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The geometric measure of entanglement for pure states has attracted much attention. On the other hand, the
spectral theory of non-negative tensors (hypermatrices) has been developed rapidly. In this paper, we show how
the spectral theory of non-negative tensors can be applied to the study of the geometric measure of entanglement
for pure states. For symmetric pure multipartite qubit or qutrit states an elimination method is given. For
symmetric pure multipartite qudit states, a numerical algorithm with randomization is presented. We also show
that a nonsymmetric pure state can be augmented to a symmetric one whose amplitudes can be encoded in a
non-negative symmetric tensor, so the geometric measure of entanglement can be calculated. Several examples,
such as mGHZ states, W states, inverted W states, qudits, and nonsymmetric states, are used to demonstrate
the power of the proposed methods. Given a pure state, one can always find a change of basis (a unitary
transformation) so that all the probability amplitudes of the pure state are non-negative under the new basis.
Therefore, the methods proposed here can be applied to a very wide class of multipartite pure states.
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I. INTRODUCTION

Quantum entanglement is regarded as one of the most
essential resources in quantum information [1], and the
geometric measure is one of the most important measures
of quantum entanglement [2–10]. Geometric measure was
proposed by Shimony [2] for bipartite systems and later
generalized to multipartite systems by Wei and Goldbart [4],
and has become one of the widely used entanglement measures
for multiparticle cases [5–7,11]. Among them, the study on
pure symmetric states with non-negative amplitudes attracted
much attention recently. Wei and Goldbart conjectured that
the nearest separable state for a symmetric state can be chosen
to be symmetric [[4], Sec. II A]. Independently, Wei and
Severini [12] and Hayashi, Markham, Murao, Owari, and
Virmani [6] proved the conjecture for the special case of
symmetric states with non-negative amplitudes and showed
that the corresponding nearest separable state can be chosen
with non-negative amplitudes. Hübener, Kleinmannn, Wei,
González-Guillén, and Gühne [5] proved the conjecture
completely. The computation of symmetric pure states with
non-negative amplitudes was carried out by Wei and Goldbart
[4] for some ground states, and systematically by Chen, Xu,
and Zhu [7] for symmetric pure multipartite qubit states.
For general evaluations of the geometric entanglement for
symmetric pure states, please see Orús, Dusuel, and Vidal
[8], Chen, Xu, and Zhu [7], and references therein.

The central problem of the computation of the geometric
measure of entanglement is to find the largest entanglement
eigenvalue [4,11,13]. Mathematically, the quantum eigenvalue
problem is a generalization of the singular value problem
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of a complex matrix [11,13]. There have been several gen-
eralizations of singular values or eigenvalues of matrices
to tensors (hypermatrices) recently [14–16]. These form the
spectral theory of tensors [17]. In this paper we investigate the
geometric measure of entanglement for pure states by means of
the spectral theory of non-negative tensors. Given a pure state,
one can always find a change of basis (a unitary transformation)
such that all the amplitudes of the pure state are non-negative
under the new basis. Therefore, without loss of generality, in
this paper we focus on the geometric measure of entanglement
for non-negative pure states.

To be specific, we establish a connection between the
concept of Z eigenvalues of tensors [14] and the quantum
eigenvalue problem. We show that the geometric measure of
entanglement of a symmetric pure state with non-negative am-
plitudes is equal to the Z-spectral radius of the corresponding
non-negative tensor (Theorem 1). Based on this connection, a
method based on variable elimination [18,19] for computing
the geometric measure of entanglement for symmetric pure
multipartite qubit or qutrit states with non-negative amplitudes
is given. For the qubit case, it is an alternative to the method
proposed in [[7], Sec. II A]; see Examples 1–3 in Sec. IV A.
For the qutrit case, it is new and gives an analytical derivation
of the geometric measure of entanglement for such states; see
Example 4 in Sec. IV B.

For symmetric pure multipartite qudit states with non-
negative amplitudes [20–22], a numerical algorithm with
randomization (Algorithm 3) is presented. The method is
based on the shifted higher-order power method (Algorithm 2)
analyzed in [23]. We show that if the initial points are randomly
chosen from the intersection of the positive orthant and the unit
sphere, then with a positive probability the algorithm may find
the geometric measure of entanglement for qudits. Example 5
in Sec. IV C demonstrates the proposed algorithm.

Given a nonsymmetric pure state, one can encode its
amplitudes in a nonsymmetric tensor, while the latter can be
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augmented to become a symmetric one for which the geometric
measure of entanglement can be computed. We illustrate this
by an example in Sec. V, Example 6. Therefore, the numerical
methods established above are applicable to a much larger
class of pure states.

The rest of this paper is organized as follows. The
definitions and some basic facts of the geometric measure of
entanglement and the Z eigenvalues of tensors are presented
as preliminaries in Sec. II. In Sec. III, a connection between
the geometric measure of entanglement of a symmetric pure
state with non-negative amplitudes and the theory of the
Z-spectral radius of a non-negative tensor is established. The
computational issues are discussed in Sec. IV. In Sec. V, a
connection between the geometric measure of entanglement
for nonsymmetric pure states and the spectral theory of
non-negative multilinear forms is established. The paper is
concluded with some final remarks in Sec. VI.

Notation. Denote by Rn
+ the non-negative orthant of

Rn,Rn
++ the interior of Rn

+, and Sn−1 the unit sphere in Rn.

II. PRELIMINARIES

In this section, some preliminary results of the geometric
measure of quantum entanglement of pure states and Z

eigenvalues of tensors (hypermatrices) are briefly reviewed.

A. Geometric measure

An m-partite pure state |�〉 of a composite quantum system
can be regarded as a normalized element in a tensor product
Hilbert space H = ⊗m

k=1 Hk , where the dimension of Hk is
dk , (k = 1, . . . ,m). A separable pure m-partite state |�〉 ∈ H
can be described by a product state |�〉 = ⊗m

k=1 |φ(k)〉 with
|φ(k)〉 ∈ Hk and ‖|φ(k)〉‖ = 1, (k = 1, . . . ,m). A state is called
entangled if it is not separable.

For a given m-partite pure state |�〉 ∈ H, denote the
maximal overlap by

G� � max
|�〉=⊗m

k=1 |φ(k)〉∈H
|〈�|�〉|. (1)

Then the geometric measure of entanglement for |�〉 is defined
as

EG(|�〉) � 1 − G�.

Clearly, the larger the geometric measure EG(|�〉) is, the more
entangled the state |�〉 is.

An alternative form of geometric measure,

EG(|�〉) = − log2 max
|�〉=⊗m

k=1 |φ(k)〉∈H
|〈�|�〉|2,

has also been widely used.
It can be shown that the maximal overlap in (1) is equal to

the largest entanglement eigenvalue λ, see e.g., [[4], Eq. (6)],
satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈�|
(⊗

j �=k

|φ(j )〉
)

=λ〈φ(k)|,(⊗
j �=k

〈φ(j )|
)

�〉 =λ|φ(k)〉,

‖|φ(k)〉‖ =1, k = 1, . . . ,m.

(2)

A state |�〉 ∈ H is called non-negative if there exist
orthonormal bases {|e(k)

i 〉}dk

i=1 for Hk (k = 1, . . . ,m) such that
ai1...im � 〈�|(|e(1)

i1
〉 ⊗ · · · ⊗ |e(m)

im
〉) � 0 for all ij = 1, . . . ,dj

and j = 1, . . . ,m. Moreover it is obvious that there always
exists a unitary transformation (equivalently, change of basis)
that transforms a given pure state |�〉 ∈ H into a non-negative
one. Thus, in this paper we focus on the geometric measure of
entanglement for non-negative states.

The d1 × · · · × dm multiway array consisting of the ampli-
tudes ai1...im for the pure state |�〉 is denoted by A� . Clearly,
when H1 = · · · = Hm, A� is symmetric if and only if |�〉 is
permutation symmetric. The geometric measure of symmetric
states attracted much attention recently [5–8].

When |�〉 is symmetric, (1) reduces to

G� = max
|�〉=|φ〉⊗m∈H

|〈�|�〉|. (3)

That is, the nearest separable state can be a symmetric one;
see, e.g., [[5], Eq. (8)] and [12].

B. Z eigenvalues of a tensor (hypermatrix)

For a real tensor (or hypermatrix) T of order m and
dimension n with m,n � 2, we mean a multiway array
consisting of numbers ti1···im ∈ R for all ij ∈ {1, . . . ,n} and
j ∈ {1, . . . ,m}. The set of all mth order n-dimensional real
tensors is denoted by Rm,n. Given a vector x ∈ Cn, define
T xm−1 as an n-dimensional vector with the ith element∑n

i2,...,im=1 tii2···imxi2 · · · xim ,i = 1, . . . ,n. Z eigenvalues of ten-
sors were introduced by Qi [14]. Given T ∈ Rm,n, a number
λ ∈ R is called a Z eigenvalue of T , if it, together with a
nonzero vector x ∈ Rn, satisfies{

T xm−1 = λx,

xT x = 1.
(4)

The vector x ∈ Rn in (4) is called an associated Z eigenvector
of the Z eigenvalue λ, and (λ,x) is called a Z eigenpair.
Obviously, λ = ∑n

i1,...,im=1 ti1···imxi1 · · · xim , denoted T xm, for
a Z eigenpair (λ,x) of T . A tensor T ∈ Rm,n is called
non-negative, if ti1···im � 0 for all ij ∈ {1, . . . ,n} and j ∈
{1, . . . ,m}.

Many interesting results on Z eigenvalues of tensors were
obtained recently [14,24–26], especially, for non-negative
tensors. These results give insights to the behaviors of the Z

eigenvalues and powerful numerical algorithms for computing
the Z-spectral radius (to be defined in the next section) of a
non-negative tensor.

III. CONNECTION: SYMMETRIC CASE

In this section, we establish a connection between the
geometric measure of entanglement for a symmetric pure state
with non-negative amplitudes and the Z-spectral radius of a
non-negative tensor. Based on this connection, the computation
of the geometric measure for such states is investigated.

Let us start from an important property of symmetric states
with non-negative amplitudes. Let |�〉 ∈ H be symmetric and
non-negative, then it is found in [5,6,12] that the maximal
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overlap G� can be computed by means of

G� = max
x∈Rn+∩Sn−1

A�xm. (5)

To establish the connection, we first present some basic
results of Z eigenvalues of non-negative tensors. The following
concept is important for non-negative tensors. The tensor T =
(ti1i2...im) is called reducible if there exists a nonempty proper
index subset I ⊂ {1, . . . ,n} such that

ti1i2...im = 0, ∀i1 ∈ I, ∀i2, . . . ,im /∈ I.

If T is not reducible, then T is called irreducible. Denote by
Z(T ) the set of all non-negative Z eigenvalues of tensor T and
�(T ) � max{|λ| | λ ∈ Z(T )} the Z-spectral radius. Some of
the properties of Z eigenvalues are summarized below; more
details can be found in, e.g., [24,25]. Let T ∈ Rm,n. Then

(a) if T is symmetric, then it has at most (m−1)n−1
m−2 Z

eigenvalues;
(b) if T is non-negative, then there exists a non-negative Z

eigenpair (λ0,x(0)), i.e., λ0 � 0 and x(0) ∈ Rn
+ ∩ Sn−1. If T is

furthermore irreducible, then λ0 > 0 and x(0) ∈ Rn
++;

(c) if T is non-negative and symmetric, then �(T ) ∈ Z(T )
and

�(T ) = max
x∈Sn−1

|T xm| = max
x∈Rn+∩Sn−1

T xm. (6)

We are now ready to establish the connection.
Theorem 1. If |�〉 ∈ H is symmetric and non-negative,

then the maximal overlap for the geometric measure of
entanglement for |�〉 ∈ H is equal to the Z-spectral radius
of the corresponding tensor A� , that is,

G� = �(A�). (7)

Given a symmetric state |�〉 with non-negative amplitudes,
a symmetric non-negative tensor A� can be defined accord-
ingly. Then Theorem 1 tells us that the geometric measure
equals 1 − �(A�). In terms of this important connection, in
the next two sections we compute geometric measures for
multipartite qubits, qutrits, and qudits.

IV. COMPUTATION

Theorem 1 above shows that the geometric measure of
entanglement of symmetric pure states with non-negative
amplitudes can be computed through finding the Z-spectral
radii of the underlying non-negative tensors. In this subsection,
based on Theorem 1, the computation of the geometric measure
of entanglement of such states is discussed.

A. Multipartite qubit states

For symmetric pure multipartite qubit states with non-
negative amplitudes, [[7], Sec. II A] converts the geometric
measure G� into a polynomial rational fraction in one variable.
By the derivatives, G� can be computed. Alternatively,
according to Theorem 1, G� can be obtained by finding the
Z-spectral radius of the corresponding tensor. By Algorithm 1
in the next subsection one can calculate the maximal overlap
G� for an arbitrary multipartite qutrit state. Mathematically,
the qubit case is a special case of the qutrit case. Therefore
a simplified version of Algorithm 1 can be used to find the
maximal overlap G� for the multipartite qubit case. However,

to avoid repetition the specific algorithm for the qubit case is
not given here. Instead, we use the well-known GHZ, W , and
inverted-W states to illustrate the effectiveness of the method.

As in [4], for 0 � k � m define

|S(m,k)〉 :=
√

k!(m − k)!

m!

∑
τ∈Gm

∣∣∣∣τ (0 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
m−k

)

〉
;

here Gm is the symmetric group on m elements.
Example 1. The mGHZ state is defined as

|mGHZ〉 = [|S(m,0)〉 + |S(m,m)〉]/
√

2.

Under the basis {|0〉,|1〉}, we have AmGHZ ∈ Rm,2 and the Z

eigenpairs are(
1√
2
,(1,0)

)
,
(

1√
2
,(0,1)

)
, and

( 1√
2

m−1 ,
(

1√
2
, 1√

2

))
and five more when m is odd:(

1√
2
,(−1,0)

)
,
(

1√
2
,(0, − 1)

)
,
( 1√

2
m−1 ,

(− 1√
2
, 1√

2

))
,

( 1√
2

m−1 ,
(

1√
2
, − 1√

2

))
, and

( 1√
2

m−1 ,
(− 1√

2
, − 1√

2

))
.

We have, G(mGHZ) = �(AmGHZ) = 1√
2

which agrees with
that in [[4], Sec. II A], and it can be attained with non-negative
Z eigenvectors. The corresponding nearest separable state is
|�〉 = |φ〉⊗m with |φ〉 = |0〉 or |1〉.

Example 2. In this example, the W state for a three-partite
qubit setting is considered. The W state is defined as

|W 〉 = |S(3,2)〉 = (|001〉 + |010〉 + |100〉)/
√

3.

Under the basis {|0〉,|1〉}, we have AW ∈ R3,2 and the Z

eigenpairs are

(0,(0,1)),
( 2

3 ,
(√

2
3 ,

√
1
3

))
,
( 2

3 ,
(−√ 2

3 ,

√
1
3

))
,

(− 2
3 ,
(√

2
3 ,−

√
1
3

))
, and

(− 2
3 ,
(−√ 2

3 ,−
√

1
3

))
.

Again, G(AW ) = �(AW ) = 2
3 which agrees with that in [[4],

Sec. II A]. The corresponding nearest separable state can be
obtained by a non-negative Z eigenvector, that is |�〉 = |φ〉⊗3

with |φ〉 =
√

2
3 |0〉 +

√
1
3 |1〉.

Example 3. In this example, the inverted-W state for a
three-partite qubit setting is considered. It is defined as

|W̃ 〉 = |S(3,1)〉 = (|110〉 + |101〉 + |011〉)/
√

3.

Similarly, we have AW̃ ∈ R3,2. After switching x1 and x2,
the Z-eigenvalue equations (4) of W̃ become that for W .
Consequently, G(W̃ ) = �(AW̃ ) = 2

3 by Example 2 with the
corresponding nearest separable state being |�〉 = |φ〉⊗3 with

|φ〉 =
√

1
3 |0〉 +

√
2
3 |1〉.

B. Multipartite qutrit states

We consider multipartite qutrit states in this part. The sepa-
rability and measure of qutrit entanglement were discussed by
Caves and Milburn [20], and Hassan and Joag [22].

LetH1 = · · · = Hm with d1 = · · · = dm = 3. DenoteH :=⊗m
k=1 Hk . Given a symmetric pure state |�〉 ∈ H, if |�〉 is

non-negative, i.e., there exists a basis {|ei〉}3
i=1 such that the

tensor A� is non-negative, then by Theorem 1, G� is equal to
the Z-spectral radius of the tensor A� .
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Denote by ai1i2...im the (i1,i2, . . . ,im)th element of the
tensor A� ; we have that the system of the Z-eigenvalue
equations (4) of the tensor A� is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i2,...,im=1

a1i2...imxi2 · · · xim = λx1,

3∑
i2,...,im=1

a2i2...imxi2 · · · xim = λx2,

3∑
i2,...,im=1

a3i2...imxi2 · · · xim = λx3,

x2
1 + x2

2 + x2
3 = 1.

(8)

Note that λ = A�x3 for any Z eigenpair (λ,x) of A� .
By means of a variable elimination method, see e.g., [[18],
Theorem 3] and [[19], Appendix], we propose the following
algorithm.

Algorithm 1 (Symmetric multipartite qutrit states with non-
negative amplitudes).

Step 0. Input data A� with elements ai1i2...im . Set �(A�) as
the empty set.

Step 1. If a21...1 = a31...1 = 0, then λ = a11...1 is a Z

eigenvalue with a Z eigenvector x := (1,0,0). In this case,
put λ = a11...1 into �(A�).

Step 2. In this step, we consider Z eigenvectors with x3 = 0
but x2 �= 0. If x3 = 0 and x2 �= 0, then (8) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑
i2,...,im=1

a1i2...imxi2 · · · xim = λx1,

2∑
i2,...,im=1

a2i2...imxi2 · · · xim = λx2,

2∑
i2,...,im=1

a3i2...imxi2 · · · xim = 0,

x2
1 + x2

2 = 1.

(9)

(i) Multiply the first equation of (9) by x2 and the second
by x1, then we get

x2

2∑
i2,...,im=1

a1i2...imxi2 · · · xim = x1

2∑
i2,...,im=1

a2i2...imxi2 · · · xim .

Divide it by xm
2 , the third equation of (9) by xm−1

2 , and set
t = x1

x2
. Then, we get two polynomial equations in variable t

as f (t) = g(t) and h(t) = 0.
(ii) For all non-negative t such that both f (t) − g(t) =

0 and h(t) = 0, we have that x := ( t√
1+t2 ,

1√
1+t2 ,0) is a

Z eigenvector of A� . The corresponding Z eigenvalue is
λ = A�x3. Put these λ into �(A�).

Step 3. In this step, we consider Z eigenvectors with x3 �= 0.
If x3 �= 0, then we have the following:

(i) Multiply the first equation of (8) by x3 and the third by
x1, then we get

x3

3∑
i2,...,im=1

a1i2...imxi2 · · · xim = x1

3∑
i2,...,im=1

a3i2...imxi2 · · · xim .

Similarly, we have

x3

3∑
i2,...,im=1

a2i2...imxi2 · · · xim = x2

3∑
i3,...,im=1

a3i2...imxi2 · · · xim .

Divide them by xm
3 respectively, and set u = x1

x3
and v = x2

x3
.

Then, we get two polynomial equations in variables u and v

as f (u,v) = 0 and g(u,v) = 0.
(ii) Write them in univariate polynomial equations in the

variable u with coefficients as univariate polynomials in the
variable v as

f (u,v) = a0(v)um + a1(v)um−1 + · · · + am(v)

= 0,

g(u,v) = b0(v)um−1 + b1(v)um−2 + · · · + bm−1(v)

= 0. (10)

(iii) Form the (2m − 1) × (2m − 1) polynomial matrix (the
Sylvester matrix [27]) in the variable v as

M(v) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0(v) a1(v) · · · am(v)
0 a0(v) a1(v) · · ·

. . .
. . .

. . .
0 0 0 0

b0(v) b1(v) · · · bm−1(v)
0 b0(v) b1(v) · · ·

. . .
. . .

. . .
0 0 0 0

0 0 · · · 0
am(v) 0 · · · 0

. . .
a0(v) a1(v) · · · am(v)

0 0 · · · 0
bm−1(v) 0 · · · 0

. . .
b0(v) b1(v) · · · bm−1(v)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(iv) Compute the determinant of the matrix M(v) as a
univariate polynomial in the variable v. Denote it by d(v).

(v) For any non-negative v such that d(v) = 0 and then
any non-negative u such that (u,v) being a solution for (10),
x := ( u√

1+u2+v2 ,
v√

1+u2+v2 ,
1√

1+u2+v2 ) is a Z eigenvector of A� .

The corresponding Z eigenvalue is λ = A�x3. Put all such λ

into �(A�).
By Steps 1–3 of Algorithm 1 and the Sylvester theorem

[27] used in Step 3, all the non-negative Z eigenvalues can be
found. We have the following result:

Theorem 2. If |�〉 ∈ H = ⊗m
k=1 Hk is a symmetric non-

negative qutrit state, then �(A�) ⊆ Z(A�), and

G� = �(A�) = max{λ | λ ∈ �(A�)},
where the set �(A�) is generated by Algorithm 1 and Z(A�)
is the set of non-negative Z eigenvalues of A� as defined in
Sec. III.

This result gives an analytic approach to computing
the maximal overlap G� (hence the geometric measure of
entanglement) in the qutrit case.
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Example 4. In this example, a general GHZ state [[22],
Eq. (9)] for a three-partite qutrit setting is considered. It is
defined as

|�〉 = α|111〉 + β|222〉 + γ |333〉, α2 + β2 + γ 2 = 1.

Here {|1〉,|2〉,|3〉} is the basis for each qutrit. We see that
A� ∈ R3,3 is non-negative and symmetric when α,β,γ � 0.
In this situation, the Z-eigenvalue equations (8) become

αx2
1 = λx1, βx2

2 = λx2, γ x2
3 = λx3,

and x2
1 + x2

2 + x2
3 = 1.

When αβγ = 0, the Z spectra can be computed through
Theorem 1 in [18]. We mainly consider the nondegenerate
case when αβγ > 0. By Algorithm 1, we can compute all the
non-negative Z eigenpairs as

(α,(1,0,0)), (β,(0,1,0)), (γ,(0,0,1));(
αβ√

α2 + β2
,

(
β√

α2 + β2
,

α√
α2 + β2

,0

))
,

(
αγ√

α2 + γ 2
,

(
γ√

α2 + γ 2
,0,

α√
α2 + γ 2

))
,

(
βγ√

β2 + γ 2
,

(
0,

γ√
β2 + γ 2

,
β√

β2 + γ 2

))
,

(
αβγ

τ
,

(
βγ

τ
,
αγ

τ
,
αβ

τ

))
with τ :=

√
α2β2 + β2γ 2 + α2γ 2.

We see that G� = �(A�) = max{α,β,γ }. The correspond-
ing nearest separable state is |�〉 = |φ〉⊗3 with |φ〉 := |1〉 when
G� = α,|2〉 when G� = β, and |3〉 when G� = γ .

C. Multipartite qudit states

In this subsection we study how to compute the geometric
measure of entanglement of a given symmetric multipartite
qudit (n > 3) |�〉 with non-negative amplitudes. Denote the
corresponding tensor by A� .

The following shifted higher-order power method is pro-
posed in [23] and further studied in [28].

Algorithm 2 (shifted higher-order power method (SHOPM)
for symmetric tensors A ∈ Rm,n).

Step 0. Initialization: choose x(0) ∈ Rn
++ ∩ Sn−1 and α > 0.

Set k := 0 and λ0 := A(x(0))m.
Step 1. Compute

x̂(k+1) := A(x(k))m−1 + αx(k),

x(k+1) := x̂(k+1)

‖x̂(k+1)‖ ,

λk+1 := A(x(k+1))m.

Step 2. If A(x(k+1))m−1 = λk+1x(k+1), stop. Otherwise, set
k := k + 1, go to Step 1.

Let A ∈ Rm,n be non-negative and symmetric. Let α >

(m − 1)�(A). Then by [[23], Theorem 4.4], the properties of
symmetric non-negative tensors outlined in Section III, and
[5], it can be shown that the iterates (λk,x(k)) generated by
Algorithm 2 have the following properties.

(a) The sequence {λk} is nondecreasing and converges to a
Z eigenvalue λ∗ � 0.

(b) The sequence {x(k)} converges a Z eigenvector of A
associated with λ∗.

Algorithm 2 enables us to find Z eigenpairs of a non-
negative irreducible symmetric tensor A. The next algorithm
helps us to find the Z-spectral radius.

Algorithm 3 (an algorithm for the Z-spectral radius of a
non-negative irreducible symmetric tensor A).

Step 0. Let k := 0 and compute the Z eigenvalue λ0 of A
through Algorithm 2. Set A := A

λ0
.

Step 1. Choose N initial points in Rn
++ ∩ Sn−1. For the

ith initial point, compute the Z eigenvalue μi of A through
Algorithm 2. Let μ := max1�i�N μi .

Step 2. If μ = 1, denote λ := ∏
0�j�k λj , and terminate

the algorithm. Otherwise, set λk+1 := μ,A := A
λk+1

, and k :=
k + 1; go to Step 1.

By Algorithm 3, if the number of the initial size N is
very big, then with big probability the Z-spectral radius can
be found, hence the maximal overlap can be obtained with
big probability. More details of the convergence analysis of
Algorithm 3 is given in the Appendix.

Example 5. Given a multipartite qudit state |�〉 of the form

|�〉 = 1√
4

3∑
i=0

|i〉 ⊗ · · · ⊗ |i〉︸ ︷︷ ︸
4

. (11)

Employing Algorithm 3 we get the numerical value 0.5. So the
maximal overlap G� � 0.5. Interestingly, for this example, by
solving the system of Z-eigenvalue equations (4) directly one
may get

0.5x3
1 = λx1, 0.5x3

2 = λx2, 0.5x3
3 = λx3, 0.5x3

4 = λx4.

Because ‖x‖ = 1, there is at least one xi such that 0 < i � 1.
Then λ = 0.5x2

i , that is λ � 0.5. Therefore G� = 0.5 attained
at Z eigenvectors (1,0,0,0), (0,1,0,0), (0,0,1,0), or (0,0,0,1).

V. CONNECTION: NONSYMMETRIC CASE

In this section, we extend the results in the last section to
nonsymmetric pure states with non-negative amplitudes. To
this end, we need the spectral theory for real tensors; see e.g.,
[15,28,29]. We first present several properties of non-negative
real tensors.

Let A = (ai1...im ) be a d1 × · · · × dm real tensor (hyperma-
trix). σ ∈ R is called a singular value of A, if it, together with
x(1) ∈ Rd1 ∩ Sd1−1, . . . ,x(m) ∈ Rdm ∩ Sdm−1, satisfies∑

1�ij �dj , j �=k

ai1...imx(1)
i1

· · · x(j−1)
ij−1

x(j+1)
ij+1

. . . x(m)
im

= σx(k)
ik

, (12)

∀ik = 1, . . . ,dk, ∀k = 1, . . . ,m. The vector x(k) is called the
mode-k singular vector associated with the singular value σ

[15,28]. Denote the largest singular value of A by σ (A). Then,

σ (A) = max
x(1)∈Sd1−1,...,x(m)∈Sdm−1

Ax(1) · · · x(m). (13)

Moreover, if A is non-negative, then the mode-k singular
vectors x(k) associated with σ (A) can be chosen to be non-
negative [15,28].
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Next we connect the geometric measure of entanglement
of a nonsymmetric non-negative pure state |�〉 to the largest
singular value of a nonsymmetric non-negative tensor A. If
|�〉 ∈ H is non-negative with the underlying orthonormal
bases {|e(k)

i 〉}dk

i=1 for k = 1, . . . ,m, then |�〉 = ⊗m
k=1 |φ(k)〉 in

(1) can be chosen with 〈e(k)
i |φ(k)〉 � 0 for all i = 1, . . . ,dk and

k = 1, . . . ,m. Consequently,

G� = max
x(1)∈Rd1+ ∩Sd1−1,...,x(m)∈Rdm+ ∩Sdm−1

A�x(1) · · · x(m).

On the basis of the above analysis, the following result
provides the connection between the geometric measure of
nonsymmetric pure states with non-negative amplitudes and
the spectral theory of nonsymmetric non-negative tensors.

Theorem 3. If |�〉 ∈ H is non-negative, then

G� = σ (A�).

The remaining problem is how to compute the largest
singular value of a nonsymmetric non-negative tensor? To this
end, symmetric embedding introduced in [28] is needed. Let
A = (ai1...im ) be a d1 × · · · × dm real tensor and SA be the
symmetric embedding of tensor A [[28], Sec. 2.2]. SA is an
mth order N = ∑m

k=1 dk-dimensional symmetric tensor. For
example, given a matrix A ∈ Rn1×n2 ,

SA :=
[

0 A

AT 0

]
∈ R(n1+n2)×(n1+n2)

is its symmetric embedding.
We have the following result:
Theorem 4. Let A = (ai1...im ) be a d1 × · · · × dm real tensor.

Then, σ is a nonzero singular value of A if and only if m!√
mm

σ

is a nonzero Z eigenvalue of SA.
The proof of Theorem 4 is outlined as follows. The “only if”

part follows from [[28], Theorem 4.7]. We show the “if” part
in the following. Now, suppose that y := (y(1)T , . . . ,y(m)T )T ∈
RN ∩ SN−1 with y(k) ∈ Rdk for each k is a Z eigenvector of SA
corresponding to Z eigenvalue λ �= 0. Suppose, without loss
of generality, that y(1) �= 0. By the definition of SA, we have

λ(y(1))T y(1) =
d1∑

i1=1

y(1)
i1

⎡⎣ N∑
i2,...,im=1

(SA)i1i2...imyi2 · · · yim

⎤⎦
= (m − 1)!Ay(1) · · · y(m)

=
dk∑

ik=1

y(k)
ik

⎡⎣ ∑
1�ij �N, j �=k

(SA)i1i2...imyi1 · · · yim

⎤⎦
= λ(y(k))T y(k)

for all k = 2, . . . ,m. Consequently, (y(k))T y(k) = 1
m

for all k =
1, . . . ,m. Moreover,

N∑
i2,...,im=1

(SA)i1i2...imyi2 · · · yim

= (m − 1)!
d2∑

i2=1

· · ·
dm∑

im=1

ai1i2...imy(2)
i2

· · · y(m)
im

= λy(1)
i1

, ∀i1 = 1, . . . ,d1.

Let x(k) := √
my(k) for all k = 1, . . . ,m. We then have

(m − 1)!
1√

mm−1

d2∑
i2=1

· · ·
dm∑

im=1

ai1i2...imx(2)
i2

· · · x(m)
im

= λ
1√
m

x(1)
i1

, ∀i1 = 1, . . . ,d1.

Similarly, we have

(m − 1)!
1√

mm−1

∑
1�ij �dj , j �=k

ai1...imx(1)
i1

· · · x(m)
im

= λ
1√
m

x(k)
ik

, ∀ik = 1, . . . ,dk, ∀k = 2, . . . ,m.

This, together with (12), implies that
√

mm

m! λ is a nonzero
singular value of A. The proof is complete.

Let A = (ai1...im ) be a d1 × · · · × dm real tensor. By Theo-

rem 4, it has at most (m−1)N −1
m−2 nonzero singular values, here

N = ∑m
k=1 dk . Moreover, if |�〉 ∈ H is non-negative, then

G� = σ (A�) =
√

mm

m!
�(SA�

).

So, the calculation of the geometric measure of entanglement
for nonsymmetric pure states with non-negative amplitudes
can be accomplished by converting it to the symmetric case.
Consequently, the numerical methods in the previous section
are applicable.

Example 6. The nonsymmetric state

|�〉 =
√

1
3 |001〉 +

√
2
3 |100〉

has an associated tensor A� who has two nonzero entries:

a1,1,2 =
√

1
3 and a2,1,1 =

√
2
3 . We have

G� = σ (A�) =
√

mm

m!
�(SA�

) =
√

33

3!
× 0.9423 = 0.8165,

with the corresponding separable state

|�〉 = |1〉 ⊗ |0〉 ⊗ |0〉.
Clearly, this nearest product state is not symmetric.

VI. CONCLUSION

We have established a connection between the geometric
measure of entanglement for pure states and the spectral
theory of non-negative tensors. Especially, we have shown that
the geometric measure of entanglement of a symmetric pure
state with non-negative amplitudes can be expressed in terms
of the Z-spectral radius of the corresponding non-negative
symmetric tensor, and the geometric measure of entanglement
of a nonsymmetric pure state with non-negative amplitudes
is equal to the largest singular value of the underlying
non-negative tensor. By means of symmetric embedding, the
nonsymmetric case can be converted to the symmetric case.
Several algorithms have been proposed. Examples have been
used to illustrate the effectiveness of the proposed methods.
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APPENDIX: ON THE CONVERGENCE OF ALGORITHM 3

To establish the convergence of Algorithm 3 we prove the
following lemma first.

Lemma 1. Let A ∈ Rm,n be non-negative, irreducible, and
symmetric. For �(A), if x∗ is a corresponding Z eigenvector,
then there exists ε > 0 such that for any x(0) ∈ Rn

++ ∩ {x ∈
Sn−1 | ‖x − x∗‖ � ε}, the sequence {λk} generated by Algo-
rithm 3 with α > (m − 1)�(A) converges to �(A).

Proof. Recall that Z(A) is the set of all non-negative Z

eigenvalues of tensor A. If Z(A) is the singleton {�(A)}, then
the result follows immediately from Algorithm 2 with arbitrary
ε > 0. Now, suppose that the cardinality of Z(A) is larger
than 1. Denote by λ2(A) := max {λ | λ ∈ Z(A) \ {�(A)}},
and κ := �(A)−λ2(A)

2 . By Algorithm 2, we see that the open
set {β ∈ R | |β − �(A)| < κ} disjoints with the union of
the finitely many open sets {β ∈ R | |β − λ| < κ} for λ ∈

Z(A) \ {�(A)}. Since λ0 := A(x(0))m and �(A) := A(x∗)m,
we can choose ε > 0 such that |λ0 − �(A)| < κ for any
x(0) ∈ Rn

++ ∩ {x ∈ Sn−1 | ‖x − x∗‖ � ε}. Consequently, this,
together with Eq. (6), implies that �(A) − κ < λ0 � �(A).
By Algorithm 2, {λk} is nondecreasing and converges to a Z

eigenvalue λ∗ of A. As we can see, the only possibility is that
λ∗ = �(A). The proof is complete.

If the N initial points in Algorithm 3 are chosen such
that there is at least one point in the set {x ∈ Rn

++ ∩ Sn−1 |
‖x − x∗‖ � ε} with ε being determined by Lemma 1, then we
say such a set of initial points satisfies the so-called absolutely
convergent condition (ACC for short). We have the following
result.

Theorem 5. Let A ∈ Rm,n be non-negative, irreducible, and
symmetric. For α > (m − 1)�(A), if the set of N initial points
satisfy the ACC assumption, then Algorithm 3 is terminated
with k = 1 and λ = �(A). In general, the sequence {λk}
converges to a positive Z eigenvalue of A.

Proof. The results follow from Algorithm 2, Lemma 1, and
the above ACC assumption.

So, if we uniformly randomly choose initial points inRn
++ ∩

Sn−1, then with positive probability Algorithm 3 finds the
Z-spectral radius. By Theorem 5 and the ACC assumption,
we see that the probability that Algorithm 3 converges to the
Z-spectral radius under the uniformly random framework is
determined by ε in Lemma 1.
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[8] R. Orús, S. Dusuel, and J. Vidal, Phys. Rev. Lett. 101, 025701

(2008).
[9] R. Orus, T.-C. Wei, O. Buerschaper, and M. V. den Nest,

New J. Phys. 16, 013015 (2014).
[10] W.-C. Qiang and L. Zhang, Phys. Lett. B 742, 383 (2015).
[11] L. Qi, arXiv:1202.2983.
[12] T. Wei and S. Severini, J. Math. Phys. 51, 092203 (2010).
[13] J. Hilling and A. Sudbery, J. Math. Phys. 51, 072102

(2010).
[14] L. Qi, J. Symb. Comput. 40, 1302 (2005).
[15] L.-H. Lim, in Proceedings of the IEEE International Workshop

on Computational Advances in Multi-Sensor Adaptive Process-
ing (IEEE, New York, 2005), Vol. 1, p. 129.

[16] K. Chang, K. Pearson, and T. Zhang, J. Math. Anal. Appl. 350,
416 (2009).

[17] L. Qi, arXiv:1201.3424.
[18] L. Qi, F. Wang, and Y. Wang, Math. Program. 118, 301 (2009).
[19] L. Qi, G. Yu, and E. Wu, SIAM J. Imag. Sci. 3, 416 (2010).
[20] C. Caves and G. Milburn, Opt. Commun 179, 439 (2000).
[21] P. Rungta, W. Munro, K. Nemoto, P. Deuar, G. Milburn, and C.

Caves, in Qudit Entanglement, Directions in Quantum Optics,
Lecture Notes in Physics (Springer-Verlag, Berlin, Heidelberg,
2001), pp. 149–164.

[22] A. S. M. Hassan and P. S. Joag, Phys. Rev. A 80, 042302 (2009).
[23] T. G. Kolda and J. R. Mayo, SIAM J. Matrix Anal. Appl. 32,

1095 (2011).
[24] D. Cartwright and B. Sturmfels, Linear Algebra Appl. 438, 942

(2013).
[25] K. Chang, K. Pearson, and T. Zhang, Linear Algebra Appl. 438,

4166 (2013).
[26] G. Ni, L. Qi, F. Wang, and Y. Wang, J. Math. Anal. Appl. 329,

1218 (2007).
[27] D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry

(Springer-Verlag, New York, 1999).
[28] S. Ragnarsson and C. van Loan, Linear Algebra Appl. 438, 853

(2013).
[29] S. Friedland, S. Gaubert, and L. Han, Linear Algebra Appl. 438,

738 (2013).

012304-7

http://dx.doi.org/10.1111/j.1749-6632.1995.tb39008.x
http://dx.doi.org/10.1111/j.1749-6632.1995.tb39008.x
http://dx.doi.org/10.1111/j.1749-6632.1995.tb39008.x
http://dx.doi.org/10.1111/j.1749-6632.1995.tb39008.x
http://dx.doi.org/10.1016/S0393-0440(00)00052-8
http://dx.doi.org/10.1016/S0393-0440(00)00052-8
http://dx.doi.org/10.1016/S0393-0440(00)00052-8
http://dx.doi.org/10.1016/S0393-0440(00)00052-8
http://dx.doi.org/10.1103/PhysRevA.68.042307
http://dx.doi.org/10.1103/PhysRevA.68.042307
http://dx.doi.org/10.1103/PhysRevA.68.042307
http://dx.doi.org/10.1103/PhysRevA.68.042307
http://dx.doi.org/10.1103/PhysRevA.80.032324
http://dx.doi.org/10.1103/PhysRevA.80.032324
http://dx.doi.org/10.1103/PhysRevA.80.032324
http://dx.doi.org/10.1103/PhysRevA.80.032324
http://dx.doi.org/10.1063/1.3271041
http://dx.doi.org/10.1063/1.3271041
http://dx.doi.org/10.1063/1.3271041
http://dx.doi.org/10.1063/1.3271041
http://dx.doi.org/10.1103/PhysRevA.82.032301
http://dx.doi.org/10.1103/PhysRevA.82.032301
http://dx.doi.org/10.1103/PhysRevA.82.032301
http://dx.doi.org/10.1103/PhysRevA.82.032301
http://dx.doi.org/10.1103/PhysRevLett.101.025701
http://dx.doi.org/10.1103/PhysRevLett.101.025701
http://dx.doi.org/10.1103/PhysRevLett.101.025701
http://dx.doi.org/10.1103/PhysRevLett.101.025701
http://dx.doi.org/10.1088/1367-2630/16/1/013015
http://dx.doi.org/10.1088/1367-2630/16/1/013015
http://dx.doi.org/10.1088/1367-2630/16/1/013015
http://dx.doi.org/10.1088/1367-2630/16/1/013015
http://dx.doi.org/10.1016/j.physletb.2015.02.001
http://dx.doi.org/10.1016/j.physletb.2015.02.001
http://dx.doi.org/10.1016/j.physletb.2015.02.001
http://dx.doi.org/10.1016/j.physletb.2015.02.001
http://arxiv.org/abs/arXiv:1202.2983
http://dx.doi.org/10.1063/1.3464263
http://dx.doi.org/10.1063/1.3464263
http://dx.doi.org/10.1063/1.3464263
http://dx.doi.org/10.1063/1.3464263
http://dx.doi.org/10.1063/1.3451264
http://dx.doi.org/10.1063/1.3451264
http://dx.doi.org/10.1063/1.3451264
http://dx.doi.org/10.1063/1.3451264
http://dx.doi.org/10.1016/j.jsc.2005.05.007
http://dx.doi.org/10.1016/j.jsc.2005.05.007
http://dx.doi.org/10.1016/j.jsc.2005.05.007
http://dx.doi.org/10.1016/j.jsc.2005.05.007
http://dx.doi.org/10.1016/j.jmaa.2008.09.067
http://dx.doi.org/10.1016/j.jmaa.2008.09.067
http://dx.doi.org/10.1016/j.jmaa.2008.09.067
http://dx.doi.org/10.1016/j.jmaa.2008.09.067
http://arxiv.org/abs/arXiv:1201.3424
http://dx.doi.org/10.1007/s10107-007-0193-6
http://dx.doi.org/10.1007/s10107-007-0193-6
http://dx.doi.org/10.1007/s10107-007-0193-6
http://dx.doi.org/10.1007/s10107-007-0193-6
http://dx.doi.org/10.1137/090755138
http://dx.doi.org/10.1137/090755138
http://dx.doi.org/10.1137/090755138
http://dx.doi.org/10.1137/090755138
http://dx.doi.org/10.1016/S0030-4018(99)00693-8
http://dx.doi.org/10.1016/S0030-4018(99)00693-8
http://dx.doi.org/10.1016/S0030-4018(99)00693-8
http://dx.doi.org/10.1016/S0030-4018(99)00693-8
http://dx.doi.org/10.1103/PhysRevA.80.042302
http://dx.doi.org/10.1103/PhysRevA.80.042302
http://dx.doi.org/10.1103/PhysRevA.80.042302
http://dx.doi.org/10.1103/PhysRevA.80.042302
http://dx.doi.org/10.1137/100801482
http://dx.doi.org/10.1137/100801482
http://dx.doi.org/10.1137/100801482
http://dx.doi.org/10.1137/100801482
http://dx.doi.org/10.1016/j.laa.2011.05.040
http://dx.doi.org/10.1016/j.laa.2011.05.040
http://dx.doi.org/10.1016/j.laa.2011.05.040
http://dx.doi.org/10.1016/j.laa.2011.05.040
http://dx.doi.org/10.1016/j.laa.2013.02.013
http://dx.doi.org/10.1016/j.laa.2013.02.013
http://dx.doi.org/10.1016/j.laa.2013.02.013
http://dx.doi.org/10.1016/j.laa.2013.02.013
http://dx.doi.org/10.1016/j.jmaa.2006.07.064
http://dx.doi.org/10.1016/j.jmaa.2006.07.064
http://dx.doi.org/10.1016/j.jmaa.2006.07.064
http://dx.doi.org/10.1016/j.jmaa.2006.07.064
http://dx.doi.org/10.1016/j.laa.2011.04.014
http://dx.doi.org/10.1016/j.laa.2011.04.014
http://dx.doi.org/10.1016/j.laa.2011.04.014
http://dx.doi.org/10.1016/j.laa.2011.04.014
http://dx.doi.org/10.1016/j.laa.2011.02.042
http://dx.doi.org/10.1016/j.laa.2011.02.042
http://dx.doi.org/10.1016/j.laa.2011.02.042
http://dx.doi.org/10.1016/j.laa.2011.02.042



