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The purport of quantum teleportation is to completely transfer information from one party to another
distant partner. However, from the perspective of parameter estimation, it is the information carried by a
particular parameter, not the information of total quantum state that needs to be teleported. Due to the
inevitable noise in environments, we propose two schemes to enhance quantum Fisher information (QFI)
teleportation under amplitude damping noise with the technique of partial measurements. We find that post-partial
measurement can greatly enhance the teleported QFI, while the combination of prior partial measurement and
post-partial measurement reversal could completely eliminate the effect of decoherence. We show that, somewhat
consequentially, enhancing QFI teleportation is more economic than that of improving fidelity teleportation. Our
work extends the ability of partial measurements as a quantum technique to battle decoherence in quantum
information processing.
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I. INTRODUCTION

Quantum teleportation, one of the most fascinating pro-
tocols predicted by quantum mechanics [1], is a critical
ingredient for quantum communication and quantum compu-
tation networks [2,3]. It is the faithful transfer of quantum
states between two distant parties which have established
prior entanglement and can communicate classically. In
the past two decades, quantum teleportation has attracted
considerable attention and has been studied both theoretically
and experimentally [4–11]. However, in many scenarios, it
is not the whole quantum state, but rather the information
of a particular parameter physically encoded in it, that is
needed to be transmitted. Therefore, there is no need to
teleport the full information of the quantum states themselves,
but only the relevant parameter information is our practical
concern. In contrast to the quantum-state teleportation where
the credibility of teleportation is measured by fidelity, the
transmission of information that is carried by a physical
parameter is usually quantified by quantum Fisher information
(QFI) [12–16]. QFI plays a significant role in the fields
of quantum geometry of state spaces [12,13,17], quantum
information theory [18], and quantum metrology [19,20].
Particularly, the inverse of QFI characterizes the ultimate
achievable precision in parameter estimation [21].

Unfortunately, any realistic quantum system inevitably
couples to other uncontrollable environments which influence
it in a non-negligible way [22]. Then the issue of robustness
of QFI against various sources of decoherence has soon been
raised. Numerous researchers have indeed demonstrated that
QFI is fragile and easily broken by environmental noise
[23–27]. This would be the most limiting factor for the appli-
cations of QFI in quantum teleportation, quantum metrology,
and other quantum tasks. In this context, it is an extremely
important issue to protect the QFI from decoherence during the
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procedure of teleportation, especially for the atomic, trapped
ions and other solid-state systems [6–9].

Partial measurements, which are generalizations of von
Neumann measurements, are associated with positive-
operator valued measures (POVM). For partial measurements
[28–32], the information extracted from the quantum state is
deliberately limited, thereby keeping the measured state alive
(i.e., without completely collapsing towards an eigenstate).
Thus, it would be possible to retrieve the initial information
with some operations, even when the quantum state has
suffered decoherence. Recently, many proposals that exploit
partial measurements to protect the fidelity of a single qubit, the
quantum entanglement of two qubits, and two qutrits from am-
plitude damping (AD) decoherence have been demonstrated
both theoretically [33–35] and experimentally [36–38]. This
motivates us to study the QFI teleportation under decoherence
by utilizing the partial measurements.

In this paper we propose two schemes to show that partial
measurements can greatly enhance the QFI teleportation under
decoherence. In particular, we find that the combination
of prior partial measurement and post partial measurement
reversal is able to completely circumvent the influence of AD
noise. Our schemes for enhancing QFI are based on the fact that
partial measurements are nondestructive and can be reversed
with a certain probability. Moreover, we analytically obtain the
optimal parameters of the enhancement of QFI teleportation.
We also demonstrate that the success probability of enhancing
the QFI is higher than that of enhancing the fidelity of the
quantum state, which indicates that enhancing the teleported
QFI is a more reasonable and economic way in the scenario of
parameter estimation.

This paper is organized as follows: we introduce QFI
and partial measurements in Sec. II. In Sec. III, we then
show how the QFI teleportation could be enhanced by
partial measurements. We consider two different protocols, as
illustrated in Fig. 1, and compare the results in Refs. [39,40],
where the fidelity of teleportation is improved by partial
measurements. We show that the cost of enhancing QFI is
smaller than that of improving fidelity, which is represented
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FIG. 1. Schematic illustrations of enhancing QFI teleportation
under decoherence using partial measurements. (a) The circuit of
scheme A is similar to the standard circuit of quantum teleportation,
while a post partial measurement is added before the unitary
operations. (b) In the circuit of scheme B, Alice performs a prior
partial measurement (with strength p) on the second qubit before
she sends it to Bob. During their classical communications, Alice
has to send the results of Bell measurement and the prior partial
measurement strength p to Bob. When Bob receives the results, he
first performs a post partial measurement reversal (i.e., bit-flip, partial
measurement, and bit-flip) and then sequentially performs the local
unitary operations.

as the higher success probability. Finally, the conclusions are
summarized in Sec. IV.

II. PRELIMINARIES

A. Quantum Fisher information

The QFI of a parameter characterizes the sensitivity of the
state with respect to changes of the parameter. We consider
that a parameter φ is encoded in quantum states ρφ (in general,
mixed states). The QFI of φ is defined as [12,13,21]

Fφ = Tr
(
ρφL2

φ

) = Tr[(∂φρφ)Lφ], (1)

where Lφ is the so-called symmetric logarithmic derivative,
which is defined by ∂φρφ = (Lφρφ + ρφLφ)/2 with ∂φ =
∂/∂φ. Typically, there are three methods to calculate the
QFI [41]. The most frequently used one is diagonalizing the
matrix as ρφ = �nλn|ψn〉〈ψn|. Then one can rewrite the QFI
as [42,43]

Fφ =
∑

n

(∂φλn)2

λn

+
∑

n

λnFφ,n

−
∑
n�=m

8λnλm

λn + λm

|〈ψn|∂φψm〉|2, (2)

where Fφ,n is the QFI for the pure state |ψn〉 with the form
Fφ,n = 4[〈∂φψn|∂φψn〉 − |〈ψn|∂φψn〉|2]. According to Eq. (2),
the last term stemming from the mixture of pure states suggests
that the QFI of a mixed state is smaller than the pure-state case.

For the single-qubit state, a simple and explicit expression
of QFI could be obtained. In the Bloch sphere representation,

any qubit state can be written as

ρ = 1
2 (1 + �r · σ̂ ), (3)

where �r = (rx,ry,rz)T is the real Bloch vector and σ̂ =
(σ̂x,σ̂y,σ̂z) denotes the Pauli matrices. Therefore, for the
single-qubit state, Fφ can be represented as follows [44]:

Fφ =
{

|∂φ�r|2 + �r·∂φ �r
1−|�r|2 , if |�r| < 1,

|∂φ�r|2, if |�r| = 1.
(4)

B. Partial measurements

In quantum physics, the standard von Neumann projective
measurements are referred to as “sharp measurements,” which
project the initial state to one of the eigenstates of the
measurement operator. As generalizations of the standard
von Neumann projective measurements, partial measurements
don’t completely collapse the initial state (i.e., nonprojective
measurements); hence they have the interesting property that
they can be reversed in a probabilistic way. For a single qubit
with computational basis |0〉 and |1〉, the so-called partial
measurement is

M0 = |0〉〈0| +
√

1 − p|1〉〈1|, (5)

M1 = √
p|1〉〈1|, (6)

where parameter p (0 � p � 1) is usually named as the
strength of partial measurement. Note that M0 and M1 are
not necessarily projectors and are also nonorthogonal to each
other, but M†

0M0 + M†
1M1 = I . Though the measurement

operator M1 is the same as the von Neumann projective
measurement and is associated with irrevocable collapse, M0

is a partial measurement, which we focus on in this paper.

C. Partial measurements reversal

The partial measurement M0 has some interesting prop-
erties: (i) the strength p is controllable and (ii) it could be
reversed for the case p �= 1. The reverse procedure can be
noticed immediately to be

M−1
0 = |0〉〈0| + 1√

1 − p
|1〉〈1|

= 1√
1 − p

XM0X, (7)

where X = |0〉〈1| + |1〉〈0| is the qubit bit-flip operation. The
second line of Eq. (7) indicates that the reverse process M−1

0
can be achieved physically by three sequential operations:
bit-flip, partial measurement, and bit-flip.

III. ENHANCING QFI TELEPORTATION BY
PARTIAL MEASUREMENTS

In realistic quantum teleportation, the maximally entangled
state may lose its coherence and become a mixed state due
to the interaction with its environment. Note that the quantum
channel which is less entangled will reduce the teleported
QFI. Here, we propose two schemes to enhance the QFI
teleportation under AD noise, as shown in Fig. 1. For
simplicity, we consider the scenario that Alice has a perfect
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quantum memory while Bob doesn’t. Alice prepares the
Einstein-Podolsky-Rosen (EPR) state and then sends one
particle to Bob. Therefore, the entangled part possessed by
Bob will suffer AD noise and hence reduces the entanglement.
The situation that both Alice and Bob are influenced by noise
could be treated similarly.

A. Scheme A

We first examine the efficiency of scheme A, in which only
one post partial measurement is performed by Bob before local
operations (e.g., X or Z). We assume the shared EPR state is
prepared in |	+〉 = (|00〉 + |11〉)/√2 by Alice and the input
quantum state is an arbitrary superposition state,

|ψin〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ|1〉, (8)

which carries a phase parameter φ. Note that the QFI of φ

is our concern during this teleportation procedure. The input
state of the quantum teleportation circuit in Fig. 1(a) is the
product state of |ψin〉 and |	+〉.

While the EPR state is prepared and stored perfectly by
Alice, the qubit kept by Bob may be affected by AD noise.
The dynamics of an entangled state subject to AD noise is
described by the quantum operation � acting on the pure
state [18]:

ρAD = �(ρ0) =
∑
i=1,2

Ei |	+〉〈	+|E†
i

= 1

2
(|00〉〈00| + γ |10〉〈10| + γ |11〉〈11|

+
√

γ |00〉〈11| +
√

γ |11〉〈00|), (9)

where ρ0 = |	+〉〈	+| and the subscript AD denotes the pure
AD noise case (i.e., without partial measurements). Ei are the
Kraus operators of AD noise,

E1 = I1 ⊗
(

1 0

0
√

1 − γ

)
, E2 = I1 ⊗

(
0

√
γ

0 0

)
, (10)

where I1 is the two-dimensional identity operator of the first
qubit (Q1) since we have assumed Alice is not affected by AD
noise. Note that following the standard circuit of the quantum
teleportation process, we get the teleported QFI under AD
noise:

FAD
φ = sin2 θ (1 − γ ). (11)

Then we consider the effect of a post partial measurement
(with the strength pA

r ) performed by Bob before he makes the
corresponding unitary operations. Here, the superscript A (B)
indicates it belongs to the scheme A (B),

ρA = M0[�(ρ0)]M†
0

= 2

1 + pA
r

(|00〉〈00| + pA
r γ |10〉〈10| + pA

r γ |11〉〈11|

+
√

pA
r γ |00〉〈11| +

√
pA

r γ |11〉〈00|), (12)

where M0 = I1 ⊗ M0. After the implementation of the quan-
tum circuit of Fig. 1(a), Bob gets the teleported state ρA

out,

whose three Bloch vector components are

rA
x = 2 sin θ cos φ

NA

√
pA

r γ , (13)

rA
y = 2 sin θ sin φ

NA

√
pA

r γ , (14)

rA
z = cos θ

NA

(
1 + pA

r

)
γ , (15)

where pA
r is the strength of partial measurement, and pA

r =
1 − pA

r , γ = 1 − γ . NA = 2 − pA
r − γpA

r is the normalized
factor. According to Eq. (4), the QFI of the teleported state
could be obtained,

FA
φ = 4 sin2 θpA

r γ

(NA)2
. (16)

Since the strength of partial measurement is tunable, we
can maximize the QFI by choosing the optimal partial
measurement strength,

pA,opt
r = 2γ /(1 + γ ). (17)

Then the maximal QFI is

FA,opt
φ = sin2 θ

1 + γ
. (18)

To quantify the efficiency of partial measurement on
enhancing QFI, we introduce the teleported QFI improvement,

FA
imp ≡ FA,opt

φ − FAD
φ , (19)

which is plotted in Fig. 2 as a function of decoherence
strength γ and initial parameter θ . It is remarkable to find
that the teleported QFI improvement FA

imp is always non-
negative. Particularly, when γ = 1, we find FAD

φ = 0 while

FA,opt
φ = sin2 θ/2, which means that half of the QFI is still

teleported under complete decoherence with the help of post
partial measurement. Our result indicates that the application
of quantum partial measurement indeed enhances the QFI

1.5

θ (rad)
1

0.5
00

0.5
γ

0.5

0.4

0.3

0.2

0.1

0
1

Q
FI

 im
pr

ov
em

en
t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

FIG. 2. The improved QFI FA
imp by post partial measurement as a

function of θ and dimensionless parameter γ .
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teleportation, which is very important for quantum metrology
and other quantum information tasks.

The underlying physical mechanism of the enhancement
of QFI needs to be clarified further. One might deduce that
the enhancement of teleported QFI should be attributed to
the improvement of entanglement between Alice and Bob.
We argue that this is not the case. According to Eqs. (9)
and (12) and following the definition of concurrence [45], we
can obtain the concurrence of ρAD and ρA, respectively, which

are CAD = √
γ and CA = 2

√
pA

r γ /(1 + pA
r ). Employing the

optimal partial measurement strength of QFI, i.e., Eq. (17),
we have CA,opt = γ

√
1 + γ . However, it is contrary to

one’s expectation that CA,opt/CAD =
√

1 − γ 2 � 1, which
means that, on the optimal condition of teleported QFI, the
entanglement between Alice of Bob is not improved with the
help of post partial measurement. Therefore the enhancement
of QFI in scheme A could not be attributed to the improvement
of entanglement, but rather to the probabilistic nature of partial
measurement.

In contrast to the results in Refs. [39,40], our ultimate aim
is not to enhance the whole state fidelity but rather to improve
the information of a particular parameter encoded in the
teleported state (i.e., the QFI). Therefore, as one might expect,
improving the QFI teleportation is easier than enhancing the
fidelity. This intuition could be confirmed by comparing the
success probability. In Refs. [39,40], the success probability
of improving the fidelity is P A

fid = 1 − γ (3+γ )
2(1+γ ) , while in our

scenario the success probability of enhancing QFI is

P A
QFI = 1 − γ. (20)

Similarly, we define the success probability improvement P A
imp

and it is easy to check that

P A
imp ≡ P A

QFI − P A
fid = γ (1 − γ )

2(1 + γ )
� 0, (21)

as γ ∈ [0,1]. This means if we focus on teleporting the
information of a particular parameter, we have no need to
improve the teleportation fidelity of the whole state. Enhancing
the QFI teleportation would be more reasonable and economic
in this case.

B. Scheme B

Although a post partial measurement can enhance the QFI
teleportation, part of QFI is still lost in the decoherence
process. This is not our ultimate purpose. In this section, we
show that an improved scheme can completely circumvent the
decoherence and retrieve all the initial QFI. The key improve-
ment is that Alice performs a prior partial measurement (with
the measurement strength p) on the second qubit (Q2) before
she sends it to Bob. During their classical communications,
Alice has to send the results of Bell measurement and the
information of p to Bob. When Bob receives the results, he
firstly carries out a post partial measurement reversal (i.e.,
bit-flip, partial measurement and bit-flip) and then sequentially
performs the local unitary operations. Remarkably, we show
below that the prior partial measurement plays a significant
role in enhancing the QFI teleportation.

According to the circuit depicted in Fig. 1(b), the second
qubit (Q2) experiences three processes: prior partial mea-
surement, AD noise, and post partial measurement reversal.
The final entangled state could be represented as ρB =
M−1

0 [�(M0ρ0M
†
0)](M−1

0 )†, where M−1
0 = I1 ⊗ M−1

0 . The
following QFI teleportation is based on the above entangled
state and the final teleported state is ρB

out. The corresponding
three Bloch vector components are as follows:

rB
x = 2 sin θ cos φ

NB

√
p pB

r γ , (22)

rB
y = 2 sin θ sin φ

NB

√
p pB

r γ , (23)

rB
z = cos θ

NB

(
pB

r γ + p γ + pγpB
r

)
, (24)

with p = 1 − p and NB = pB
r + p γ + pγpB

r . The teleported
QFI is now given by

FB
φ = 4 sin2 θp pB

r γ

(NB)2
. (25)

The optimal post measurement strength pB
r could be obtained

by calculating the following conditions: ∂FB
φ /∂pB

r = 0 and
∂2FB

φ /(∂pB
r )2 < 0. The result turns out to be

pB,opt
r = 1 − p γ

1 + pγ
, (26)

and the maximally teleported QFI is

FB
φ = sin2 θ

1 + pγ
. (27)

Hence it can be seen clearly that Eqs. (26) and (27) reduce to
Eqs. (17) and (18) if we set p = 0 (i.e., without the prior partial
measurement). However, in contrast to scheme A, the most
intriguing result is that the existence of prior partial measure-
ment provides the possibility of dramatically enhancing the
teleported QFI. As shown in Fig. 3(a), with the combination of
prior and post partial measurement, the QFI could be greatly
recovered by adjusting the partial measurement strength p.
Particularly, when p → 1, FB

φ → sin2 θ without regard to the
strength of AD noise.

By comparing these two schemes, it is easy to conclude
that scheme B is much more efficient than scheme A on
enhancing the QFI teleportation. However, why does scheme
B work much better than scheme A with the assistance of a
prior partial measurement? The underlying physics could be
understood as follows: from Eq. (5), we know that the stronger
the partial measurement strength p, the closer the initial EPR
state is reversed towards the |00〉 state which is immune to AD
noise. In scheme A, no prior partial measurement is carried out
before the qubit goes through the AD noise; thus the amount of
reversed QFI highly depends on the decoherence strength γ .
While in the second scheme, a prior partial measurement
is performed to move the state towards |00〉, which does
not experience AD decoherence. Then an optimal partial
measurement reversal is applied to revert the qubit back to
the initial state. Therefore, the teleported QFI is not related
to the decoherence strength γ but depends on the prior partial
measurement strength p. Full QFI can entirely be recovered by
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FIG. 3. (a) Teleported QFI FB,opt
φ , FA,opt

φ , and FAD
φ as a function of dimensionless parameters p and γ . The three surfaces from top to

bottom correspond to scheme B, scheme A, and pure AD noise cases, respectively. Note that FA,opt
φ and FAD

φ are independent of p so they are
planes. The parameter θ has been set to π/2. (b) The success probability improvement P B

imp as a function of dimensionless parameters p and γ .

the combination of prior partial measurement and post partial
measurement reversal when p → 1.

The success probability of scheme B is given by

P B
QFI = (1 − p)(1 − γ ), (28)

which obviously decays with the increase of p and γ . Note
that when p → 1, P B

QFI → 0. This means that the complete
retrieval of QFI is attained at the expense of infinite low success
probability. Nevertheless, the price of recovering QFI is still
smaller than that of fidelity. As discussed in Ref. [39], the
success probability of fidelity teleportation is

P B
fid = γ p(2 + γp)

2(1 + γp)
. (29)

From Fig. 3(b), we note that P B
imp ≡ P B

QFI − P B
fid � 0, which

means the success probability of enhancing QFI is always
higher than that of enhancing fidelity, except for boundary
values of p and γ . This further confirms our conclusion that
enhancing QFI is more economic than enhancing fidelity.

C. Generalizations

In the above analyses, we have assumed that Alice is not
affected by noises. In fact, these two schemes are universal
for the case that both Alice and Bob suffer AD noise. Since
scheme A is a reduced version of scheme B, we only consider
the latter situation as an example. Here, Alice has to make
prior partial measurements separately on Q1 and Q2 and
then sends Q2 to Bob. It should be noted that Alice must
act on the post partial measurement before she does the
Bell measurement, while Bob should perform the post partial
measurement after he has received the results sent by Alice.
The final teleported state can be characterized by the following
Bloch vectors:

rx = 2 sin θ cos φ

N

√
p1p2γ 1γ 2pr1

pr2
, (30)

ry = 2 sin θ sin φ

N

√
p1p2γ 1γ 2pr1

pr2
, (31)

rz = cos θ

N

[
pr1

pr2
+ p1p2pr1

pr2
γ1γ2 + p1p2γ 1γ 2

−p1p2

(
γ1γ 2pr1

+ γ 1γ2pr2

)]
, (32)

with the normalized factor N = pr1
pr2

+ p1p2pr1
pr2

γ1γ2 +
p1p2γ 1γ 2 + p1p2(γ1γ 2pr1

+ γ 1γ2pr2
). With these equations

in hand, we can calculate the teleported QFI and optimize the
variables pr1 and pr2 . In order to simplify the calculations,
we assume that both qubit 1 and 2 interact with the same
environments, i.e., γ1 = γ2 = γ . Consequently, we have p1 =
p2 = p and pr1 = pr2 = pr. The final results reduce to p

opt
r =

1 − p γ /
√

1 + p2γ 2 and

Fopt
φ = sin2 θ

(
√

1 + p2γ 2 + pγ )2
. (33)

From the above equation, we note that given the strength of
AD noise γ , Fopt

φ achieves the minimum value with p = 0.
Namely, no prior partial measurement is performed, which
corresponds to the method of scheme A. Moreover, the mini-
mum value of Fopt

φ is still larger than the pure AD noise case,
which indicates that partial measurement indeed can be used
for enhancing QFI teleportation, even when both Alice and
Bob are subject to AD noise. If p �= 0, i.e., prior partial mea-
surements are carried out before the qubits undergo AD noise,
the teleported QFI is further enhanced. Particularly, when
p → 1, the initial QFI is almost entirely teleported to Bob.

IV. DISCUSSION AND CONCLUSIONS

Before concluding, we point out that our proposals are
entirely feasible with the present experimental techniques.
The standard quantum teleportation has already been realized
from photonic systems to trapped ion and atomic systems. The
techniques of partial measurement have also developed rapidly
in recent years [36,38,46]. As demonstrated in Ref. [38], the
partial measurements can be implemented with a Brewster-
angle glass plate (BAGP) for photon-polarization qubits, be-
cause the BAGP probabilistically rejects vertical polarization
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(|1〉 state) and completely transmits horizontal polarization (|0〉
state), which functions exactly as the measurement depicted by
Eqs. (5) and (6). On the other hand, the post weak measurement
reversal could be realized by sequential bit-flip (a half wave
plate for polarization qubit), partial measurement, and bit-flip.
Alternatively, the partial measurements could be described
with projective measurements in a larger Hilbert space that
includes an “ancilla qubit” [31,32]. Hence, the performance
of partial measurement on the target qubit is equivalent to
the action of von Neumann projective measurement on the
ancilla qubit which is previously coupled to it. Motivated
by this guideline, partial measurements can be realized in
any quantum system and are not restricted to photon and
superconducting qubits.

In summary, we propose the enhancement of QFI tele-
portation under decoherence utilizing partial measurements.

Thanks to the probabilistic nature of partial measurements, the
teleported QFI could be greatly enhanced with the assistance of
post partial measurement. Remarkably, we further show that
the combined action of prior and post partial measurement
can even completely keep QFI from AD noise. In addition,
we demonstrate that the price of enhancing teleported QFI
is smaller than that of improving fidelity. Our work extends
the ability of partial measurements as a technique in various
quantum information processing tasks, particularly when the
research objects are subject to AD noise.
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