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We propose a heralded quantum repeater protocol based on the general interface between the circularly
polarized photon and the quantum dot embedded in a double-sided optical microcavity. Our effective time-bin
encoding on photons results in the deterministic faithful entanglement distribution with one optical fiber for the
transmission of each photon in our protocol, not two or more. Our efficient parity-check detector implemented
with only one input-output process of a single photon as a result of cavity quantum electrodynamics makes the
entanglement channel extension and entanglement purification in quantum repeater far more efficient than others,
and it has the potential application in fault-tolerant quantum computation as well. Meanwhile, the deviation from
a collective-noise channel leads to some phase-flip errors on the nonlocal electron spins shared by the parties
and these errors can be depressed by our simplified entanglement purification process. Finally, we discuss the
performance of our proposal, concluding that it is feasible with current technology.
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I. INTRODUCTION

The reliable transmission of quantum states over noisy
channels is important in quantum communication, such as
quantum teleportation [1], dense coding [2,3], quantum key
distribution [4–6], quantum secret sharing [7–9], and quan-
tum secure direct communication [10–12]. However, serious
problems occur when long-distance quantum communication
is considered [13]. Due to the exponential scaling photon loss
in the transmission channel, the success probability of the
direct transmission for photons over a 1000-km optical fiber
is of order 10−20. Even though the photon can arrive at the
receiver, the fidelity of its polarization state also decreases
largely, due to the random birefringence arising from thermal
fluctuations, vibrations, and imperfections of the fiber itself.
To establish a long-distance entanglement channel, a quantum
repeater protocol was originally proposed by Briegel et al.
[14] in 1998 to reduce the photon loss rate and suppress
the decoherence of entangled photon pairs. Some interesting
proposals for quantum repeaters have been proposed in various
physical systems, such as nitrogen vacancy (NV) centers
in diamond [15–17], atomic ensembles [18–20], and single
trapped ions [21].

Considering the long electron-spin coherence time [μs
is achieved in both a quantum dot (QD) ensemble and a
single QD], fast manipulation, and easy scalability, QD is
one of the good candidates for local storage and processing
of quantum information. Single semiconductor QD coupling
to a microcavity has attracted much attention [22–32]. The
giant circular birefringence originated from the spin selective
dipole coupling for such spin-cavity systems is utilized in
photon-photon or spin-photon entanglement generation [22],
hyperparallel quantum computing [23], universal quantum
gates [24–26], hyperentanglement purification and concentra-
tion [27], and complete Bell-state analyzers [28]. In 2006,
Waks and Vuckovic put forward a quantum repeater scheme
with the QD-cavity system [29]. The entanglement creation
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between neighboring QDs and the subsequently entanglement
swapping were assisted by the QD-induced transparency of
the coherent field, which is faithful when the photon number
resolved detectors were available. In 2007, Simon et al. [30]
proposed a scheme for entangling two remote spins based
on two-photon coincidence detection and they constituted
a controlled-phase gate between two local spins with the
dipole-dipole interaction between trions in neighboring QDs.
This gate makes the quantum entanglement swapping possible
and it leads to the realization of a quantum repeater. In 2012,
the error-free entanglement distribution was performed with
the momentum-entangled photons and the QDs embedded
in microcavities when the momentum entanglement is sta-
ble [31]. Recently, Jones et al. [32] proposed an efficient
scheme to entangle remotely separated QDs with a midpoint-
entanglement source and one nondeterministic Bell-state
measurement located at each end of the two channels, which
was used to complete the entanglement swapping between
the QD-photon entanglement [33–35] and the photon-photon
entanglement, resulting in the entanglement between QDs.

Since the seminal work about Bell inequality for position
and time by Franson [36], the time-bin degree of freedom
(DOF) of photons has attracted much attention [37–43]. The
two-photon time-bin entanglement source for quantum com-
munication was demonstrated by Brendel et al. [37] in 1999.
With the encoded time-bin qubits, Kalamidas [38] proposed
a single-photon quantum error-rejection transmission protocol
in 2005, in which a probabilistic transmission is completed
with two Pockels cells (PCs) and the deterministic error-free
transmission is performed with four PCs. In 2007, Li et al.
[39] proposed a faithful qubit transmission scheme against
collective noise without ancillary qubits, resorting to the time-
bin DOF of a single photon itself. Recently, the distribution
of time-bin entangled qubits [40] over an optical fiber at the
scale of 300 km [41] was demonstrated and the two-photon
interference fringes exhibited a visibility of 84%. A time-bin
qubit can also be used to perform quantum computing [42] and
only a single optical path rather than multiple paths is used to
complete single-qubit operations and herald controlled-phase
gates. An ultrafast measurement technique for time-bin qubits
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[43] was implemented, which makes time-bin qubits more
useful [44].

In this paper, we show that a heralded quantum repeater
based on the QD-microcavity systems can be constructed with
the help of the effective time-bin encoder and the general
interface between the circularly polarized photon and the QD
embedded in a double-sided optical microcavity. By using
the giant circular birefringence effect for the singly charged
QD inside a microcavity and the two-photon coincident
measurement, the time-bin entanglement can be converted de-
terministically into that of the remotely located QD-electron-
spin system in a heralded way. The entanglement distribution
can in principle be performed with a unity efficiency when
none of the photons are lost during the transmission process.
It is more efficient than others [30,32] if the multimode
process is involved [32,45]. Our efficient parity-check detector
(PCD) implemented with only one input-output process of a
single photon as a result of cavity quantum electrodynamics
makes the entanglement channel extension and entanglement
purification in our quantum repeater far more efficient than
others. The deviation from collective noise channel leads
to some phase-flip errors that can be suppressed by our
simpler entanglement purification process. These features
make our heralded quantum repeater protocol more useful in
the quantum communication network in the future.

This paper is organized as follows: We give a general
interface between a circularly polarized light and a QD-cavity
system in Sec. II A. Subsequently, we present the faithful
entanglement distribution for two neighboring nodes in Sec.
II B, and then, we give an efficient way to complete the
entanglement extension with a PCD in Sec. II C. In Sec. III,
we propose an efficient entanglement purification protocol to
depress the influence of asymmetric noise from optical-fiber
channels on different time bins. In Sec. IV, we discuss the influ-
ence from the practical imperfect circular birefringence on the
created entanglement. A discussion and a summary are given
in Sec. V. In addition, N -user entanglement distribution for a
multiuser quantum repeater network is discussed in Appendix.

II. FAITHFUL ENTANGLEMENT DISTRIBUTION AND
EXTENSION FOR HERALDED QUANTUM REPEATER

A. The interface between a circularly polarized light and a
QD-cavity system

Let us consider a singly charged QD (e.g., for a self-
assembled InAs/GaAs quantum dot) embedded inside a
resonant double-sided micropillar cavity [22]. Both the top
and bottom mirrors of the cavity are partially reflective, shown
in Fig. 1(a). The optical properties of a singly charged QD
embedded inside a micropillar cavity are dominated by the
optical transitions of the negatively charged trion (X−) that
consists of two electrons bounded to one hole [46], shown in
Fig. 1(b). When the quantization axis for angular momentum
is the z axis for the QD geometry, the single electron states
have the spin Jz = ± 1

2 (labeled as |↑〉 and |↓〉), and the hole
Jz = ± 3

2 (labeled as |⇑〉 and |⇓〉). Photon polarization (L and
R represent the left and the right circularly polarized states of
photons, respectively) is defined with respect to the direction
of the propagation, and this causes the polarization to change
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FIG. 1. The spin-dependent transitions for a negatively charged
exciton X−. (a) A singly charged QD inside a double-sided optical
microcavity. (b) The spin selection rules for optical transition of a
negatively charged exciton. The symbols ↑ and ↓ represent the excess
electron-spin projections | + 1

2 〉 and | − 1
2 〉 along the quantization

axis (z direction), respectively. The symbols ⇑ and ⇓ represent
the spin projections of the hole | + 3

2 〉 and | − 3
2 〉, respectively. R↑

(L↓) denotes a right-circularly (a left-circularly) polarized photon
propagating along (against) the quantization axis.

upon reflection. In a trion state, due to the Pauli’s exclusion
principle, the two electrons form a singlet state with the total
spin zero, which decouples the interaction between the electron
spin and the hole spin [46,47]. In other words, the circularly
polarized photon directed into the spin-cavity system can either
be coupled with the electron spin and feels a hot cavity when
the dipole selection rule is fulfilled, or be decoupled and feels
a cold cavity in the other case. The significant difference in
the reflection and the transmission coefficients manifested
between these two cases is spin dependent, and it can be
exploited to perform the quantum information processing
[22–30].

The reflection and the transmission coefficients of this
spin-cavity system can be obtained by solving the Heisenberg
equations of motion for the cavity field operator â and the
trion dipole operator σ̂− along with the input-output relations
[29,48,49].

dâ

dt
= −

(
iωc + κ + κs

2

)
â − igσ̂−

−√
κs ŝin − √

κ âin − √
κ â′

in,

dσ̂−
dt

= −
(

iωX− + γ

2

)
σ̂− + igσ̂zâ + √

γ σ̂zN̂, (1)

âr = âin + √
κ â,

ât = â′
in + √

κ â.

Here âin and â′
in are the two input field operators. While ŝin

is an operator for an input field originating from potential
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leaky modes due to sideband leakage and absorption, and it
associates with the corresponding output mode ŝout by ŝout =
ŝin + √

κsâ. âr and ât are the two output field operators, shown
in Fig. 1(a). N̂ is the corresponding vacuum noise operator
which helps to preserve the desired commutation relations for
the QD-dipole operators. ω, ωc, and ωX− are the frequencies of
the input photon, cavity mode, and X− transition, respectively.
κ and κs are the cavity-field decay rate and the side-leakage
rate, respectively. g is the coupling strength between X− and
the cavity mode. γ /2 is the dipole decay rate. In the limit
of a weak incoming field, the charged QD is predominantly
in the ground state in the whole process, that is, 〈σ̂z〉 ≈ −1.
The spin-cavity system behaves like a beam splitter whose
reflection and transmission coefficients R(ω) and T (ω) along
with the leakage and noise coefficients S(ω) and N (ω) are
detailed, respectively, by

R(ω) =
i(ωc − ω) + κs

2 + g2

i(ωX−−ω)+ γ

2

i(ωc − ω) + κ + κs

2 + g2

i(ωX−−ω)+ γ

2

,

(2)

T (ω) = −κ

i(ωc − ω) + κ + κs

2 + g2

i(ωX−−ω)+ γ

2

,

and

S(ω) = −√
κsκ

i(ωc − ω) + κ + κs

2 + g2

i(ωX−−ω)+ γ

2

,

N (ω) =
ig

√
γ κ

i(ωX−−ω)+ γ

2

i(ωc − ω) + κ + κs

2 + g2

i(ωX−−ω)+ γ

2

. (3)

Here, one has P (ω) = |R(ω)|2 + |T (ω)|2 + |S(ω)|2 +
|N (ω)|2 = 1 meaning that when the noise or environment
is considered, the energy of the whole system is conserved
during the input-output process described above, and it can be
reduced to the simplified input-output models in [48] or [29]
by omitting the leaky modes ŝin or vacuum noise operator N̂

that helps to preserve the desired commutation relations for
the QD-dipole operators, respectively.

We are interested in the reflection and transmission of a
single input photon that leads to the click of a single-photon
detector, while the environment excitation inhibits the click.
Therefore, we can project the output photon into the subspace
spanned by the reflection and transmission modes. The state
vector evolves on reflection and transmission as

â†
in|S〉 → R â†

r |S〉 + T â
†
t |S〉. (4)

For simplification, we take the case that the trion dipole
is tuned into the cavity mode (ωc = ωX− ). When the input
photon couples to the QD embedded in the microcavity,
the coefficients R and T are reduced to r(�) and t(�),
respectively. Here

r(�) =
i� + κs

2 + g2

i�+ γ

2

i� + κ + κs

2 + g2

i�+ γ

2

,

(5)

t(�) = −κ

i� + κ + κs

2 + g2

i�+ γ

2

,

0

1

0

1

0

1

C
oe

ff
ic

ie
nt

s

10 0 10
0

1

/

0

1

0

1

0

1

C
oe

ff
ic

ie
nt

s

10 0 10
0

1

/

g=1.2

|t|

|r|

|r|

|r| |r|
|t|

|t|
|r|

|t|
|r|

|r|
|t||t|

s=0.15

s=0.2

s=0.05

s=0

g=2.4

g=0.6  

g=0

|t|

|r|
|t|

)b()a(

FIG. 2. The coefficients |R(ω)|, |T (ω)|, |S(ω)|, |N (ω)|, and P (ω)
vs detuning �/κ (a) for different coupling strengths (g = 0, 0.6κ ,
1.2κ , and 2.4κ) with κs/κ = 0.1 and (b) for different leakage
rates (κs = 0, 0.05κ , 0.15κ , and 0.2κ) with g/κ = 2.4. |R(ω)|,
solid blue line; |T (ω)|, solid red line; |S(ω)|, dot magenta line;
|N (ω)|, dashed green line; P (ω), dash-dash-dot brown line. Here
� = ωc − ω. γ /κ = 0.1 is taken by considering the typical QD
micropillar parameters.

where � = ωc − ω. When the input probe field is uncoupled
to the dipole transition (i.e., g = 0), the specific reflection and
transmission coefficients can be simplified as

r0(�) = i� + κs

2

i� + κ + κs

2

,

(6)

t0(�) = −κ

i� + κ + κs

2

.

For the condition � = 0, 2g2/κγ � 1, and κs/2κ  1,
both the reflection coefficient |r(ω)| and the transmission
coefficient |t0(ω)| can approach 1. Meanwhile, the noise terms
|S(�)| � √

κs/κ and |N (�)| � √
κγ /g can be neglected.

However, the total probabilities for all channels that the input
photon is scattered into by the QD-cavity system P (�) ≡ 1 for
any condition, shown in Fig. 2. To be exact, when we concern
only the transmission and reflection modes, and the circularly
polarized photon directed into the spin-cavity system is in the
state Sz = +1 (i.e., |L↓〉 or |R↑〉), the excess electron in the
state |↑〉 will interact with the input photon, provide a hot cavity
situation, and eventually make the photon be reflected. Upon
reflection, both the polarization and the propagation direction
of the photon will be flipped. However, if the input photon is in
the state |R↓〉 or |L↑〉 (Sz = −1), it will be transmitted through
the cavity and acquires an extra π phase, leaving the electron
spin state unaffected. The whole process can be summarized
into the following transformations [24]:

|R↑,↑〉 → |L↓,↑〉, |R↓,↑〉 → −|R↓,↑〉,
(7)|L↓,↑〉 → |R↑,↑〉, |L↑,↑〉 → −|L↑,↑〉.

When the excess electron is in the state |↓〉, the evolution can
be described as [24]

|R↑,↓〉 → −|R↑,↓〉, |R↓,↓〉 → |L↑,↓〉,
(8)|L↓,↓〉 → −|L↓,↓〉, |L↑,↓〉 → |R↓,↓〉.
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Combining the rules above, we can accomplish the entan-
glement transfer from the nonlocal photon systems into the
nonlocal spin systems and construct an efficient PCD which is
essential for the entanglement purification of the spin systems
and the entanglement extension in our quantum repeater
protocol.

B. Faithful entanglement distribution for the quantum repeater
network with time-bin encoders

To show how the spin-cavity system works for our
deterministic entanglement distribution and our simplified
entanglement purification protocol for quantum systems in
a mixed entangled state explicitly, we first take the two-photon
Bell state as an example, and then generalize it to the case
with an N -photon Greenberger-Horne-Zeilinger (GHZ) state
in Appendix.

Suppose that there is a two-photon entangled source in
the middle point of the two memory nodes belonging to the
users, say Alice and Bob, shown in Fig. 3(a). The photons ab

produced by the source are entangled in a Bell state in the
polarization degree of freedom (DOF), i.e.,

|�+
2 〉s = 1√

2
(|H 〉a|H 〉b + |V 〉a|V 〉b), (9)

where |H 〉 and |V 〉 represent the horizontal and the vertical
polarization modes of photons, respectively. The subscripts
a and b represent the photons transmitted to Alice and Bob,
respectively. Before entering the noise channels, the photonic
polarization entanglement is converted into the time-bin
entanglement of the two photons ab by passing the two photons
through the encoders placed in their respective paths. Each
encoder is made of two PBSs and a fast Pockels cell (PC). A
PBS transmits the |H 〉 polarized photon and reflects the |V 〉
polarized one. A relative time delay �t of the nanoseconds
scale can be obtained for the |V 〉 component of the photon
when the users appropriately preset the difference between
the long optical path length l of the |V 〉 polarization photon
and the short optical path length s of the |H 〉 polarization
photon (i.e., the time interval of the unbalanced Mach-Zehnder
interferometers). The parties turn on PC only when the l-path
component appears and it is used to implement the bit-flip
operation |V 〉 ↔ |H 〉. After the encoders, the state of the
system composed of photons ab is changed into the time-bin
entanglement with the polarization states all being |H 〉,

|�+
2 〉t0 = 1√

2
|H 〉a|H 〉b(|s〉|s〉+|l〉|l〉)ab. (10)

Here |s〉 and |l〉 denote the early and late time bins with which
the photon passes through the optical short (s) and long (l)
paths, respectively.

Since all the photons in both |s〉 and |l〉 time bins launched
into the noisy channels are in the |H 〉 polarization, the
influences of the collective noise on the photons in different
time bins can be taken to be the same one [38,39,50–52]. In
other words, the noise of each optical-fiber channel is stable in
the nanosecond scale that is just the time separation between
the |s〉 and |l〉 time bins, and it can be expressed by a unitary
transformation Ui ,

Ui |H 〉i = δi |H 〉i + ηi |V 〉i . (11)

FIG. 3. Schematic architecture of the faithful entanglement distri-
bution procedure in our quantum repeater protocol. (a) Deterministic
and faithful entanglement distribution between the nodes A and B
(A, B, . . ., C and D) with the help of time-bin encoders. (b) The
decoder for each quantum node. Here, the hexagon denotes the
two-photon Bell source (N -photon GHZ source) and the orange
rounded rectangles denoted with NODE-A and NODE-B represent
the quantum nodes owned by the users Alice and Bob, respectively.
PBS i (i = 1,2, . . .) is the polarizing beam splitter that transmits
the |H 〉 polarized photon and reflects the |V 〉 polarized photon,
respectively. QWPj (j = 1,2) represents a quarter-wave plate which
is used to accomplish the transformations |H 〉 ↔ |R〉 and |V 〉 ↔
|L〉. CPBSj represents the circularly polarizing beam splitter that
transmits the |R〉 polarized photon and reflects the |L〉 polarized
photon, respectively. PC i is a Pockels cell.

Here |δi |2 + |ηi |2 = 1. i (= a,b) describes the noise on the
photon i. The state of the photonic system ab arriving at the
two nodes, i.e., Alice and Bob, can be written as

|�+
2 〉t1 = 1√

2
(δa|H 〉a + ηa|V 〉a)(δb|H 〉b + ηb|V 〉b)

⊗ (|s〉a|s〉b + |l〉a|l〉b), (12)

which is still a two-photon time-bin entanglement but the
polarization state of the photonic system is ambiguous since
the unitary transformation Ui (i = a,b) on the photon i is
arbitrary and unknown for the parties in a quantum repeater.

The nodes NODE-A and NODE-B represent the two
parties, Alice and Bob, respectively. They have the same device
setting for their decoders, shown in Fig. 3(b). After the photons
pass through the unbalanced Mach-Zehnder interferometer
composed of PBS9 and PBS10, a relative delay of �t on the

012302-4



HERALDED QUANTUM REPEATER FOR A QUANTUM . . . PHYSICAL REVIEW A 93, 012302 (2016)

|H 〉 component is completed and the state of the photonic
system evolves into

|�+
2 〉t2 = 1√

2
[δaδb|H 〉a|H 〉b(|sl〉a|sl〉b + |ll〉a|ll〉b)

+ δaηb|H 〉a|V 〉b(|sl〉a|ss〉b + |ll〉a|ls〉b)

+ ηaδb|V 〉a|H 〉b(|ss〉a|sl〉b + |ls〉a|ll〉b)

+ ηaηb|V 〉a|V 〉b(|ss〉a|ss〉b + |ls〉a|ls〉b)], (13)

and it is a partially polarized entangled state. The time-bin
information heralds the polarization state of the photonic
system, which can be utilized to correct the polarization
error in the decoder with proper bit-flip operations. Here
|ij 〉 = |i〉|j 〉 and the notations |i = s,l〉 (|j = s,l〉) denote
the corresponding time bins created in the encoder (decoder).
PCi at each node is supposed to be active only when the
components of |ls〉 or |s l〉 time bins appear and implements
the bit flip |H 〉 ↔ |V 〉 for the components |ls〉 and |s l〉. PBS11

transmits the |H 〉 components and reflects the |V 〉 components,
respectively. Another relative time delay �t is exerted on the
|V 〉 components by setting a longer optical path for the |V 〉
components. The state |�+

2 〉t2 evolves to

|�+
2 〉t3 = 1√

2
(|H ↑〉a|H ↑〉b + |V ↓〉a|V ↓〉b)

⊗ [(δa|s ′〉a + ηa|l′〉a)(δb|s ′〉b + ηb|l′〉b)]. (14)

Here the superscripts ↓ and ↑ represent the different outputs
of PBS11, and ↑ is coincident with the relative orientation of
the quantization axis of the QD-confined spin. |s ′〉 (=|ss l〉,
|s ls〉, or |lss〉) denotes the time-bin component with only one
delay interval. |l′〉 (=|s ll〉, |ls l〉, or |lls〉) denotes the time-bin
component with two delay intervals. One can easily find that no
matter what time bins the photons occupy, they are maximally
entangled in the polarization DOF.

Now, we only discuss the case |�+
2 〉t = 1√

2
(|H ↑〉a|H ↑〉b +

|V ↓〉a|V ↓〉b) ⊗ |s ′〉a|s ′〉b for the deterministic entanglement
creation of the nonlocal two-electron-spin system shared by
Alice and Bob, and the other cases can be discussed in a similar
way.

To entangle the two QD-confined electron spins ea and eb

owned by Alice and Bob, respectively, they first introduce
a π phase shift on the |V 〉 component of the photon b sent
to Bob, and then, they map the linearly polarized photon
into the circularly polarized one |H 〉 ↔ |R〉 and |V 〉 ↔ |L〉
with the quarter-wave plates (QWPs) near the two input ports
of the cavity. The state of the entangled photons evolves into
|�−

2 〉c = (|R↑,R↑〉 − |L↓,L↓)/
√

2. Before the arriving of the
photons, each of the QD-confined-electron spins ei (i = a,b)
is initialized to be a superposition state |�〉ei

= 1√
2
(|↑〉 + |↓〉).

With the giant optical circular birefringence induced by a
single electron QD embedded in a micropillar cavity [see Eqs.
(7) and (8) for detail], the state of the hybrid photon-spin
system after the reflection or transmission of the photons ab,
can be divided into two subspaces: (1) Both photons a and b

suffer a bit-flip or a unity operation when the spins e1 and e2

are in the same state |↑〉 ⊗ |↑〉 or |↓〉 ⊗ |↓〉; (2) only one of
photons a and b suffers a bit-flip when the spins e1 and e2 are
in different states |↑〉 ⊗ |↓〉 or |↓〉 ⊗ |↑〉. The new state of the

system can be detailed as follows:

|�−
h 〉 = 1

2
√

2

[
(−|R↑R↑〉 + |L↓L↓〉)ab ⊗ (|↑↑〉 − |↓↓〉)eaeb

+ (|R↑L↓〉 − |L↓R↑〉)ab ⊗ (|↑↓〉 − |↓↑〉)eaeb

]
. (15)

It can be viewed as a high-dimensional entanglement between
the photonic subsystem and electron-spin subsystem. After
the parties measure their photons, they can share two-QD
entanglement. For instance, if the outcome of the measurement
on photons ab is |R↑R↑〉ab or |L↓L↓〉ab, the parties can get
the QD subsystem maximally entangled in the state as

|�−
2 〉e = 1√

2
(|↑↑〉 − |↓↓〉)eaeb

. (16)

However, if the outcome of the measurement on photons ab is
|R↑L↓〉ab or |L↓R↑〉ab, an additional bit-flip operation σb

x =
|↑〉〈↓| + |↓〉〈↑| on the electron eb, can also project the QD
subsystem eaeb into the desired entangled state |�−

2 〉e.
As for the faithful entanglement distribution of the N -

photon state, the parties can place an entanglement source
that generates N photons entangled in GHZ state |�+

N
〉s =

1√
2
(|H 〉a|H 〉b . . . |H 〉z + |V 〉a|V 〉b . . . |V 〉z) among the parties

involved. With the similar encoder procedure to that above,
the parties can get their QDs entangled in the GHZ state
|�−

N
〉e = 1√

2
(|↑↑ . . . ↑〉 − |↓↓ . . . ↓〉)eaeb · · · ez, as shown in

Appendix.

C. Effective entanglement extension with efficient PCDs

After the successful generation of the nonlocal N -electron
GHZ state |�−

N
〉e and several Bell states |�−

2 〉e = 1√
2
(|↑↑〉 −

|↓↓〉) for two QDs confined, respectively, in distant cavities
separated within the attenuation length, one can extend the
length of the quantum channel by local entanglement swap-
ping, which can be performed efficiently with our PCD shown
in Fig. 4. Instead of subsequently inputting one probe photon
into two target cavities [22,29], one can split the incident

FIG. 4. Schematic diagram of the efficient PCD on the two QDs
in the same node. H1 and H2 are two half-wave plates and each is
used to complete the Hadamard rotation on the circularly polarized
photons.
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photon into two spatial modes with a 50/50 beam splitter (BS),
and then send each mode into one cavity, respectively. In other
words, only one effective input-output process is involved in
our PCD, which makes it more efficient than others, especially
in the lower coupling regime.

Suppose the two stationary spin qubits e1 and e2 confined
in QD1 and QD2 are in arbitrary superposition states |�〉e1 =
α1|↑〉 + β1|↓〉 and |�〉e2 = α2|↑〉 + β2|↓〉, respectively. Here
|α1|2 + |β1|2 = |α2|2 + |β2|2 = 1. A polarized photon p in the
state |�〉p = 1√

2
(|R〉 + |L〉) input into the ain import of the

PCD (shown in Fig. 4). After passing through the BS, it is
changed into the state,

|�1〉p = 1
2 (|R〉 + |L〉)a ⊗ (|a1〉 + |a2〉), (17)

where |a1〉 and |a2〉 are two spatial modes of the photon a

that are sent to QD1 and QD2, respectively. The photon in
the states |R〉 and |L〉 is separated by CPBSs, and then enters
the cavities. When the photon leaves the cavities, the system
composed of the photon p, e1, and e2 evolves into the state
|�h〉1. Here

|�h〉1 = 1
2 (|R↑〉 + |L↓〉)a ⊗ [|a1〉 ⊗ (α1|↑〉 − β1|↓〉)e1

⊗ |�〉e2 + |�〉e1 ⊗ |a2〉 ⊗ (α2|↑〉 − β2|↓〉)e2

]
.

(18)

CPBS1 and CPBS2 are used to combine the photon in the states
|R↑〉 and |L↓〉 in each spatial mode. The two spatial modes
|a1〉 and |a2〉 of photon p interfere with each other at CPBS3,
and then a Hadamard rotation H1 or H2 on the photon p is
applied. The state of the system composed of p, e1, and e2

becomes

|�h〉2 = 1√
2

[∣∣Ra1

〉 ⊗ (α1α2|↑,↑〉 − β1β2|↓,↓〉)e1e2

+∣∣La1

〉 ⊗ (β1α2|↓,↑〉 − α1β2|↑,↓〉)e1e2

+∣∣Ra2

〉 ⊗ (α1α2|↑,↑〉 − β1β2|↓,↓〉)e1e2

+∣∣La2

〉 ⊗ (α1β2|↑,↓〉 − β1α2|↓,↑〉)e1e2

]
. (19)

Here, the subscripts a1 and a2 represent the spatial modes
of photon p sent to the left analyzer and the right one,
respectively. One can project the state of the two spins
nondestructively into the state,∣∣�E

2

〉
e
= 1√

2
(α1α2|↑,↑〉 − β1β2|↓,↓〉)e1e2 , (20)

when a |R〉 polarized photon is detected by the single-photon
detectors; otherwise, the state of the two spins will collapse
into ∣∣�O

2

〉
e
= 1√

2
(α1β2|↑,↓〉 − β1α2|↓,↑〉)e1e2 . (21)

That is to say, the click of the photon detector D1 or D3

announces the even parity of the two spins and the click of
D2 or D4 heralds the odd parity of the two spins.

Considering N + 1 communication nodes, say, Alice (ea),
Bob (eb),..., Zach (ez), and Dean (ed ), the original N -
electron GHZ state shared by Alice, Bob,..., and Zach is
|�−

N
〉e = 1√

2
(|↑↑ . . . ↑〉 − |↓↓ . . . ↓〉)eaeb · · · ez, and the Bell

state shared by Zach (ez′ ) and Dean is |�−
2 〉e = 1√

2
(|↑↑〉 −

|↓↓〉). The total spin state of the N ′ = N + 2 electrons can be

written as

|�h〉3 = |�−
N
〉e ⊗ |�−

2 〉e
= 1

2 (|↑,↑, . . . ,↑〉 − |↓,↓, . . . ,↓〉)ea ···ez

⊗ (|↑,↑〉 − |↓,↓〉)ez′ ed
. (22)

If Zach applies the PCD on the two QDs ez and ez′ , the system
composed of the N ′ electrons will evolve into |�h〉4, before
the click of photon detectors in the PCD shown in Fig. 4. Here

|�h〉4 = 1
2
√

2

[(∣∣Ra1

〉 + ∣∣Ra2

〉) ⊗ (|↑, · · · ↑,↑,↑〉
− |↓, · · · ,↓,↓,↓〉)ea ···ez,ez′ ed

+ (∣∣La1

〉 − ∣∣La2

〉) ⊗ (|↑, · · · ↑,↓,↓〉
− |↓, · · · ,↓,↑,↑〉)ea ···ez,ez′ ed

]
, (23)

where the N ′ stationary QDs are divided into the even parity
case |�E

N ′ 〉e and the odd-parity one |�O
N ′ 〉e conditioned on the

detection of the |R〉 and |L〉 photons, respectively, i.e.,∣∣�E
N ′

〉
e

= 1√
2
(|↑, · · · ,↑,↑,↑〉

− |↓, · · · ,↓,↓,↓〉)ea ···ez,ez′ ed
,

(24)∣∣�O
N ′

〉
e

= 1√
2
(|↑, · · · ,↑,↓,↓〉

− |↓, · · · ,↓,↑,↑〉)ea ···ez,ez′ ed
.

With these N ′-spin GHZ states, Zack performs a Hadamard
operation on the two QDs ez and ez′ , and then he measures
the states of ez and ez′ with the basis {|↑〉,|↓〉}, which will
project the remaining N QDs ea , eb, . . ., and ed into the desired
GHZ state with the form |�−

N
〉e, up to a local operation on ed .

The span of the GHZ quantum channel is eventually further
extended. Meanwhile, if one takes another GHZ state instead
of the Bell state |�−

2 〉e to perform the entanglement extension,
the number of the parties involved in the repeater can also
be increased and the parties in the quantum communication
network can, in principle, extend arbitrarily their communica-
tion distance with the same quantum entanglement extension
process described above.

III. ENTANGLEMENT PURIFICATION TO DEPRESS THE
INFLUENCE OF ASYMMETRIC NOISE ON DIFFERENT

TIME BINS

We have detailed the principle and the process of our
heralded quantum repeater protocol, in which the influences
of the noisy channels on the early and the late time bins
of the photons are considered to be the same one and the
fluctuation of the noise at the nanosecond scale has been
neglected. In a practical condition, maybe the channel is
noisy and the fiber parameters have local fast variations. The
influences of the noisy channels can vary at the different
time bins. The unitary transformation Ul

i at the late time
bin |l〉 is different from Us

i at the early time bin |s〉. At this
time, the final entangled state of the two-QD subsystem will
be less entangled and the entanglement purification process
[14,15,53] is required to obtain the maximally entangled state
for nonlocal electron-spin systems.

Suppose the influences of the noisy channels at the different
time bins are of little difference. The unitary transformations
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on the early time bin and the late one are described with Us
i

and Ul
i , respectively,

Us
i |H 〉i = δi |H 〉i + ηi |V 〉i ,

(25)
Ul

i |H 〉i = δ′
i |H 〉i + η′

i |V 〉i ,
where |δi |2 + |ηi |2 = |δ′

i |2 + |η′
i |2 = 1 (i = a, b). The state

of the two-photon system after passing through the noisy
channels can be described as

|�+
2 〉t4 = 1√

2
[|s〉a|s〉b(δa|H 〉a + ηa|V 〉a)(δb|H 〉b + ηb|V 〉b)

+ |l〉a|l〉b(δ′
a|H 〉a + η′

a|V 〉a)(δ′
b|H 〉b + η′

b|V 〉b)],

(26)

which is a partially entangled Bell state when considering
the time-bin qubits but the polarization states of the photons
ab at different time bins are ambiguous and separable. With
the same decoder in each node shown in Fig. 3(b), the early
components of the photons ab will be converted into the time-
bin qubits with the polarization state |V 〉a|V 〉b, while the late
components of ab will be converted into another kind of time-
bin qubits with the polarization state |H 〉a|H 〉b which equals to
the early one only when the symmetric noise model is effective
(Us

i = Ul
i ). After Bob performs a π phase shift on the |V 〉b

component of the photon b, and before the photon b passes
through the QWPs placed near the imports of the cavities, the
state of the photonic subsystem can be written as follows:

|�+
2 〉t5 = 1√

2
[−|V ↓〉a|V ↓〉b(δa|s ′〉a + ηa|l′〉a)

⊗(δb|s ′〉b + ηb|l′〉b) + |H ↑〉a|H ↑〉b
⊗(δ′

a|s ′〉a + η′
a|l′〉a)(δ′

b|s ′〉b + η′
b|l′〉b)], (27)

which is a partially entangled polarization state when the time
bin information is determined. Since the unitary transforma-
tions are arbitrary and unknown, one can describe the photonic
state with the density matrix ρ,

ρ = μ|�−
2 〉0〈�−

2 | + (1 − μ)|�+
2 〉0〈�+

2 |, (28)

which can be viewed as a mixture of |�−
2 〉0 = 1√

2
(|H ↑〉a

|H ↑〉b − |V ↓〉a|V ↓〉b) and |�+
2 〉0 = 1√

2
(|H ↑〉a|H ↑〉b + |V ↓〉a

|V ↓〉b) with the probabilities μ and 1 − μ, respectively.
We would like to consider first the case that the photons

ab are in the state |�+
2 〉0 before entering the cavities. With

a similar process to that for |�−
2 〉0, we can complete the

entanglement transfer from the photonic subsystem to the
QD subsystem, since the relative phase between different
polarization modes of the photons will be mapped into the
relative phase between the different spin states of the QD-
confined electrons. The state of the hybrid system composed of
the photons ab and the electron spins eaeb after the interactions
evolves to |�+

h 〉, instead of |�−
h 〉 shown in Eq. (15). Here

|�+
h 〉 = 1

2
√

2

[
(|R↑R↑〉 + |L↓L↓〉)ab ⊗ (|↓↓〉 + |↑↑〉)eaeb

+ (|R↑L↓〉 + |L↓R↑〉)ab ⊗ (|↓↑〉 + |↑↓〉)eaeb

]
.

(29)

Comparing the hybrid state shown in Eq. (29) with that in
Eq. (15), one can easily see that when the input photons are
in the mixed state ρ, the detection of one photon in each node

will project the electron spins eaeb into another mixed state ρ ′′
with or without an additional single-qubit bit-flip operation on
ea ,

ρ ′′ = μ|�−
2 〉e0〈�−

2 | + (1 − μ)|�+
2 〉e0〈�+

2 |. (30)

It is a mixture of two-QD Bell states |�−
2 〉e0 = 1/

√
2(|↑↑〉 −

|↓↓〉) and |�+
2 〉e0 = 1/

√
2(|↑↑〉 + |↓↓〉) with the probabilities

μ and 1 − μ, respectively.
When the parties in the quantum communication network

have obtained the mixed state ρ ′′, they can use entanglement
purification to increase the fidelity of the entangled channel
between Alice and Bob. Since the phase-flip error cannot be
purified directly, the parties can perform a Hadamard operation
on each QD and convert the joint state of ea and eb into

ρ ′′
h = μ|�′−

0 〉e〈�′−
0 | + (1 − μ)|�′+

0 〉e〈�′+
0 |. (31)

Here |�′−
0 〉e = 1√

2
(|↑↓〉 + |↓↑〉) and |�′+

0 〉e = 1√
2
(|↑↑〉 +

|↓↓〉). The original phase-flip error is mapped into a bit-flip
error, and Alice and Bob can perform the entanglement
purification process with our efficient PCD to improve the
fidelity of the mixed state ρ ′′

h . Its principle can be described in
detail as follows.

Alice and Bob can take two copies of QD systems eaeb

and e′
ae

′
b for each round of purification and each system is

in the state ρ ′′
h . The composite four-QD system is in the

state ρT
P which could be viewed as the mixture of four pure

states |�′−
0 〉eaeb

⊗ |�′−
0 〉e′

ae
′
b
,|�′−

0 〉eaeb
⊗ |�′+

0 〉e′
ae

′
b
, |�′+

0 〉eaeb
⊗

|�′−
0 〉e′

ae
′
b
, and |�′+

0 〉eaeb
⊗ |�′+

0 〉e′
ae

′
b

with the probabilities of

μ2, μ(1 − μ), μ(1 − μ), and (1 − μ)2, respectively. After the
PCDs performed by Alice and Bob, if all the outcomes are
even, the total four-QD system eaebe

′
ae

′
b will be projected into

the state,

|ϕ〉 = 1√
2
(|↑↓↑↓〉 + |↓↑↓↑〉)eaebe′

ae
′
b
, (32)

with the probability of μ2

2 and

|ϕ ′ 〉 = 1√
2
(|↑↑↑↑〉 + |↓↓↓↓〉)eaebe′

ae
′
b
, (33)

with the probability of (1−μ)2

2 , respectively. If both Alice and
Bob get an odd-parity result, they perform a bit-flip operation
on their electron spins ea and eb, which leads to the same
projection of the QD system as the case that both outcomes of
the two PCDs are even. As for the case with one odd parity
and one even parity, which originates from the cross state
|�′+

0 〉eaeb
⊗ |�′−

0 〉e′
ae

′
b

and |�′−
0 〉eaeb

⊗ |�′+
0 〉e′

ae
′
b
, it leads to the

error and should be discarded. In other words, with the PCDs,
Alice and Bob can project the QD system eaebe

′
ae

′
b into

ρ ′′
h1

= μ2

μ2 + (1 − μ)2
|ϕ〉〈ϕ| + (1 − μ)2

μ2 + (1 − μ)2
|ϕ ′ 〉〈ϕ ′ |, (34)

with the probability of μ2 + (1 − μ)2, when their outcomes
are the same ones in their PCD processes.

In order to obtain the entangled state of a two-QD subsystem
e′
ae

′
b, both Alice and Bob perform a Hadamard operation on

their electron spins ea and eb. By measuring the spin states
of the QDs ea and eb with the basis σz = {|↑〉, |↓〉}, they can,
with or without some phase-flip operations, get the desired
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QD subsystem e′
ae

′
b in the states |�′−

0 〉e and |�′+
0 〉e with the

probabilities of μ2

μ2+(1−μ)2 and (1−μ)2

μ2+(1−μ)2 , respectively. Finally,
another Hadamard operation on e′

a and e′
b will convert the states

|�′−
0 〉e and |�′+

0 〉e back into |�−
2 〉e0 and |�+

2 〉e0 , respectively,
leaving the whole system in the state,

ρ ′′
f = μ2

μ2 + (1 − μ)2
|�−

2 〉e0〈�−
2 |

+ (1 − μ)2

μ2 + (1 − μ)2
|�+

2 〉e0〈�+
2 |. (35)

It is a mixed entangled state with a higher fidelity than that in
the original one ρ ′′ when μ > 1/2.

Certainly, the parties can improve further the fidelity of
the nonlocal quantum systems by iterating the purification
protocol several rounds with the method described above.
For instance, if the initial state with the fidelity μ > 0.7 is
available, they can achieve the state with the fidelity F > 0.997
for only two rounds.

IV. INFLUENCE ON FIDELITY AND EFFICIENCY FROM
THE PRACTICAL CIRCULAR BIREFRINGENCE

In the discussion above, the spin-selection rule is taken
to be perfect and 2g2/κγ � 1, and the resonant condition
|�| � 0 is satisfied. In fact, the heavy-light hole mixing can
reduce the fidelity of the optical selection rules [54], and it
can be improved for charged excitons due to the quenched
exchanged interaction [55]. Meanwhile, the finite linewidth
of the input light pulse will inevitably make the resonant
condition diffusion. The side leakage of the cavity κs and
the limited coupling strength g will lead to the imperfect
birefringent propagation of the input photons [22,28] as well.
For instance, when the electron spin is in the spin-up state
|↑〉, the incident photon |R↑〉 or |L↓〉 totally reflected in the
ideal case has a probability t to be transmitted through the
cavity, and |L↑〉 or |R↓〉 supposed to be totally transmitted has
a probability r0 to be reflected.

To discuss the influence of the imperfect circular birefrin-
gence for the QD-cavity unit on the fidelity of the quantum
distribution process, let us take the entanglement distribution
with the symmetric noise model as an example. In this case, the
photons a and b input into the cavities are in the state |�−

2 〉c =
(|R↑,R↑〉 − |L↓,L↓)/

√
2, and the QD-confined electron spins

ei (i = a,b) are all initialized to the state |�〉ei
= 1√

2
(|↑〉 +

|↓〉). The simplified transformation relationship described in
Eqs. (7) and (8) for an ideal QD-cavity unit should be modified,
and the original transformation in Eq. (4) becomes dominant.
When the electron spin is in the spin-up state |↑〉, one has the
following transformations:

|R↑,↑〉 →r|L↓,↑〉 + t |R↑,↑〉,
|R↓,↑〉 →t0|R↓,↑〉 + r0|L↑,↑〉,
|L↓,↑〉 →r|R↑,↑〉 + t |L↓,↑〉,
|L↑,↑〉 →t0|L↑,↑〉 + r0|R↓,↑〉,

(36)

where r (t) and r0 (t0) are the reflection (transmission)
coefficients shown in Eqs. (5) and (6), respectively. In other

words, the incident circularly polarized photon |R↑〉 or |L↓〉
totally reflected in the ideal case has a probability t to be
transmitted through the cavity, and |L↑〉 or |R↓〉 supposed
to be totally transmitted has a probability r0 to be reflected.
When the excess electron is in the state |↓〉, the evolution can
be described similarly as

|R↑,↓〉 →t0|R↑,↓〉 + r0|L↓,↓〉,
|R↓,↓〉 →r|L↑,↓〉 + t |R↓,↓〉,
|L↑,↓〉 →r|R↓,↓〉 + t |L↑,↓〉,
|L↓,↓〉 →t0|L↓,↓〉 + r0|R↑,↓〉.

(37)

According to the practical transformations in Eqs. (36) and
(37), the non-normalized state of the composite hybrid photon-
QD system after the reflection of the photons ab can be written
as

|�−′
h 〉 = 1

2
√

2

{
(|R↑,R↑〉 − |L↓,L↓〉)[(t2 − r2)|↑↑〉

+ (
r2

0 − t2
0

)|↓↓〉 + (t t0 − rr0)(|↑↓〉 + |↓↑〉)]
+ (rt0 − tr0)(|R↑,L↓〉 − |L↓,R↑〉)
⊗ (|↑↓〉 + |↓↑〉)}. (38)

Conditioned on the click of one single-photon detector at each
side, the entanglement distribution process is supposed to
be completed, and the electron spins eaeb will be collapsed
into two different partially entangled states depending on the
outcomes of photon detections.

To be detailed, when the outcomes of the measure-
ments on photons ab result in the even-parity space S =
{|R↑,R↑〉,|L↓,L↓〉}, the electron spins eaeb will be projected
into the following state:

|�−′
2 〉e = 1

2
√

2

[
(t2 − r2)|↑↑〉 + (

r2
0 − t2

0

)|↓↓〉
+ (t t0 − rr0)(|↑↓〉 + |↓↑〉)], (39)

with a success probability,

ηE

d = |2t + 1|2 + |2t0 + 1|2 + 2|1 + t + t0|2
4

. (40)

Note r ≡ 1 + t and r0 ≡ 1 + t0 as shown in Eqs. (5) and
(6). Therefore, the fidelity F E

d of the heralded entanglement
between the electron spins eaeb compared with the ideal target
state |�−

2 〉e of entanglement distribution obtained with the
perfect birefringence in this case, can be detailed as

F E

d = |e〈�−
2 |�−′

2 〉e|2

=
∣∣t2 − r2 − t2

0 + r2
0

∣∣2

2
(|t2 − r2|2 + ∣∣r2

0 − t2
0

∣∣2 + 2|t t0 − rr0|2
)

= |t0 − t |2
2ηE

d

. (41)

In the other case, when the outcomes of photon detections
belong to the odd-parity space AS = {|R↑,L↓〉,|L↓,R↑〉}, the
hybrid photon QD in state |�−′

h 〉 collapses the electron spins
eaeb into the state,

|�−′
2 〉a = 1√

2
(|↑↓〉 − |↓↑〉), (42)
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with a probability of

ηO

d = |t0 − t |2
2

. (43)

After Bob performs the bit-flip operation σb
x = |↑〉〈↓| +

|↓〉〈↑| on the electron spin eb, the same as the case that the
perfect circular birefringence is effective, the state of the two
electrons eaeb evolves into

|�−′
2 〉b = 1√

2
(|↑↑〉 − |↓↓〉), (44)

which is the practical state of the electron spins eaeb after the
entanglement distribution, and it is identical to the target state
|�−

2 〉e. In other words, the fidelity F O

d for this case is unity,

F O

d = 1, (45)

which is independent of both the coupling strength g/κ and the
cavity leakage κs/κ , and the corresponding efficiency equals
to ηO

d .
From the discussion above, one can see that after entangle-

ment distribution the state of the electron spins eaeb depends on
the outcomes of the photon detection as a result of the imperfect
birefringent propagation of photons. That is, |�−′

2 〉e and |�−′
2 〉b

are conditioned on the outcomes of photon detection in S

and AS, respectively. Therefore, the total efficiency of the
entanglement distribution can be detailed as

ηd = ηO

d + ηE

d = |2t + 1|2 + |2t0 + 1|2
2

, (46)

shown in Fig. 5(a). Meanwhile, the fidelities F E

d and F O

d

measure the overlap between the ideal target state |�−
2 〉e and

the practical states |�−′
2 〉e and that between |�−

2 〉e and |�−′
2 〉b,

respectively. When the input maximally entangled state of
ab is |�−

2 〉c = 1/
√

2(|R↑,R↑〉 − |L↓,L↓)ab, the ideal target
state |�−

2 〉e of eaeb is fully orthogonal to the original state of
the two-electron system that equals the practical one when
spin eaeb does not interact with the photons, which leads
to the vanish fidelity F E

d = 0 for the outcome of the photon
detection in S when the coupling strength g/κ = 0. However,
when the outcome of the photon detection is in AS, we can
get the unity fidelity F O

d for entanglement distribution, even
with the imperfect input-output process, since the imperfect
birefringence of the QD-cavity system will appear as a whole
coefficient; see Eq. (39) for detail. However, for g = 0,
the corresponding efficiency ηO

d for the outcome in AS of
the photon detection in entanglement distribution vanishes
(ηO

d = 0), shown in Fig. 5(b).
During the entanglement extension process, the party

utilizes a PCD on two local spin qubits, and performs the partial
measurements on the spins. The influence of the practical
circular birefringence on the entanglement extension process
can be estimated by the performance of the PCD when the
two QDs are in the state |�〉ee′ = 1

2 (|↑↑〉 + |↓↑〉 + |↑↓〉 +
|↓↓〉)ee′ . The state of the composite hybrid system composed
of the input probe photon p and the electron spin ee′ before
the detection on the photon p evolves into

|�′
h〉1 = 1

4
√

2
{(|R1〉 + |R2〉)[2(r + t)|↑↑〉 + 2(r0 + t0)|↓↓〉

+ (r + t + r0 + t0)(|↑↓〉 + |↓↑〉)] + (|L2〉 − |L1〉)
× (r + t − r0 − t0)(|↑↓〉 − |↓↑〉)}, (47)
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FIG. 5. The performance of entanglement distribution. (a) The
fidelities F O

d and F E
d conditioned on different outcomes of pho-

ton detection in the entanglement distribution vs the normalized
coupling strength g/κ . (b) The efficiency ηd of entanglement
distribution vs the normalized coupling strength g/κ . Here ηd =
ηO

d + ηE

d , γ /κ = 0.1, and the resonant condition ωc = ωX− = ω0 is
adopted.

and the corresponding success probability ηp can be detailed
as

ηp = ηO

p + ηE

p = |2t + 1|2 + |2t0 + 1|2
2

, (48)

which is identical to that for entanglement distribution ηd , and
it equals to the efficiency of the entanglement extension when
the single-qubit operation and the detection of the QD electron
spins are perfect [57–61]. Here, ηO

p = ηO

d = (|t − t0|2)/2 and
ηE

p = ηE

d = (|2t + 1|2 + |2t0 + 1|2 + 2|1 + t + t0|2)/4 repre-
sent the probabilities for the heralded success of the entangle-
ment extension by detecting an |L〉 (odd parity of the PCD for
two spins in the ideal case) and a |R〉 (even parity of the PCD
for two spins in the ideal case) polarized photons, respectively.
When g/κ = 0, it leads to ηO

p = 0 no matter whether κs = 0

or not, since the probe photon in state |�〉p = (|R〉 + |L〉)/√2
does not interact with the QDs and it is still in the state |�〉p
when it interferes with itself at CPBS3, shown in Fig. 4. This
photon will be transformed into the |R〉 polarized photon by
the Hadamard operation H1 or H2 and it never leads to the
click of detectors D2 or D4, shown in Fig. 4.
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To be detailed, when a |R〉 polarized photon is detected
either in the |R1〉 or |R2〉 mode, the QD subsystem ee′ will be
collapsed into∣∣�E′

2

〉
e

= 1
2
√

2
[2(r + t)|↑↑〉 + 2(r0 + t0)|↓↓〉

+ (r + t + r0 + t0)(|↑↓〉 + |↓↑〉)]. (49)

The fidelity F E
p of the PCD with respect to the ideal even-

parity output state |�E

2 〉e = 1√
2
(|↑↑〉 − |↓↓〉)ee′ , obtained from

Eq. (20) for α1 = α2 = β1 = β2 = 1/
√

2, can be detailed as

F E

p = ∣∣
e

〈
�E

2

∣∣�E′
2

〉
e

∣∣2

= |r + t − r0 − t0|2
2|r + t |2 + |r + t + r0 + t0|2 + 2|r0 + t0|2

= |t0 − t |2
ηE

p

, (50)

which is identical to the fidelity F E

d with the even-parity
outcome during the entanglement distribution process. For
g/κ = 0, the QDs ee′ will be kept in the initial state |�〉ee′ =
1/2(|↑↑〉 + |↓↑〉 + |↑↓〉 + |↓↓〉), which is fully orthogonal to
the ideal output state |�0〉ee′ = 1/

√
2(|↑↑〉 − |↓↓〉), leading

to F E
p = 0. In contrast, when an |L〉 polarized photon is

detected, the QD subsystem ee′ will be projected into the state,∣∣�O′
2

〉
e

= 1√
2
(|↑↓〉 − |↓↑〉), (51)

which is identical to the ideal odd-parity output state |�O

2 〉e =
1√
2
(|↑↓〉 − |↓↑〉)ee′ obtained from Eq. (21) with perfect

birefringent propagation when applying our PCD. Now, the
fidelity F O

p of the state |�O′
2 〉e can be written as follows:

F O

p = 1. (52)

The reason is that the photon detection and the interference of
the probe photon from different paths transform the imperfect
birefringence into a nonlocal coefficient; see Eq. (47) for detail.
When g/κ = 0, the nonlocal coefficient will vanish, which
results in the fact that the corresponding probability ηO

p = 0.
The fidelities F O

d and F E

d conditioned on different outcomes
of the photon detection in the entanglement distribution
are shown in Fig. 5(a) as the function of the side leakage
of the spin-cavity system κs/κ and the coupling strength
g/κ on the resonant interaction condition, where γ /κ =
0.1 and ωc = ωX− = ω. Meanwhile, the fidelities F O

p and
F E

p in entanglement extension are identical to F O

d and F E

d ,
respectively. When the coupling strength g/κ > 0.6, both
the entanglement distribution process and the entanglement
extension process are near perfect, with the minimal fidelity
F E

d = F E
p > 0.948 for both cases with the side leakage κs/κ =

0 and κs/κ = 0.2. When the coupling strength g/κ = 1.2,
the minimum fidelities of the entanglement distribution and
extension with the side leakage κs/κ = 0.2 are F E

d = F E
p =

0.991. They can be increased to be F E

d = F E
p = 0.998 when

κs/κ = 0 and g/κ = 1.2. Interestingly, the detection of an
|L〉 polarized photon in entanglement extension and that of
|R↑R↑〉 or |L↓L↓〉 in entanglement distribution can lead to
the corresponding error-free processes, no matter what the
coupling strength g/κ and the side leakage κs/κ are, and it

is useful for generating entangled states and scalable one-way
quantum computation [17].

The total efficiency of entanglement distribution ηd =
ηO

d + ηE

d is shown in Fig. 5(b) with the same parameters as
those for the fidelities. Meanwhile, the efficiencies ηO

p and ηE
p in

entanglement extension are identical to the corresponding ones
ηO

d and ηE

d in entanglement distribution. One should note that
when the coupling rate g is small, especially, g/κ < 0.6, the
fidelities F E

d and F E
p are much smaller than F O

d = F O
p = 1, and

we should treat these two kinds of outcomes in entanglement
distribution (AS or S) and entanglement extension (|R〉 or |L〉)
independently. However, when g is large, the total efficiencies
are more important, since both kinds of outcomes are faithful,
shown in Fig. 5(a). When the coupling strength g/κ = 1.2, the
efficiencies ηd = ηp = 0.770 for the side leakage κs/κ = 0.2.
If g/κ = 2.4 and κs/κ = 0, the efficiencies ηd = ηp = 0.983
are achievable. The small reduction from unity probability
for κs = 0 originates from the noise operator (N̂ ) associated
with the spontaneous decay of the trion state. Meanwhile,
when we increase the side leakage to κs = 0.2κ , both ηE

d (ηE
p)

and ηO

d (ηO
p ) decrease a little leading to the decrease in the

total efficiency ηd (ηp), due to the finite reflection originating
from the coupling to side leakage mode ŝin. The efficiency ηd

(ηp) decreases since the increase of the side leakage κs/κ will
decrease the radiation into the cavity, resulting in a decrease of
the output photon in the subspace spanned by the transmission
and reflection modes, shown in Fig. 2(b). In addition, when the
achievable input-coupling efficiency ηin = 90% is considered
[56], the efficiencies above should be further reduced by 19%
and 10% for the efficiencies ηd and ηp, since two input-output
processes are involved in the entanglement distribution process
while only one is involved in the entanglement extension
process with our efficient PCD.

V. DISCUSSION AND SUMMARY

Thus far, we have detailed the process of establishing the
quantum entangled channel for the quantum communication
network. The photons entangled in the time-bin DOF are
exploited to entangle the remotely separated QD-cavity units.
Currently, the sources producing photon pairs with polariza-
tion entanglement are well developed. With some optical ele-
ments, the polarized entanglement can be transformed into the
time-bin one before the transmission over noisy optical-fiber
channels, shown in Fig. 3. Along with our effective PCD, the
parties can perform the heralded extension of the entanglement
across the quantum network with quantum swapping, and
increase the entanglement with entanglement purification. In
addition, by picking out the outcome of the PCD in which
an |L〉 polarized photon is detected for the success signal,
the two QDs will be projected into the odd-parity state in a
heralded way and the influence of imperfect birefringence on
the entanglement purification and the entanglement extension
processes can be eliminated.

In our protocol, the electron spin of the QD acts as a
quantum node. Before the arrival of the incident photon,
the users initialize their spins by optical pumping or optical
cooling [57,58], followed by single-spin rotations [59,60]. The
time needed for the coherent control of electron spins has been
suppressed into the scale of picosecond in the semiconductor
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quantum dot [61]. Meanwhile, an electron-spin coherence time
as high as T2 � 2.6 μs has been experimentally achieved [62],
which is quite long compared with preparation and measure-
ment time (ns scales). Hence, the cavity photon time τ = 4.5
ns will be the dominant time interval for the exciton dephasing
[28]. The previous fidelity of the final quantum networking
will be reduced by the amount of [1 − exp(−τ/T2) � 0.002].
When the absence of nuclear spins is achieved, e.g., by using
isotopically purified II-VI materials, the decoherence time is
theoretically predicted to be as long as the spin relaxation time
which is currently 20 ms at a magnetic field 4T and at 1K [63]
and can be much longer for a lower magnetic field [60,64].

Our scheme prefers the strong coupling between the QDs
and the cavity, and it can also be performed with low-Q-factor
cavities where g/κ < 1 at the price of decreasing the efficiency
a bit. The strong coupling has been observed in various QD-
cavity systems [65,66]. For micropillars with the diameter dc

around 1.5 μm, the X− dipole decay rate γ /2 � 1 μeV when
the temperature T = 2K [67]. The coupling strength g =
80 μeV and the cavity quality factor including the side leakage
as high as Q > 4 × 104 has been experimentally realized with
In0.6Ga0.4As in a similar experiment setup [68]. In other words,
g/(κ + κs) > 2.4 is achievable. Meanwhile, the coupling
strength g depends on the QD exciton oscillator strength and
the mode volume V , while κ is determined by the cavity quality
factor, and they can, in principle, be controlled independently
to achieve a larger g/(κ + κs). Recently, the coupling strength
g = 16 μeV and a cavity spectral width as low as κ =
20.5 μeV (Q = 65 000) have been achieved in a 7.3-μm diame-
ter micropillar [69]. And, then, the quality factor is improved to
Q = 2.15 × 105(κ = 6.2 μeV) with lower side leakage [56].

The imperfection that comes from photon loss is also an in-
evitable problem in the previous schemes [15,16,20,21,29,30].
The photon loss occurs due to the cavity imperfection, the fiber
absorption, and the inefficiency of the single-photon detector.
As the successful generation of the electron-spin entangled
state and the completion of quantum extension are heralded
by the detection of photons, the photon loss will only affect
the efficiency of our scheme and has no effect on the fidelity
of the quantum channel established. During the transmission
of the photons, there is no restriction on the electron spins.
That is, if the photons can arrive at the nodes, the distance of
the adjacent nodes can be long, different from those limited
by the coherent time of the quantum nodes [14,20] as the
entanglement between neighboring nodes are constructed by
entanglement swapping between the stationary qubit and the
flying qubit in the latter. The efficiency of our entanglement
distribution protocol is at least two times more than those
performed with two-photon coincidence detection [30,32],
since the photonic entanglement can be totally converted into
the QD entanglement conditioned on the detection of one
photon at each node. Meanwhile, the multimode speed-up
procedure [45] agrees with our protocol and can be involved
in a similar way to that presented by Jones et al. [32].

In summary, we have proposed an efficient quantum
repeater protocol for spin-photon systems with the help of
the time-bin encoder and the generalized interface between
the circularly polarized photon and the QD embedded in a
double-sided optical microcavity. It works in a heralded way
and requires only one channel, not two or more [31]. The

users can establish a maximally entangled quantum channel
which is independent of the particular parameters of the
collective-noise channel. We also construct an efficient PCD
based on one effective input-output process of a single photon,
and it can simplify the entanglement channel extension and
entanglement purification that is used to suppress the phase-flip
errors originating from the imperfection of the collective-noise
channel. This protocol is feasible with current technology and
can find its application directly in the quantum communication
network protocols.
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APPENDIX: N-USER GHZ STATE DISTRIBUTION FOR A
MULTIUSER QUANTUM REPEATER NETWORK

The principle of our deterministic entanglement creation for
two legitimate participants can be extended to the N-participant
case directly. Assume the original local N-photon GHZ state
in the polarization DOF can be described as

|�+
N 〉 = 1√

2
(|H 〉a|H 〉b . . . |H 〉z + |V 〉a|V 〉b . . . |V 〉z), (A1)

where the subscripts a, b, . . . , and z represent the photons
directed to Alice, Bob, . . . , and Zach, respectively. After a
similar encoder to that in the two-photon case performed on
each of the N photons, the state of the system composed of the
N photons ab . . . z launched into the noisy quantum channels
becomes

|�+
N 〉t0 = 1√

2
|H 〉a|H 〉b . . . |H 〉z ⊗ (|s〉a|s〉b . . . |s〉z

+|l〉a|l〉b . . . |l〉z). (A2)

It is an N -qubit time-bin entanglement. Here |s〉i and |l〉i
(i = a, b, . . . , z) denote the components of the photon i which
pass through the short path and the long path of the encoder
shown in Fig. 3(a), respectively. To address the influences
of the collective-noise channels on the N photons, we can
introduce N unknown unitary operators:

Ui = δi |H 〉i + ηi |V 〉i , (A3)

where the subscripts i = a,b, · · · ,z are used to denote the
noise operators acting on the photons a, b, . . . , and z,
respectively. Since the time separation between |s〉i and |l〉i
time bins are of the nanosecond scale and taken to be much
less than the time of the noise fluctuation of the channels, the
influence on the |s〉i components is identical to that on the |l〉i
component. After passing through the noisy channels, with a
π phase shift on one |V 〉 polarized photon, i.e., |V 〉a , the state
of the system composed of the N photons evolves into

|�−
N 〉t1 = 1√

2
(|s〉a|s〉b · · · |s〉z + |l〉a|l〉b · · · |l〉z)

⊗ (δa|H 〉a − ηa|V 〉a)(δb|H 〉b + ηb|V 〉b)

⊗ · · · ⊗ (δz|H 〉z + ηz|V 〉z). (A4)
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In the decoding procedure, with the decoder shown in Fig. 3(b), the parties Alice, Bob,. . ., and Zach let the photons a, b, . . .,
and z pass through their unbalanced polarization interferometers followed by a PC. PBS11 followed with a time delay �t on the
|V 〉 components is used to separate the |H 〉 and |V 〉 components of the photon and let them pass through QWP1 and QWP2,
respectively. After the photons successively pass through the optical elements described above, the N -photon state evolves into

|�−
N 〉t2 = 1√

2
(|R↑〉a|R↑〉b · · · |R↑〉z − |L↓〉a|L↓〉b · · · |L↓〉z) ⊗ [(δa|s ′〉a + ηa|l′〉a)(δb|s ′〉b + ηb|l′〉b) ⊗ · · · ⊗ (δz|s ′〉z + ηz|l′〉z)].

(A5)

Here |s ′〉 ≡ |ss l〉, |s ls〉, or |lss〉 and |l′〉 ≡ |s l l〉, |ls l〉, or |l ls〉.
If all the spins are initialized to be a superposition state of the form |�〉ei

= 1√
2
(|↑〉 + |↓〉), and the photons are in the state

|�−
N 〉t = 1√

2
(|R↑〉a|R↑〉b · · · |R↑〉z − |L↓〉a|L↓〉b · · · |L↓〉z)|s ′〉a|s ′〉b · · · |s ′〉z, the state of the hybrid system composed of the N

photons and the N electron spins after their interaction assisted by QD-cavity systems can be described as

|�
H
〉 = 1√

2N−1

1∑
αz =0

· · ·
1∑

αb=0

1∑
αa=0

−(−1)λ
{[

z∏
i=a

(
σxi

)αi −
z∏

i=a

(
σxi

)ᾱi

]
|R↑R↑ · · · R↑〉ab···z

⊗
[

z∏
i=a

(
σ i

x

)αi −(−1)N
z∏

i=a

(
σ i

x

)ᾱi

]
|↑↑ · · · ↑〉eaeb ···ez

}
, (A6)

where the single-qubit operators σxi
= |R↑〉i〈L↓| + |L↓〉i〈R↑|

and σ i
x = |↑〉i〈↓| + |↓〉i〈↑| are used to complete the bit-flip

operations on the ith photon and the ith electron spin,
respectively, and ᾱi = 1 − αi , while the parameter λ = ∑

αi .
Alice, Bob,. . ., and Zach measure the photons a, b, . . .,
and z, respectively, in the {|R〉, |L〉} basis, and the
electron-spin subsystem will be projected into a maximally
entangled N-spin GHZ state. To be detailed, if the collective
outcome of the measurement is |R↑R↑ . . . R↑〉ab···z, the
electron-spin subsystem will be collapsed into the state
|�+

N
〉e = 1√

2
(|↑↑ . . . ↑〉 − (−1)N |↓↓ . . . ↓〉)eaeb · · · ez. If the

number N of the parties is odd, no additional operation
is required to obtain the target entangled GHZ state
|�+

N
〉e0 = 1√

2
(|↑↑ . . . ↑〉 + |↓↓ . . . ↓〉)eaeb · · · ez; otherwise,

Alice performs a phase-flip operation σa
z = |↑〉a〈↑| − |↓〉a〈↓|

on the spin ea to get the target entangled GHZ state
|�+

N
〉e0 .

During the entanglement distribution process, the quantum
noise on the polarization mode of the photons in our protocol
is general. If the giant circular birefringence induced by
the single electron spin is reliable, one can complete the
entanglement distribution process and get the N remotely
separated QD-confined electron spins entangled in the GHZ
state |�−

N
〉e0 in a heralded way conditioned on the detecting

of one photon in each node. The photon loss during the
entanglement distribution process cannot lead to the heralded
results and does not affect the fidelity of the entangled
N-QD-electron-spin states.
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