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Characterizing errors on qubit operations via iterative randomized benchmarking
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With improved gate calibrations reducing unitary errors, we achieve a benchmarked single-qubit gate fidelity
of 0.9995 ± 0.0002 with superconducting qubits in a circuit quantum electrodynamics system. We present a
method for distinguishing between unitary and nonunitary errors in quantum gates by interleaving repetitions
of a target gate within a randomized benchmarking sequence. The benchmarking fidelity decays quadratically
with the number of interleaved gates for unitary errors but linearly for nonunitary errors, allowing us to separate
systematic coherent errors from decoherent effects. With this protocol, we show that the fidelity of the gates is
not limited by unitary errors.
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Accurate characterization of control gates is an essential
task for developing any quantum computing device. Quantum
process tomography (QPT) [1–3] has been the standard method
for characterizing quantum gates because, ideally, it produces
a full reconstruction of the quantum process. In practice,
however, QPT suffers from many drawbacks, the most inimical
being its exponential scaling in the number of quantum bits
(qubits) comprising the system and that it is limited by state
preparation and measurement (SPAM) errors. Various methods
such as randomized benchmarking (RB) [4–7] and gate set
tomography (GST) [8,9] have recently been developed to help
overcome these limitations. RB is both insensitive to SPAM
errors and efficient [10]. However, it only extracts a single
piece of information, i.e., the average gate fidelity. GST, on the
other hand, helps to overcome limitations from SPAM errors
by reconstructing an entire library of gates in a self-consistent
manner. The price paid for this self-consistent reconstruction
is an even worse scaling than QPT.

As control calibration techniques continue to improve and
quantum gates approach the fidelity required for fault-tolerant
quantum computation, it becomes both important and difficult
to verify the presence of increasingly small errors. Error veri-
fication constitutes a critical first step in a debugging routine
since different physical mechanisms can lead to different
error types. QPT and GST are often poor choices for error
verification since they are time consuming and contain so much
information that backing out the presence of specific error
types on small scales can be a challenge in itself. In addition,
SPAM errors in QPT set a lower limit on the detectable error
strengths [8]. At the other end of the spectrum, while standard
RB is efficient, the information it contains about the gate
is typically not enough to perform any sort of useful error
verification. An extension of standard RB, i.e., interleaved
randomized benchmarking, consists of interleaving a target
gate in a benchmarking sequence and provides bounds on the
error for the gate of interest [11,12]. Interleaved benchmarking
can identify gates that are poorly calibrated, but does not reveal
if the errors are due to decoherence, over- or under-rotations,
or off-resonance effects, among other error types. Thus, fast
and reliable routines that determine the presence of specific
error types are required. Others have proposed to use RB for
measuring the unital part of a quantum map [13], correlated
errors on a multiqubit space [14], metrology of phase noise

[15], and, recently, the authors of Ref. [16] have described an
alternative method for measuring unitary errors.

In this paper, we propose and experimentally implement
a protocol, largely based on the ideas of RB, that verifies the
presence of unitary versus nonunitary errors. More specifically,
this method distinguishes unitary errors that are additive, such
as over-rotation errors, but does not detect other types of
unitary errors. Axes errors, for example, would be undetectable
unless converted into an angle error through a combination of
gates, as we demonstrate experimentally here. Such additive
errors do include many types of calibration errors that would
be present in a physical system, so any method capable of
detecting such errors has a practical utility in experimental
settings.

A major source of unitary errors in transmon qubits
originates from the presence of higher levels, which can
be removed by the derivative removal via adiabatic gate
(DRAG) protocol [17]. To quantify this error source, we
compare experimental randomized benchmarking fidelities
for several gate times with two simulations, one assuming
a DRAG-corrected pulse shape and the other without DRAG
(Fig. 1).

The measurements described here are performed on a
two-qubit sample consisting of two transmon qubits cou-
pled by a coplanar waveguide resonator, with independent
readout resonators for each qubit. The qubit of interest has
a transition frequency of 5.0154 GHz and anharmonicity of
δ/2π = −323 MHz. T1 and T2 are 45 ± 6 μs and 53 ± 10 μs,
respectively. These characteristic times are the mean values
from 500 measurements taken over 14 hours, and the error
bars are the standard deviation of this data; each independent
experiment is well fit by an exponential decay. The pulses
used in the RB sequence are truncated Gaussian pulses having
total length equal to four times the standard deviation of
the Gaussian and with the DRAG correction applied to the
quadrature component.

The weak anharmonicity δ of the transmon limits the gate
fidelity as 1/δ, which can be seen for short gate times in
Fig. 1. The experimental data falls below the non-DRAG curve
(brown dotted line in Fig. 1), showing that we have partially
removed unitary errors due to the presence of higher levels in
the transmon. At the gate length tg = 16.7 ns, the error rate
corresponds to an average fidelity per gate of 0.9995 ± 0.0002,
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FIG. 1. (a) Randomized benchmarking fidelity as a function of
gate length. Simulated fidelity with (solid blue line) and without
(dotted brown line) a DRAG correction. Experimental data (points)
with the highest fidelity of 0.9995 ± 0.0002 occurring at 16.7 ns.
Dashed black line: simulated fidelity when all gates are over-rotated
by π/64 (which would be detectable by IRB). Green dot-dashed line:
simulated fidelity with gate-dependent dephasing proportional to the
drive amplitude γφ = k�. (b) The iterative benchmarking sequence
with target gate C repeated n times between random Clifford gates, Ci .
The case n = 0 corresponds to a regular randomized benchmarking
sequence, as used for the data in (a).

but is not yet limited by T1 and T2 with the DRAG correction
(blue solid line). With the current of control, we can calibrate
pulses to within a factor of four of the limit set by T1 and T2,
but it is clear that there are still errors remaining in the system.
(The remaining simulations in Fig. 1 will be described later in
this text.)

For longer pulses, the fidelity is limited by the finite
coherence time of the qubit. The tradeoff between decoherence
and unitary errors shown in Fig. 1 is generic across quantum
computing hardware. For optimal fidelity, any quantum pro-
cessor will be operating with fidelity at least partially limited
by unitary errors: if this were not the case, then the fidelity
could surely be improved by shortening the gate time.

We achieve high-fidelity gates through a set of microwave
pulse calibrations, which we describe here before demon-
strating our method for detecting errors that remain after
calibration. We use single sideband (SSB) modulation of our
control pulses and adjust the in-phase quadrature (IQ) mixers
(MITEQ IRM0408LC2Q) for the chosen intermodulation
frequency (IF) to ensure that only the correct sideband is
produced with minimal leakage at the carrier frequency.
We then calibrate the in-phase control pulse amplitude and
the amplitude of the quadrature component for the DRAG
correction. The pulse amplitudes for a π pulse (Xπ ) and a π/2
pulse (Xπ/2) about the x axis are tuned up by repeating the
pulses in the sequence Xπ/2 − (X{π,π/2})2n in order to amplify
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FIG. 2. Calibrations of the control pulses: (a) Bloch sphere
depiction of the qubit for the first three points of the error amplification
sequence given in Eq. (1). (b) The amplitude calibration for a Xπ/2

pulse. The initial guess for the pulse amplitude has some error, which
the sequence amplifies so the deviation from 1/2 grows with n,
the number of repeated pulses. (c) The calibration of the DRAG
parameter performs the Xπ/2 − X−π/2 sequence while varying λ, the
amplitude of the derivative pulse on the quadrature channel. The
correct derivative amplitude corresponds to the point where the qubit
returns to the ground state.

the errors. The evolution of the qubit’s Bloch vector during the
first three points of this sequence is depicted in Fig. 2(a).

We correct for over- or under-rotations by fitting to the
measured population of the qubit ground state, P (|0〉) [see
Fig. 2(b)]. Under the assumption that the error is only an over-
or under-rotation, it is simple to derive a fitting formula for the
amplitude calibration sequences. The fit function for the Xπ/2

pulse in this sequence is

P (|0〉) = a + [
1
2 (−1)n cos(π/2 + 2nε)

]
, (1)

where a is left as a fit parameter and goes to 1/2 for perfect
Xπ/2 pulses. For Xπ , the fit function is

P (|0〉) = a + [
1
2 cos(π/2 + 2nε)

]
. (2)

The angle error ε found by this fit corresponds to a gate error
r ≈ ε2/6. After fitting the error, we update the pulse amplitude
accordingly.

Lastly, we determine the DRAG correction by applying the
sequence (Xπ/2 − X−π/2) while varying the amplitude of the
derivative pulse on the quadrature channel [Fig. 2(c)]. The error
due to DRAG calibration depends on the square of the Rabi
rate, �2, and is independent of the sign of the Rabi drive. The
DRAG error therefore adds during this calibration sequence,
so the final state of the qubit traces a cosine as a function of
the derivative amplitude. We select the amplitude that returns
the qubit in the ground state, |0〉.

To further characterize the control gates, we have developed
an extension to interleaved randomized benchmarking. We
repeat a target Clifford n times between the random Clifford
gates and measure the fidelity as a function of n repetitions
[Fig. 2(b)]. A typical benchmarking sequence consists of a set
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of random Clifford gates that together compose to an identity
operation [6]. Under realistic assumptions on the noise, the
fidelity between the implementation of this sequence with
the identity operation decays exponentially as a function of
the number of Clifford gates [10]. When the fidelity decay is
averaged over many realizations of the random sequence, the
decay constant serves as the single metric for the average noise
in the system. If the gate errors are nonunitary, then the fidelity
will only depend on the total length of the interleaved segment,
and the resulting error per segment will thus be linear with n.
If there are unitary errors of an over- or under-rotation type,
they will add coherently with n, and the fidelity decay will
be quadratic to leading order. To see this, suppose we have a
single qubit unitary error of the form

U = exp
(
−i

ε

2
r̂ · �σ

)
, (3)

where ε, r̂ , and �σ are the error angle, axis of rotation, and
vector of Pauli operators, respectively. Assuming ε � 1, we
can write Un to second order in ε as

Un = 1 − in
ε

2
r̂ �σ − [n(2n − 1)]

ε2

4
(r̂ · �σ )2 + O(ε2). (4)

The average fidelity F of the error gate compared to the identity
is given by F = [|tr(Un)|2 + 2]/2, and writing F in terms of
the benchmarking parameter α = 2F − 1 gives [6]

α = 1 − n(2n − 1)ε2

3
, (5)

which shows the quadratic dependence in n. We find using
a Kraus operator representation of T1 and T2 processes that
errors due to decoherence do decay linearly in n to first order.
The extracted α approximated to second order in all errors is

α =1 + 2n

(
−ε1

3
− ε2

6
− 2ε2

3
− 2ε2

2

3

)

+ 2n2

(
ε2

1

8
+ ε1ε2

3
+ 2ε2

2

3
− ε2

6

)
, (6)

where εi = 1 − exp(tg/Ti) corresponds to a T1 or T2 error
during a gate of length tg , and ε is an over-rotation error. The
ε2
i terms are negligible for typical gate and coherence times,

on the order of 10−8 compared to 10−4 for an over-rotation of
π/128.

The calibrated pulses are used for iterative randomized
benchmarking (IRB), in which we interleave each target
sequence zero to 30 times within random sequences of up to
365 Clifford gates [as depicted in Fig. 1(b)]. We average over
35 instances of each sequence and fit the decay to Anα

i
n + Bn,

where i is the number of Clifford gates and n is the number of
interleaved gates. Error bars are given by the 95% confidence
interval of this fit.

We perform this protocol with a 16.7 ns gate time [the time
producing the minimum error per gate; Fig. 1(a)] and interleave
the targets I , Xπ , and Xπ/2. For these three gates, the increase
in the error per gate, r = (1 − α)(1 − 1/d), versus the number
of interleaved gates is linear [Fig. 3(a)]. This is consistent with
the RB data that suggests the unitary errors at this gate time
are small.

(a)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

No. iterated gates

E
rr

or
pe

rg
at

e

I
Xπ/2
Yπ/2
Xπ/2Yπ/2
Product Xπ/2,Yπ/2
Xπ/2+π/256
Xπ/2+π/128
Xπ/2+π/64

(b)

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

No. iterated gates

E
rr

or
pe

rg
at

e

I
Xπ/2
Yπ/2
Xπ/2Yπ/2
Product Xπ/2,Yπ/2

FIG. 3. Iterative benchmarking data for (a) a 16.7 ns gate and (b)
a 10.0 ns gate. The interleaved gates are the identity (blue squares),
Xπ/2 (red circles), Yπ/2 (magenta diamonds), and Xπ/2Yπ/2 (black
stars). The product of r , the error per gate, for Xπ/2 and Yπ/2 is shown
(dashed black stars) for comparison to the Xπ/2Yπ/2 gate. Also in
(a) are interleaved over-rotations on an Xπ/2 by π/256 (dotted aqua
triangles), π/128 (dashed green triangles), and π/64 (dot-dashed
orange triangles). The error bars here are the 95% confidence interval
of the fit to the IRB data averaged over 35 instances.

We then intentionally add over-rotation errors to the Xπ

gate to determine a bound on the sensitivity of this procedure
to amplitude errors. We repeat the IRB procedure with the
Xπ/2 pulse replaced with Xπ/2+ε , where ε = {π/64, π/128,
π/256}. The π/64 and π/128 over-rotations lead to fidelities
that fall off quadratically and are clearly distinguishable from
gates approaching the coherence limit. The π/256 appears to
have similar errors to the calibrated gates, giving a bound on
the sensitivity to over-rotation errors. Note that with infinite T1,
we could increase the sensitivity of this scheme by repeating
a larger number of interleaved gates.

In order to quantify the amount of unitary versus nonunitary
errors in the IRB data, we fit the data to both quadratic and
linear models. Using the Akaike information criterion (AIC),
we determine which model most accurately describes the data
[18,19]. The AIC is a useful tool for model selection and has
been applied to quantum information previously [20].
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TABLE I. AIC values for gates with no over-rotation, π/256
over-rotation, and π/128 over-rotation for linear and quadratic model
functions.

Fit function 0 π/256 π/128

bx + c 1 1.3 × 10−3 2.2 × 10−3

ax2 + b 2.0 × 10−7 0.18 1
ax2 + bx + c 0.29 1 0.16

For n data points and k fitting parameters, the AIC is given
by

C = n ln

(
R

n

)
+ 2k + 2k(k + 1)

n − k − 1
, (7)

where R is the residual sum of squares for the fit. The final
term in this expression is a correction under the condition that
n < 40k. This correction increases the penalty for overfitting
when the sample size is small. We compute the C for three
models: linear, quadratic with no linear component, and
combined linear and quadratic (see Table I). The relative
probability that the ith model is correct is

Pi = exp
[

1
2 (Cmin − Ci)

]
, (8)

with Cmin the smallest AIC value for the set of models. The
model with the best fit to the data will have Pi = 1. We
calculate the relative probabilities for the three models for
iterative randomized benchmarking data with Xπ/2 pulses with
no over-rotation, and with π/128 and π/256 over-rotations. As
detailed in Table I, the calibrated gate with no added error is
best fit by a linear model, as expected when there is little
unitary error present. The gate with π/256 over-rotation is fit
best by the combined model. The preferred model according to
the AIC for the gate with π/128 error is the quadratic model,
but this is in part due to the penalty placed on adding extra
parameters to the fit function. The fit parameters found for
each model are given in Table II.

From this analysis, it follows that a π/128 over-rotation is
detectable with this method and that consequently coherent
rotation errors must be smaller than this value. We therefore
simulate RB in the presence of a systematic π/64 over-rotation
(easily detectable by IRB were it present), demonstrating that

TABLE II. Fit parameters for Xπ/2 gates with zero error, and
π/128 and π/256 over-rotation error using the three models com-
pared using the Akaike information criterion in Table I.

Error Fit function a b c

0 bx + c 4.4 × 10−4 1.1 × 10−3

0 ax2 + c 1.8 × 10−5 1.1 × 10−3

0 ax2 + bx + c 0.8 × 10−5 2.4 × 10−4 1.1 × 10−3

π/128 bx + c 1.6 × 10−3 1.1 × 10−3

π/128 ax2 + c 1.1 × 10−4 1.1 × 10−3

π/128 ax2 + bx + c 1.0 × 10−4 1.6 × 10−4 1.1 × 10−3

π/256 bx + c 1.0 × 10−3 1.1 × 10−3

π/256 ax2 + c 6.0 × 10−5 1.1 × 10−3

π/256 ax2 + bx + c 4.2 × 10−5 3.7 × 10−4 1.1 × 10−3

this is not sufficient to explain the deviation of the experiment
from the simulated RB [dashed black line in Fig. 1(a)]. We
conclude that there is an additional source of decoherence
that is present under the continuous-driving conditions of an
RB experiment. One possible form for such nonunitary error
would be a dephasing proportional to the Rabi rate of the
drive, as would result from amplitude fluctuations in the local
oscillator, an amplifier, or other microwave electronics along
the control line. Simulated RB in the presence of such noise
(green dot-dashed line) shows reasonable agreement with the
experimental data. Drive noise with a 1/f dependence has been
measured in flux qubits [21], and such low-frequency noise
has been studied in the context of randomized benchmarking
[22,23]. As the IRB results for Xπ/2 and Yπ/2 decay at a similar
rate to the identity, however, we suspect that the deviation from
the coherence limit is actually due to pulse reflections that
add incoherently during the randomized sequence of gates in
standard RB. The calibration for π/2 compensates for this
type of error by repeating the pulse many times, and thus IRB
shows no unitary error.

We notice that there is still a deviation from the best fit at
the shortest gate time in Fig. 1(a). To understand the origin
of this larger error rate, we calibrate gates of length 10 ns
and apply IRB. For interleaved I , Xπ/2, and Yπ/2, the iterative
benchmarking data appears to decay linearly [Fig. 3(b)]. First,
we notice that the error of a Yπ/2 gate is larger than the Xπ/2
gate error. We attribute this to our calibration procedure, in
which the amplitude of the Yπ/2 is assumed to be equal to
the Xπ/2 pulse amplitude, but sampling errors in the pulse
generation are not taken into account. Second, when the
interleaved sequence is Xπ/2Yπ/2 (black stars), a larger decay is
observed. This cannot be accounted for by multiplying (dashed
black stars) the individual errors per gate, r , for the Xπ/2 (red
circles) and Yπ/2 (magenta diamonds) implying an additional
error on the Xπ/2Yπ/2 gate. (Note that, in contrast, no additional
error for the Xπ/2Yπ/2 sequence is observed for the 16.67 ns
gate, for which the product of Xπ/2 and Yπ/2 matches the error
for Xπ/2Yπ/2.) The Xπ/2Yπ/2 is not directly calibrated, and the
presence of unitary errors here indicates a phase error, despite
the fact that SSB modulation ensures the orthogonality of X
and Y pulses by imposing a π/2-phase shift on the IF signal.

After identifying the phase error, we have developed an
error amplification sequence similar to those of Fig. 2 in order
to quantify an X-Y axes error. The sequence is a repetition of
XπYπ within a Ramsey experiment:

Xπ/2 − (Xπ − Yπ )n − Y−π/2.

The fit function for the error case when X and Y are not
orthogonal is the same function as for a π/2 amplitude error
given in Eq. (1). The gate error measured by this sequence is
2ε2/3.

We measure this error as a function of the buffer time
between pulses for three different pulse lengths, as shown in
Fig. 4. The IRB data was taken with a 3.33 ns buffer indicated
by the vertical line [with pulse length of 13.33 ns for the data in
Fig. 3(a) and 6.67 ns for Fig. 3(b)]. The gate error is 2 × 10−5

for the pulse length corresponding to the 16.67 ns gate and
3 × 10−3 for the 10 ns gate. This is consistent with the IRB
data that demonstrate an axis error is present for the 6.67 ns
pulse (red squares in Fig. 4) but is not detected for 13.33 ns
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FIG. 4. The gate error measured as a fit to the error amplification
sequence Xπ/2 − (Xπ − Yπ )n − Yπ/2. The gate error is plotted vs
buffer length for three pulse lengths: 6.67 ns in red squares, 13.33 ns
in blue circles, and 20 ns in violet triangles. The buffer length used
for the data taken in Fig. 3 was the shortest one shown here, 3.33 ns
(indicated by the solid vertical line).

(violet triangles). The gate error decreases as the buffer time
is increased until it levels off around 15 ns, at which point
the resolution of the fit is not better than 1 × 10−5. Because
the error decreases with longer buffer time, it is likely due to
distortions that cause successive pulses to overlap when the
time between them is insufficient. Note that this effect is not
typically considered in RB, in which it is assumed a pulse
knows no history of previous pulses in the sequence. This
pulse distortion may be alleviated by further pulse shaping (as
shown in [24] with pulse distortions on flux qubits) and will
be the subject of future investigations.

We have introduced a variation of randomized bench-
marking, useful for distinguishing nonunitary from unitary

errors, and have validated this method on a superconducting
qubit experiment. IRB will work for most physical unitaries
without knowledge of the type of error present. Unitary
errors that do not add coherently will not be detected, but
many such unitaries, such as axes errors, may be rotated
within the IRB protocol to errors that are amplified. Once
a unitary error is discovered, one can develop a calibration
sequence to reduce the error. The calibration sequences will
generally be more experimentally efficient than running the
IRB protocol for every gate, but these sequences must be
developed independently for each type of error. In contrast,
IRB provides a brute-force method for identifying small
errors without prior knowledge of the type of error. In this
work, we have demonstrated IRB on single-qubit gates, but
this brute-force approach may be useful when extended to
multiqubit systems. Multiqubit gates could be interleaved in
the same way without requiring any additional postprocessing,
measurements of correlations, or even single-shot readout as
is the case for alternative characterization tools such as gate
set tomography.

By pushing gate lengths down and paying careful attention
to calibrating the resulting unitary errors, we have achieved
a benchmarked single-qubit gate fidelity of 99.95%. The
error rate corresponding to this fidelity still deviates from
the expected coherence by about a factor of four, but
our iterative randomized benchmarking data indicate that
we are not limited by unitary errors that add coherently.
We now seek to identify sources of nonunitary errors (be-
yond T1 and T2) that must be limiting our fidelity at this
time.
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