. This implies that
|α(a)|2 = |a|2 and |β(b)|2 = |b|2. Consequently, α(a) = aeiθa

and β(a) = beiθb , for any θa and θb real. On the other hand,
we can use the parity �x to show that states of parities +1 and
−1 have identical evolution since H+

4×4(s) = H−
4×4(s). Then,

θa = θb = θ . Hence,

|φ(1)〉 = 1√
2

(|00〉12 + |11〉12)(a|0〉3 + b|1〉3) , (15)

up to a global phase eiθ . This concludes the proof of the
adiabatic teleportation of a single qubit.

B. Adiabatic teleportation of N-qubit states

Let us begin by generalizing the previous protocol to
implement now the adiabatic teleportation of an unknown
two-qubit state. In this direction, we will consider a quantum
system composed of six qubits. A scheme of the process is
exhibited in Fig. 2. The composite state to be teleported is
prepared in qubits 1 and 2 and the final state in qubits 5 and 6,
with two Bell pairs used as the resource for the protocol. Let
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FIG. 2. Adiabatic teleportation of a two-qubit state (red particles).
The composite state to be teleported is prepared in qubits 1 and 2,
with the final state of teleportation in qubits 5 and 6. Two Bell pairs
(blue particles) are used in the protocol.

us write the state to be teleported as

|ψ〉12 = α|00〉12 + δ|01〉12 + γ |10〉12 + β|11〉12. (16)

The adiabatic teleportation of the initial state will be
performed through the Hamiltonian

HD(s) = 1even ⊗ Hodd(s) + Heven(s) ⊗ 1odd , (17)

where Heven(s) and [(Hodd(s)] are given by H0(s) as given by
Eq. (1) acting over qubits labeled with even and odd indices,
respectively. Then, no interaction between the odd and even
sectors will occur. To determine the spectrum of HD(s) we will
make use of the following general result: Let us consider Am×m

and Bn×n as two operators such that Am×m|aμ〉 = aμ|aμ〉
and Bn×n|bη〉 = bη|bη〉, with the sets of eigenvalues {bη} and
{aμ} associated with the eigenvector bases {|bη〉} and {|aμ〉},
respectively. Thus, if we consider an operator Ck×k , where k =
mn, such that Ck×k = Am×m ⊗ 1n×n + 1m×m ⊗ Bn×n, then
|cμη〉 = |aμ〉 ⊗ |bη〉 are the eigenvectors of Ck×k associated
with the eigenvalues cμη = aμ + bη. Bearing in mind this
result, the spectrum of HD(s) is simply given by

Ekl(s) = Eodd
k (s) + Eeven

l (s), (18)

where Eodd
k (s) and Eeven

k (s) are given by Eqs. (9), (10), and
(11). By using Eq. (18), we show that the gap of the HD(s) is
εD(s) = E01(s) − E00(s) = ε(s), where ε(s) was determined
by Eq. (12). As each sector has the symmetries �x and �z, we
define the operators

�z odd ≡ 1 ⊗ �z, �z even ≡ �z ⊗ 1,

�x odd ≡ 1 ⊗ �x, �x even ≡ �x ⊗ 1,

where the left operators in the tensor product act on the even
sector, with the right operators acting on the odd sector. It
then follows that these operators (and their) products are Z2

symmetries of HD(s). Considering the symmetry operator
�D

z = �z even �z odd, we then write

HD(s) =
(

H+
32×32(s) ∅32×32

∅32×32 H−
32×32(s)

)
, (19)

where H±
32×32(s) acts on the states of parity ±1 of the operator

�D
z . By using now the symmetry �D

x = �x even�x odd, we can
choose the order of the basis such that H+

32×32(s) = H−
32×32(s).

In addition, by using the symmetries �z odd and �z even of each

sector we get

HD(s) =

⎛
⎜⎜⎜⎝

Hα(s) ∅ ∅ ∅
∅ Hβ(s) ∅ ∅
∅ ∅ Hγ (s) ∅
∅ ∅ ∅ Hδ(s)

⎞
⎟⎟⎟⎠, (20)

where we have considered the specific parity ordering
{|E〉+|O〉+,|E〉−|O〉−,|E〉−|O〉+,|E〉+|O〉−} in the compu-
tational basis, with the definitions |E〉 ≡ |n2n4n6〉 and |O〉 ≡
|n1n3n5〉. Moreover, by using the symmetries of HD(s)
with respect to �x odd and �x even, we find that the blocks
{Hα(s),Hβ(s),Hγ (s),Hδ(s)} are identical by a suitable organi-
zation of the basis vectors.

To show that double teleportation can indeed be adiabati-
cally implemented via the Hamiltonian HD(s), let us denote
the initial and final states as given by

|φ(0)〉 = |ψ〉12|β00〉35|β00〉46, (21)

|φ(1)〉 = |β00〉12|β00〉13|ψ̃〉56, (22)

where |β00〉 = 1/
√

2(|00〉 + |11〉) and |ψ̃〉56 reads as

|ψ〉56 = α̃|00〉56 + δ̃|01〉56 + γ̃ |10〉56 + β̃|11〉56. (23)

Note that, since HD(s) is degenerate, we cannot associate |ψ〉56

directly to |ψ〉12. However, Eq. (20) implies a dynamics such
as ξ̃ = ξ̃ (ξ ), where ξ̃ = {α̃,δ̃,γ̃ ,β̃} and ξ = {α,δ,γ,β}. This
is because each element of the set {α,δ,γ,β} is in a distinct
parity sector. Moreover, unitarity of the evolution leads to
|ξ̃ (ξ )|2 = |ξ |2, which yields ξ̃ = ξeiϕξ . By using now the
parity operators �x odd and �x even, we can show that the
blocks in the Hamiltonian provided by Eq. (20) are identical
(by suitably ordering the basis) so that the parameters ϕξ are
globally defined, namely, ϕξ ≡ ϕ (∀ ξ ). Hence, we conclude
that the state of the qubits 5 and 6 at the final of the process
reads as

|ψ〉56 = α|00〉56 + δ|01〉56 + γ |10〉56 + β|11〉56, (24)

up to the global phase eiϕ . We can extend this protocol to
perform teleportation of an unknown state of N qubits. In
this direction, we need to increase the number of sectors and
define a Hamiltonian given by Hmult(t) = ∑N

k=1 Hk(t), where
each Hk(t) is given by Eq. (1), which acts on an individual
sector composed by three qubits. Consequently, N Bell pairs
will be used as a resource for the process. A scheme of such
generalized protocol is presented in Fig. 3. The Hamiltonian
Hmult(t) displays a 2N -fold degenerate ground state, which
decouples from the rest of the spectrum in the adiabatic
dynamics. Teleportation of the N -qubit state will then follow
from the z and x parity symmetries in each individual sector.

C. Adiabatic teleportation of unitary N-qubit gates

In the one-qubit gate teleportation protocol, Alice starts
with an unknown state |ψ〉 at qubit 1 and shares a rotated Bell
pair U3|β00〉23 with Bob (prepared by a third party Charlie).
Then, by applying the usual teleportation procedure, Bob
receives U3|ψ〉 at the end of the protocol with probability one
as long as decoherence can be neglected. In order to implement
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FIG. 3. Adiabatic teleportation of an N -qubit state. In each three-
qubit sector we have a qubit to be teleported (red particle) and a Bell
pair (blue particles).

the adiabatic version of gate teleportation, we define the
gate to be implemented over qubit 3 as U = 1112U3, where
U

†
3U3 = 13. Then, as shown in Ref. [6], the time-dependent

Hamiltonian H0(s,U ) able to adiabatically implement the
teleportation of the gate U can be determined from the original
Hamiltonian H0(s) for one-qubit teleportation through the
rotation

H0(s,U ) = UH0(s)U †. (25)

Indeed, this can be understood directly from the symmetries
of H0(s,U ). Since commutation relations are preserved by
rotations [20], H0(s,U ) is Z2 symmetric under the parity
operators �z(U ) = ZZ(U3ZU

†
3 ) and �x(U ) = XX(U3XU

†
3 ).

Then, we can show the teleportation of the gate U by working
the computational basis rotated by U . In this new basis, the
matrix form of H0(s,U ) is identical to that of the original
H0(s), which implies that the same argument used to the
simple teleportation performed by H0(s) is applicable to case
of the Hamiltonian H0(s,U ). The gap of H0(s,U ) is also
given by (12) because the spectrum of the operator will not
change by a unitary transformation [20]. Hence, the initial state
|φ(0,U )〉 = |ψ〉1U3|β00〉23 (with the rotated Bell pair provided
by Charlie) will be adiabatically evolved into the final state
|φ(1,U )〉 = |β00〉12U3|ψ〉3.

In order to perform universal QC via adiabatic teleportation,
Ref. [6] specifically worked out a Hamiltonian to adiabatically
implement the teleportation of the controlled-phase gate. Here,
we extend the protocol to adiabatically implement an arbitrary
N -qubit unitary gate. By focusing first on two-qubit gates,
we use as a fundamental resource the double teleportation
protocol, as described in Sec. II B. More specifically, we can
show that any two-qubit gate U can be implemented by the
Hamiltonian

HD(s,U ) = UHD(s)U †,

where HD(s) is provided by Eq. (17) and U = U56 is the gate
to be performed at the final time in the qubits of Bob. As in
the case of single qubits, we have that the spectra of HD(s,U )
and HD(s) are identical. Then, to show that the two-qubit
gate teleportation takes place through the adiabatic dynamics
dictated by HD(s,U ), we make use of the following rotated
parity symmetry operators:

�z sec(U ) = U�D
z secU

†, �x sec(U ) = U�D
z secU

†,

�x(U ) = U�D
x U †, �z(U ) = U�D

z U †,

where sec = {even,odd}. Bearing in mind that Charlie pro-
vides rotated Bell pairs, we have at s = 0 the initial state
|φ(0,U )〉 = U56|φ(0)〉, where |φ(0)〉 is given by Eq. (21). In
the rotated basis, the matrix form of HD(s,U ) is also equivalent
to the matrix form of HD(s) as given in the original basis, from
which it follows that at the final of the process the state of the
system will by |φ(1,U )〉 = U56|φ(1)〉, where |φ(1)〉 is given by
Eq. (24). Concerning the adiabatic teleportation of an N -qubit
gate UN , it can be implemented from the simple adiabatic
teleportation of an N -qubit state, as previously described. The
Hamiltonian that adiabatically implements this task is then
Hmult(t,UN ) = UNHmult(t)U

†
N . This allows for universal QC

by using a variety of sets of universal gates, e.g., the set
composed by Hadamard added by three-qubit Toffoli gates
[21,22].

III. SUPERADIABATIC QC VIA TELEPORTATION

A. Shortcut to adiabaticity

We can obtain fast piecewise implementation of quantum
gates via shortcuts to adiabaticity [11–14], whose evolution
time will not be constrained by the adiabatic theorem. We
begin by defining the evolution operator

U (t) =
∑

n

e− i
�

∫ t

0 dτ En(τ )e− ∫ t

0 dτ 〈n|∂τ n〉|n(t)〉〈n(0|, (26)

where {|n(t)〉} denotes the instantaneous eigenstate basis of
a general time-dependent Hamiltonian H0(t). The evolution
operator U (t) leads an initial state |ψ(0)〉 = |n(0)〉 into an
evolved state |ψ(t)〉 given by

|ψ(t)〉 = e− i
�

∫ t

0 dτ En(τ )e− ∫ t

0 dτ 〈n|∂τ n〉|n(t)〉, (27)

which mimics the adiabatic evolution of H0(t). Remarkably,
such an evolution can be dictated with no adiabatic constraint
by the superadiabatic Hamiltonian HSA(t), which reads as

HSA(t) = H0(t) + HCD(t), (28)

where the additional term HCD(t) is known as the counterdia-
batic Hamiltonian. This contribution is shown to be [11–14]

HCD(t) = i�
∑

n

(|∂tn〉〈n| + 〈∂tn|n〉|n〉〈n|), (29)

where |∂tn〉 is the time derivative of |n(t)〉. In particular,
we have 〈∂tn|n〉 = 0 in Eq. (29) for real Hamiltonians. We
observe that the terminology superadiabaticity has originally
been introduced by Berry in Ref. [23] (see also Ref. [24]) as a
systematic procedure of adiabatic iterations, aiming at produc-
ing successive adiabatic approximants in processes with finite
slowness. Here, we use the term superadiabatic Hamiltonian
in a different scenario, which means a Hamiltonian capable
to yield a shortcut to adiabaticity through the presence of a
counterdiabatic driving (see Refs. [25,26] for a comparison
between these two approaches).

Note that a superadiabatic implementation of an arbitrary
evolution involves the knowledge of the eigenstates of the
adiabatic Hamiltonian H0(t). In some situations, this can be
implemented in realizable settings. For instance, there have
been driving protocols proposed for assisted evolutions in
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quantum critical phenomena [27–29]. On the other hand, as a
shortcut to accelerate QC, the application of superadiabaticity
is challenging. Here, as we shall see, the superadiabatic imple-
mentation of gate teleportation as a primitive for universal QC
can be promptly achieved since we deal with the eigenspectrum
of piecewise Hamiltonians, which act over a few qubits.

B. Superadiabatic teleportation of N-qubit states

To derive the superadiabatic version of the teleportation
of N -qubit states, we need to determine the counterdiabatic
Hamiltonian HCD(s) associated with the Hamiltonian H0(s) as
given by Eq. (1). By evaluating the eigenstates of the blocks
H±

4×4(s) in Eq. (7), we get

|E±
0 (s)〉 =

(
ηi + χ

ηf

,
[χ − ηf ][χ + ηi]

ηiηf

,
χ − ηf

ηi

,1

)
, (30)

|E±
1 (s)〉 =

(
ηi

ηf

− 1,− ηi

ηf

,0,1

)
, (31)

|E±
2 (s)〉 =

(
− ηi

ηf

,
ηi

ηf

+ 1,1,0

)
, (32)

|E±
3 (s)〉 =

(
ηi − χ

ηf

,
ηf − ηi + χ

ηi − ηf + χ
,−ηf + χ

ηi

,1

)
, (33)

where η = η(s) and |E±
n (s)〉 are the non-normalized eigen-

states of H±
4×4(s), with the function χ defined as χ = χ (s) ≡√

η2
i (s) + η2

f (s). The counterdiabatic Hamiltonian HCD(s) can
now be found by observing that the Z2 symmetries of the
adiabatic Hamiltonian remain in the superadiabatic theory.
We enunciate this result by establishing the theorem following
(the proof is in Appendix A).

Theorem 1. Consider a time-dependent Hamiltonian H0(t)
such that [H0(t),�z] = 0 and [H0(t),�x] = 0, where �z and
�x are z and x parity operators, respectively. Then, the
superadiabatic Hamiltonian HSA(t) associated with H0(t) also
satisfies [HSA(t),�z] = 0 and [HSA(t),�x] = 0.

From Theorem 1 we can write

HSA(s) =
[
H+

SA(s) ∅
∅ H−

SA(s)

]
, (34)

with H±
SA(s) ≡ H±

4×4(s) + H±
CD(s) and H+

SA(s) = H−
SA(s).

Since the set {|E±
n (s)〉} is real, we can write the counterdiabatic

Hamiltonian as

H±
CD(s) = i

�

τ

3∑
n=0

|∂sE
±
n (s)〉〈E±

n (s)|. (35)

Now, let us move on to the implementation of the superadi-
abatic double teleportation. To this end, we consider a general
time-dependent Hamiltonian H0(s), which is split out as

H0(s) = HA
0 (s) ⊗ 1B + 1A ⊗ HB

0 (s), (36)

where HA
0 (s) and HB

0 (s) are associated with piecewise
superadiabatic Hamiltonians given by HA

SA(s) and HB
SA(s),

respectively. Thus, we can write

HSA(s) = HA
SA(s) ⊗ 1B + 1A ⊗ HB

SA(s). (37)

As a consequence, by taking the Hamiltonian of the double
teleportation as given by Eq. (17), we have that the superadia-
batic Hamiltonian for the double teleportation is

HD
SA(s) = 1even ⊗ H odd

SA (s) + H even
SA ⊗ (s)1odd ,

where H odd
SA (s) and H even

SA (s) are the superadiabatic Hamilto-
nians for each parity sector. Extension for the teleportation of
N -qubit states can be achieved by adding more Z2-symmetry
sector, with the superadiabatic Hamiltonian given by H SA

mult =∑N
k=1 (⊗k−1

i=11i) ⊗ H SA
k (t) ⊗ (⊗N

j=k+11j ), where H SA
k (t) de-

notes the superadiabatic Hamiltonian associated with Hk(t),
with each Hk(t) [given by Eq. (1)] acting on an individual
sector composed by three qubits.

C. Superadiabatic teleportation of N-qubit gates

In order to perform superadiabatic universal QC we need to
show how to implement unitaries of one and two qubits with
this model. To this end, we devise the the following theorem
(the proof is given in Appendix B).

Theorem 2. Consider two time-dependent Hamiltonians
H0(t) and H0(t,G) such that H0(t,G) = GH0(t)G†, with G

denoting a unitary transformation. Then, the superadiabatic
Hamiltonian associated with H0(t,G) can be written as

HSA(t,G) = GHSA(t)G†, (38)

where HSA(t) is the superadiabatic Hamiltonian of H0(t).
Since Theorem 2 holds for any unitary operator G and

any time-dependent Hamiltonian, we can use it to superadia-
batically implement any unitary transformation of N qubits.
In particular, by focusing on one- and two-qubit gates, we
can realize universal QC whose primitives are fast local
Hamiltonians. For instance, to implement a one-qubit gate
teleportation, the superadiabatic Hamiltonian HSA(t) is given
by Eq. (34), while for the case of gate teleportation of two
qubits we must consider HSA(t) such as given by Eq. (37). An
important point is that, in the case of superadiabatic evolutions
for rotated systems, the initial state is also required to be rotated
(by the third party Charlie) so that the final state contains the
teleported gate.

D. Energetic cost of superadiabatic gate teleportation

The shortcut via a counterdiabatic Hamiltonian can yield
an evolution that is faster than the adiabatic dynamics, but how
much faster? This question has been answered for a general
superadiabatic evolution in Ref. [15] through the analysis of
the quantum speed limit (QSL) bounds [16–19] applied to
superadiabatic dynamics. In particular, as shown in Ref. [15],
the total time τ in superadiabatic evolutions can be arbitrarily
reduced for any initial and final states as long as energy is
injected in the system. More specifically, we may have τω →
0, with ω denoting the energy scale of the system. To quantify
the expense of energy in a superadiabatic evolution, we adopt
the cost measure (see also Refs. [30,31])

�(τ ) = 1

τ

∫ τ

0
‖H (t)‖dt , (39)
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where ‖A‖ =
√

Tr[A†A]. Then, for any superadiabatic Hamil-
tonian HSA(t), we obtain

�(τ ) = 1

τ

∫ τ

0

√∑
m

[
E2

m(t) + �2μm(t)
]
dt, (40)

where {Em(t)} is the set of energies of the adiabatic Hamilto-
nian H0(t) and

μm(t) = 〈∂tm(t)|∂tm(t)〉 − |〈m(t)|∂tm(t)〉|2 . (41)

Equation (40) shows an increase in the energetic cost to supera-
diabatic evolutions compared to their adiabatic counterparts.
Let us now evaluate the energetic cost to implement universal
QC via teleportation. To this end, we calculate first the cost
of single and double state teleportation and then extend the
analysis for the cost of the implementation of quantum gates.
By parametrizing the evolution in terms of the normalized
time s = t/τ , the energetic cost �single for the teleportation of
a single qubit reads as

�single =
∫ 1

0

√∑
m

[
E2

m(s) + �2
μm(s)

τ 2

]
ds , (42)

where μm(s) = 〈∂sEm(s)|∂sEm(s)〉, which is a consequence
of the fact that the set of eigenvalues of H0(s) is real.
To illustrate the dependence of the energetic cost on the
evolution path adopted, we will choose three interpolations:
(i) linear interpolation, with ηi(s) = 1 − s and ηf (s) = s;
(ii) trigonometric interpolation, with ηi(s) = cos (πs/2) and
ηf (s) = sin (πs/2); and (iii) exponential interpolation, with
ηi(s) = (e1−s − 1)/(e − 1) and ηf (s) = (es − 1)/(e − 1).

Then, we numerically evaluate the energetic cost as a
function of ωτ of by applying Eq. (42) to each interpolation,
which is plotted in Fig. 4. In this plot, we explicitly show
that the superadiabatic evolution recovers the cost of its
adiabatic counterpart at the limit of infinite ωτ . Notice also
that the usual linear interpolation is not the less costly option
of interpolation. Moreover, the plot is in agreement with

FIG. 4. Energetic cost as a function of τω for both adiabatic and
superadiabatic dynamics of single-qubit teleportation. Notice that the
superadiabatic cost recovers the cost of its adiabatic counterpart in
the limit τω → ∞.

the energy-time complementarity relationship, with the faster
evolutions costing more energy than slower dynamics. The
energetic cost to implement the superadiabatic teleportation of
an unknown N -qubit state can be provided in terms of the cost
to implement the single teleportation as (see Appendix C)

�N = gN �single, (43)

where we define the function gN =
√

23(N−1)N . Moreover,
the cost to implement gate teleportation of N qubits via
superadiabatic evolution is also given by Eq. (43) due to the
invariance of the Hilbert-Schmidt norm by unitary rotations.
Note that the factor gN exponentially increases with N . In any
case, this is not a problem to perform universal QC with one
and two qubits. In that case, we have g2 = 4 and g3 = 8

√
3,

respectively.

IV. CONCLUSION

We introduced a general shortcut to the adiabatic gate
teleportation model of quantum computation. Moreover, the
model has been generalized to include the teleportation of an
arbitrary N -qubit unitary gate. In particular, we have shown
through Theorem 2 that the superadiabatic Hamiltonian for the
teleportation of an N -qubit state can be directly used to imple-
ment the teleportation of an N -qubit gate U through a simple
U rotation over the original superadiabatic Hamiltonian. As a
main result of the work, we have shown that it is possible to
devise fast local Hamiltonians to perform teleportation of one
and two qubits as a primitive of universal QC. To analyze the
energetic cost of the superadiabatic evolution, we considered
the time-energy complementary relationship. In this context,
it has been shown that the superadiabatic implementation is
always more costly than its adiabatic counterpart, reducing to
it in the limit of a long evolution time.

Implications of the superadiabatic approach applied to gate
teleportation in a decohering environment is a further challenge
of interest. In open systems, there is a competition between
the adiabatic time scales, which require a long evolution,
and the decoherence characteristic times, which require fast
evolution. In this scenario, the superadiabatic implementation
may provide a direction to obtain an optimal running time for
the quantum algorithm while keeping an inherent protection
against decoherence. A basis for such analysis may be
provided by the generalization of the superadiabatic theory
for the context of open systems (see, e.g., Refs. [32–35]).
The robustness of superadiabatic gate teleportation as well as
experimental proposals are left for future research.
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APPENDIX A: PROOF OF THE THEOREM 1

The proof of Theorem 1 can be obtained as follows. If a
time-dependent Hamiltonian H0(t) satisfies the commutation
relation [H0(t),�z] = 0, then we can write [HSA(t),�z] =
[HCD(t),�z]. As �z and H0(t) have a common basis of
eigenstates, an eigenstate |n(t)〉 of H0(t) has a definite
�z parity so that we can write �z|n(t)〉 = (−1)n|n(t)〉 (by
encoding the parity into the label n). By using �z|∂tn(t)〉 =
(−1)n|∂tn(t)〉 it follows that HCD(t)�z = �zHCD(t), thus
implying [HSA(t),�z] = 0. To complete the demonstration,
from the hypothesis that [H0(t),�x] = 0 is satisfied, we write
[HSA(t),�x] = [HCD(t),�x]. Then, let us denote a matrix
element of [HCD(t),�x] in the basis of eigenstates of H0(t)
as

[HCD(t),�x]kl = 〈k(t)|[HCD(t),�x]|l(t)〉. (A1)

We now use that �x |n(t)〉 = |n′(t)〉, where |n(t)〉 and |n′(t)〉
are eigenstates of the parity operator �z, with opposite
eigenvalues. Moreover, �x |∂tn(t)〉 = |∂tn

′(t)〉. Then

[HCD(t)�x]kl = i�[〈k(t)|∂t l
′(t)〉 + 〈∂t l

′(t)|l(t)〉〈k(t)|l′(t)〉]
= [�xHCD(t)]kl . (A2)

Thus [HCD(t),�x]kl = 0 ∀ (k,l). This proves Theorem 1.

APPENDIX B: PROOF OF THE THEOREM 2

In order to prove Theorem 2, consider two Hamiltonians
H (t) and H (t,G) such that H (t,G) = GH (t)G†, with GG† =
1. The set of eigenvectors |n(s),G〉 of the Hamiltonian H (t,G)
can be determined from the set of eigenvectors |n(s)〉 of
adiabatic Hamiltonian H (s) as follows:

|n(t),G〉 = G|n(t)〉. (B1)

Thus, the counterdiabatic Hamiltonian associated with H (s,G)
is given by

HCD(s,G) = i�

τ

∑
n

|∂sn,G〉〈n,G|

+ 〈∂sn,G|n,G〉|n,G〉〈n,G|. (B2)

Then, by using Eq. (B1), we can show that

HCD(s,G) = G

[
i�

τ

∑
n

|∂sn〉〈n| + 〈∂sn|n〉|n〉〈n|
]
G†, (B3)

where we have used that |∂sn,G〉 = G|∂sn〉 and GG† = 1.
Hence, we can write

HCD(s,G) = GHCD(s)G†. (B4)

Equation (B4) implies that HSA(t,G) = GHSA(t)G†. This
proves Theorem 2.

APPENDIX C: PROOF OF EQ. (43)

In order to demonstrate Eq. (43), let us write the adiabatic
Hamiltonian that is used to perform the N -qubit state telepor-
tation as

HSA(s) =
N∑

k=1

HSA
k (s), (C1)

where HSA
k (s) = (⊗k−1

l=1 1l) ⊗ H SA
k (s) ⊗ (⊗N

l=k+11l), with
HSA

k (s) being a three-qubit Hamiltonian for each independent
sector, as displayed in Fig. 3. Then, the energetic cost for the
N -qubit superadiabatic teleportation reads as

�n =
∫ 1

0
ds

√
Tr

[
H 2

SA(s)
]
, (C2)

where we can write

H 2
SA(s) =

N∑
k=1

[
HSA

k (s)
]2 +

∑
m�=k

[∑
k

HSA
k (s)HSA

m (s)

]
. (C3)

Now, we use that, for k �= m, we get

Tr
[
HSA

k (s)HSA
m (s)

] = (Tr[1])N−2 Tr
[
H SA

k (s)
]

Tr
[
H SA

m (s)
]
.

(C4)

Then, we write Tr[H SA
j (s)] = Tr[H (0)

j (s) + H CD
j (s)], where

H
(0)
j (s) is the original (adiabatic) Hamiltonian at sector j

and H CD
j (s) its corresponding counterdiabatic Hamiltonian.

By explicitly computing the trace in the eigenstate basis of
H

(0)
j (s) and by using Eqs. (9)–(11) and (29), we obtain that

Tr[H SA
j (s)] = 0 (∀j ∈ {1, . . . ,N}), which implies

Tr
[
HSA

k (s)HSA
m (s)

] = 0 (k �= m) . (C5)

Thus, the energetic cost for the N -qubit state teleportation
reads as

Tr
[
H 2

SA(s)
] =

N∑
k=1

Tr
{[
HSA

k (s)
]2}

= (Tr[1])N−1
N∑

k=1

Tr
{[

H SA
k (s)

]2}

= 23(N−1) N Tr
{[

H SA
k (s)

]2}
(∀ k). (C6)

Hence, Eq. (C6) into Eq. (C2) yields

�N =
√

23(N−1)N�single, (C7)

which proves the validity of Eq. (43).
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