
PHYSICAL REVIEW A 93, 012118 (2016)

Energy backflow and non-Markovian dynamics

G. Guarnieri,1,2 C. Uchiyama,3 and B. Vacchini1,2
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We explore the behavior in time of the energy exchange between a system of interest and its environment,
together with its relationship to the non-Markovianity of the system dynamics. In order to evaluate the energy
exchange we rely on the full counting statistics formalism, which we use to evaluate the first moment of its
probability distribution. We focus in particular on the energy backflow from environment to system, to which we
associate a suitable condition and quantifier, which enables us to draw a connection with a recently introduced
notion of non-Markovianity based on information backflow. This quantifier is then studied in detail in the case
of the spin-boson model, described within a second-order time-convolutionless approximation, observing that
non-Markovianity allows for the observation of energy backflow. This analysis allows us to identify the parameters
region in which energy backflow is higher.
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I. INTRODUCTION

Manipulation of heat at the microscopic level has been
intensively studied in recent years. We can find several
proposals of heat engines and/or heat pumps which consist
of a finite-dimensional quantum system coupled to multiple
environments [1–5]. In these works, environmental effects
have mainly been described using the formalism of the master
equation in the well-known Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) form [6], suitably embedded in the context
of full counting statistics (FCS) [7], where the dynamics is
described by a semigroup, therefore enabling only simplified
exchanges of energy. Such master equations have been proven
to describe quite faithfully many physical open systems in
the Born-Markov approximation, which, however, represents
a restrictive requirement that often fails to provide an accurate
description of the dynamics at short and intermediate time
scales, especially in the presence of a structured environment
[8,9]. Therefore, the importance of considering general-
ized master equations with time-dependent coefficients, also
spurred by the recent developments of quantum technologies
in short-time and/or low-temperature regions [10–13], has
became a leitmotif in this field [7,14,15]. Within this more
realistic framework, however, a non-Markovian description of
the dynamics is necessary in order to correctly characterize
the system. Due to this fact, much effort has been devoted
in the last decade to formally define and quantify the degree
of non-Markovianity of a given dynamics [16–26], as well
as developing reservoir-engineering techniques to manipulate
it [8,27,28]. Note that in the present paper, following recent
work, see, e.g., [25,26] for an overview, we allow the term
non-Markovian also for dynamics described by time-local
equations, provided the coefficients in the equations become
at least temporarily negative, thus allowing for revivals in the
behavior of certain system observables. Such features that are
considered in the paper are related to a competition between
system and environment relaxation time scales. One of the
most active research areas in this field is nowadays dedicated
to the challenge of exploiting non-Markovianity as a resource
to improve, for example, quantum communication protocols
[29,30].

Our work is inserted in this framework and in particular
focuses on the study of the behavior in time of the energy flow
between a system of interest and its environment, quantified
through FCS methods, without using the full Born-Markov
approximation and only assuming a second-order time-
convolutionless expansion of the generator of the dynamics
that is working in the Born approximation. In this scenario, at
variance with what happens in the Born-Markov(semigroup)
regime, where a one-way-only energy current can occur, non-
Markovian dynamical effects generally arise and the rate by
which system and environment exchange energy can oscillate
in time and energy can even come back from the environment
to the system. In order to capture this phenomenon, we
introduce a condition and a suitable quantifier of the energy
backflow.

We then illustrate this scenario considering a spin-boson
model, which provides a paradigm in the description of
dissipative two-level systems and has found wide applicability
in many important situations (see, e.g., [31,32]). Finally, we
study the connection between the introduced quantifier for the
energy backflow and the occurrence of non-Markovianity as
introduced by Breuer, Laine, and Piilo in [17].

The present paper is organized as follows. In Sec. II we
recall the FCS formalism and we apply it to the study of energy
transfer between an open quantum system and its environment.
We also give, in Sec. II B, a condition and a quantitative
measure for the occurrence of energy backflow. We apply this
construction to the spin-boson model in Sec. III, where we
illustrate the system and discuss the results in detail. Finally,
in Sec. IV we build a connection between the occurrence of
energy backflow and of non-Markovianity. Conclusions are
drawn in Sec. V.

II. FORMALISM

In this section, we make an overview of the principal aspects
of the FCS formalism which will be necessary to our purposes.
In Sec. II B we proceed to introduce the concept of energy
backflow within this framework.
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A. Full counting statistics

Let us start by briefly recalling the FCS formalism as
developed in Esposito, Harbola, and Mukamel [7]. Consider a
system of interest interacting with its environment according
to the Hamiltonian H = H0 + Hint, where H0 = HS + HE

denotes the sum of the system Hamiltonian HS and of the
environmental Hamiltonian HE , while Hint is the interaction
Hamiltonian. Within this framework, the time evolution of
an environmental observable Q which is transferred from
the relevant system into the environment (or vice versa) is
reconstructed by looking at the difference in the outcomes of
two-point projective measurement. Let q0 and qt denote such
outcomes, respectively, at the initial time t = 0 and at a later
time t , of the measurement of the environmental observable
Q. The joint probability to have obtained these outcomes reads

P [qt ,q0]=TrS+E

{
�qt

U (t,0)�q0ρSE(0)�q0U
†(t,0)�qt

}
, (1)

where �qt
= |qt 〉〈qt | indicates the projective measurements

relative to eigenvalue qt , while U (t,0) denotes the total
unitary evolution operator and ρSE(0) is the initial state of
the composite system. The information on the variation of the
observable Q is then encapsulated in the probability density

Pt (�q) =
∑
qt ,q0

δ(�q − (qt − q0))P [qt ,q0], (2)

where δ(·) stands for the Dirac δ distribution. Introducing the
cumulant-generating function

St (χ ) = ln
∫ +∞

−∞
d(�q)Pt (�q)eiχ�q, (3)

where χ is often referred to as the counting field, the nth
cumulant of the probability distribution Pt (�q) is then readily
given by the nth derivative of St (χ ):

〈�qn〉t = ∂nSt (χ )

∂(iχ )n

∣∣∣∣
χ=0

. (4)

This procedure can be directly applied in the context of open
quantum systems as follows. If we assume that [�q0 ,ρSE(0)] =
0 and moreover use the fact that, if the spectral decomposition
of Q is Q = ∑

q q�q , then f (Q) = ∑
q f (q)�q holds for

any function f , we readily obtain the following relation:
∑
q0

e−iχq0�q0ρSE(0)�q0 = e−i
χ

2 Q(0)ρSE(0)e−i
χ

2 Q(0). (5)

By means of it, it is straightforward to prove that the cumulant-
generating function can be written as

St (χ ) = ln TrS{ρχ (t)}, (6)

where we have introduced the conditional density operator

ρχ (t) ≡ TrE{Uχ/2(t,0)ρSE(0)U †
−χ/2(t,0)}, (7)

which evolves according to the modified evolution operator
Uχ (t,0) ≡ eiχQ(t)U (t,0)e−iχQ(0). Obviously, for χ = 0 we
retrieve the usual evolution operator Uχ=0(t,0) = U (t,0) and
the statistical operator ρχ=0(t) = ρ(t).

B. Energy backflow

Let us apply the FCS formalism to the study of energy
transfer between a system and its environment. To this aim
we select the observable Q as the environmental energy, i.e.,
Q ≡ HE , whose spectrum we assume to be time-independent
since no external driving fields are considered. In the absence
of initial correlations between the system of interest and its
environment, i.e.,

ρSE(0) = ρS(0) ⊗ ρE, (8)

with ρE being a Gibbs state relative to the temperature TE , the
evolution of the modified operator ρχ (t) is given in terms of
the time-convolutionless generalized master equation (GME)
[33–35]

d

dt
ρχ (t) = �χ (t)ρχ (t), (9)

where the time-dependent superoperator �χ (t) in the second-
order approximation has the form

�χ (t)[ω] = −i[HS,ω]

−
∫ t

0
dτ TrE[Hint,[Hint(−τ ),ω ⊗ ρE(0)]χ ]χ ,

(10)

where [Hint(t),B]χ ≡ Hχ
int(t)B − BH−χ

int (t), with
Hχ

int(t) = e(i/2)χHEHint(t)e−(i/2)χHE and Hint(t) =
eiH0tHinte

−iH0t . In the expressions above and in the
remainder of the work we set � = 1 for simplicity. The formal
solution of (10) has the form

|ρχ (t)〉 = T+ exp

[∫ t

0
dτ�χ (τ )

]
|ρ(0)〉, (11)

with T+ indicating the chronological time ordering operator
and |ρχ (t)〉 and �χ (t) denoting, respectively, the vector and
matrix forms in the Hilbert-Schmidt space of the operator ρχ (t)
and the superoperator �χ (t).

The time-dependent first moment of the energy transfer can
be consequently expressed, using (4), as [36]

〈�q〉t = 〈1| ∂

∂(iχ )
|ρχ (t)〉|χ=0, (12)

where 〈1| denotes the trace operation in Hilbert-Schmidt space.
Since the density operator satisfies the relation TrS{ρχ=0(t)} =
1, the state 〈1| is a left eigenstate of �χ (t) relative to the zero
eigenvalue. Using this relation, Eq. (12) can be expressed in
the more compact form

〈�q〉t =
∫ t

0
dτθ (τ ), (13)

where we have introduced the function

θ (t) ≡ 〈1|∂�χ (t)

∂(iχ )
|ρ(t)〉|χ=0, (14)

which describes the energy flow per unit of time, i.e., the rate
of energy exchanged between the system of interest and its
environment.

In the remainder of the paper θ (t) will be the crucial
quantity under investigation. The rate by which the system
and its environment exchange energy may, in fact, strongly
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vary depending on the several parameters characterizing the
dynamics. In particular, adopting the terminology from the
context of non-Markovian dynamics [17,37], we speak of
regions of energy backflow from the environment to the system
whenever, considering situations which in the Born-Markov
semigroup approximation would lead to a non-negative steady
energy transfer from system to environment, we have that at
some time t

θ (t) < 0. (15)

Building on this condition, a measure for the total amount
of energy which has flown back from the environment to the
system during the evolution is naturally introduced as

〈�q〉back = max
ρS (0)

1

2

∫ +∞

0
dt[|θ (t)| − θ (t)], (16)

where the maximization procedure is performed over all
possible initial states of the reduced system. Note that the
integrand of (16) is different from zero if and only if θ (t)
assumes negative values. Moreover, it represents, in principle,
a measurable quantity. However, despite the formal similarity
between this quantifier and some of the recently introduced
non-Markovianity measures [17,19,37], it should not be
confused with an alternative non-Markovianity measure, rather
providing only an estimate of the energy backflow.

III. THE SPIN-BOSON MODEL

In the present section we study the energy transfer in the
so-called spin-boson model. This model, which describes a
spin- 1

2 system interacting with an environment consisting of an
infinite number of bosonic modes, has been studied extensively
over the past decades since it represents the prototypical model
of dissipative two-level system [31,32]. Let us start from the
Hamiltonian of the composite system, which reads H = HS +
HE + Hint, with

HS = ω0

2
σz, HE =

∑
k

ωkb
†
kbk, and Hint = σx ⊗ BE,

(17)

where σz,x denote the usual Pauli matrices, ω0 is the energy
difference between excited (|1〉) and ground (|0〉) state of the
system, ωk stands for the energy of the kth bosonic mode, and
gk is the coupling strength between the mode and the system.
Finally, in (17), we have denoted

BE ≡
∑

k

(
gkb

†
k + g∗

k bk

)
, (18)

with bk and b
†
k being the bosonic annihilation and creation

operator of the environment relative to mode k.
A GME of the form (9) can be obtained for this

model at second order in a perturbation expansion [36],
whose analytical solution can be approached moving to
the Hilbert-Schmidt space. In this space, the conditional
density operator ρχ (t) is represented by the vector |ρχ (t)〉 =
[ρχ

00(t),ρχ

01(t),ρχ

10(t),ρχ

11(t)]T , where

ρχ
α (t) = TrS{σ †

αρχ (t)} (19)

and {σα}α=0,1,2,3 = {|0〉〈0|,|0〉〈1|,|1〉〈0|,|1〉〈1|}. Correspond-
ingly, the superoperator �χ (t), now regarded as a linear map
on the space of linear operators on C2, is given by a 4 × 4
matrix �χ (t), whose entries are explicitly given by [36]

�χ (t) = −
∫ t

0
dτ

⎛
⎜⎝

V+(τ ) 0 0 W
χ
+ (τ )

0 Y+(τ ) Z
χ
+ 0

0 Z
χ
−(τ ) Y−(τ ) 0

W
χ
− (τ ) 0 0 V−(τ )

⎞
⎟⎠.

(20)

The quantities appearing in (20) are linear combinations of the
environmental correlation function

�(τ ) ≡ TrE{BEBE(−τ )ρE}, (21)

defined by

V±(τ ) = �(τ )e∓iω0τ + �(−τ )e±iω0τ ,

W
χ
± (τ ) = −[�(τ − χ )e±iω0τ + �(−τ − χ )e∓iω0τ ],

Y±(τ ) = 2Re[�(τ )]e∓iω0τ ,

Z
χ
±(τ ) = −[�(τ − χ ) + �(−τ − χ )]e±iω0τ . (22)

We stress here that the familiar master equation describing the
evolution of the statistical operator in the spin-boson model
[38] can be obtained from (20) simply by setting the counting
field parameter χ = 0.

A crucial role in the definition of �(t) is played by the spec-
tral density J (ω) = ∑

k |gk|2δ(ω − ωk), which describes both
the distribution of bath modes and their interaction strength
with the system. In the limit of a continuous distribution of
environmental modes the spectral density can be described by
a smooth function which we take of the form

J (ω) = λωe− ω
� , (23)

which shows an Ohmic behavior at low frequencies, a linear
dependence on the coupling strength λ, and finally an expo-
nential cutoff part. The analytic form for the environmental
correlation function in this case can be found and reads

�(τ ) =
∫ +∞

0
dωJ (ω)

[
coth

(
ω

2TE

)
cos(ωτ ) − i sin(ωτ )

]

≡ 1

2
[D1(τ ) − iD2(τ )], (24)

where TE denotes the environmental temperature, the Boltz-
mann and Planck constants have been set equal to one
kB = � = 1, and the functions D1(τ ) and D2(τ ), respectively
known as noise and dissipation kernels [39], have the concrete
expressions

D1(τ ) = 2
∫ +∞

0
dωJeff(ω,�,TE) cos(ωτ )

=2λ

(
�2 (�τ )2 − 1

[1 + (�τ )2]2
+2T 2

ERe

{
ψ ′

[
TE(1+i�τ )

�

]})

D2(τ ) = 2
∫ +∞

0
dωJ (ω) sin(ωτ ) = 4λ�3τ

[1 + (�τ )2]2
, (25)

with ψ ′(z) being the derivative of the Euler digamma function
ψ(z) = �′(z)/�(z) and where we have introduced the effective
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spectral density in the noise kernel

Jeff(ω,�,TE) ≡ J (ω) coth

(
ω

2TE

)
. (26)

Substitution of expression (20) of the superoperator �χ (t) in
Eq. (14) leads to the expression for the energy flow per unit of
time

θ (t) = [w+(t) − w−(t)]ρ00(t) − w+(t), (27)

where we have defined the quantity

w±(τ ) ≡ ∂

∂(iχ )

∫ τ

0
dsW

χ
± (s)

∣∣∣∣
χ=0

. (28)

It is clear from (27) that only the populations of the open
system contribute to the energy flow. However, it is interesting
to look in more detail at the contributions appearing in Eq. (27).
Building on the results detailed in Appendix B, the right-hand
side of Eq. (27) can be reexpressed in the form

θ (t) = ω0
d

dt
ρ00(t) + f (t), (29)

where

f (t) ≡ −δp(t)D1(t) sin(ω0t) + D2(t) cos(ω0t), (30)

having introduced the difference in the system’s populations
δp(t) ≡ ρ11(t) − ρ00(t). The first term on the right-hand side
of Eq. (29) in fact just corresponds to the time derivative of
the change in the free system’s energy, since it is proportional
through the fundamental system energy ω0 (we remind that
� = 1) to the fraction of the system’s population that moves
to the ground state. The second term, f (t), is instead a combi-
nation of elementary oscillating functions and environmental
kernels: The first contribution is driven by the noise kernel
D1(t) and also depends on the solution for the ground-state
population of the system ρ00(t), at variance with the second
which is proportional only to the dissipation kernel, therefore
also being independent of the temperature of the bath.

The integral form of (29) can also be considered

〈�q〉t = ω0[ρ00(t) − ρ00(0)] + F (t), (31)

where F (t) = ∫ t

0 dτf (τ ). Equation (31) shows that the vari-
ation in the environmental energy, obtained in this case as
the FCS mean 〈�q〉t , is given by the sum of two distinct
contributions. The first term on the right-hand side corresponds
to the variation of the reduced system’s energy, but there
is an additional contribution which depends both on the
detailed structure of the environment and on the coupling
between system and environment through the dissipation and
noise kernels. In the long-time limit, which corresponds to
the Born-Markov approximation, this additional contribution
vanishes since f (t) goes to zero according to the behavior
of both dissipation and noise kernel as given by (25); see
Appendix A for details.

Numerical results and discussion

In this section we illustrate and discuss the results of the
numerical evaluation of the measure of energy backflow (16)
for the considered model for different values of the relevant
parameters.

FIG. 1. (a) Time evolution of the ground-state population ρ00(t)
for � = 0.4 ω0, λ = 0.1, and TS = 5 ω0 for different values of
the environmental temperature TE/ω0 = 1, 3, 5. The dashed lines
refer to the Born-Markov approximation, while the solid lines refer
to the time evolution obtained by the time-convolutionless GME.
(b) Time evolution of θ (t)/ω0 (s−1) for the same parameters values
and specific choice of initial Gibbs states. One can notice that above
a certain temperature gradient between system and environment the
energy backflow disappears.

In the remainder of the work we consider the following
form for the initial state of the reduced system

ρS(0) = Z−1
(|0〉〈0| + e−ω0/TS |1〉〈1|), Z = 1 + e−ω0/TS ,

(32)

which is a Gibbs state with an effective temperature TS ,
here chosen to be greater than or equal to the environmental
one. Indeed, in order to study the flow of energy from the
environment back to the system, we are interested in situations
which in the Born-Markov approximation, corresponding to a
semigroup description, would lead to a steady energy transfer
from system to environment. This situation corresponds to
setting TS � TE , so that in this case one can properly speak
of energy backflow. Figure 1 shows the time evolution of the
ground-state population ρ00(t) (a) and the energy flow per unit
of time θ (t) as given by (27) (b) in the weak-coupling limit λ =
0.1 and in units of ω0 for � = 0.4 ω0, TS = 5 ω0, and different
values of the environmental temperature TE/ω0 = 1, 3, 5. We
refer to Appendix A for details about the differential equation
obeyed by ρ00(t) as well as its formal solution, which is
plotted here. Solid lines in Fig. 1 refer to the solutions obtained
from the second-order time-convolutionless expansion of the
generator, while the dashed lines denote the ones obtained in
the Born-Markov approximation. It is clear from these plots
that the time behaviour of the solution of the ground-state
population, ρ00(t), is related to the time behavior of the energy
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flow per unit of time θ (t): Both quantities, in fact, show a
transition from oscillating to monotone behavior at almost the
same time. We find that the oscillations of the exact solution
(solid lines) of both quantities almost disappear in the long-
time limit and superimpose the asymptotic value determined
by the Born-Markov approximated solutions (dashed lines).
The markedly different behaviors of solid and dashed lines
in short and intermediate time, however, neatly show the
inadequacy of Born-Markov approximation apart from the
long-time limit case. An interesting property of the energy
flow is represented by the first positive peak of θ (t), which
can be observed even when the initial temperatures of the
reduced system and of the environment are equal to each other;
see Fig. 1(b). Such peak is a general feature due to choice
of the initial factorized state (8), which is essential in order
to have a well-defined dynamical map [39], but represents a
nonequilibrium preparation

ρSE(0) = e−HS/T

ZS

⊗ e−HE/T

ZE


= e−H/T

Z
, (33)

with ZS and ZE being the partition functions of the reduced
system and environment respectively and Z being the partition
function of the composite system S + E. This factorized
nonequilibrium initial preparation is known to lead [40,41]
to an energy exchange between system and environment
which takes place on short time scales due to the establish-
ment of proper system-environment equilibrium correlations.
Moreover, it can be noticed from Fig. 1(b) how the value
of the first local minimum of θ (t) decreases for decreasing
values of the difference TE − TS , attaining its lowest value for
TE = TS . Strong numerical evidences suggest that this trend is
maintained for all values of the relevant parameters λ,�,TE ,
thus making it possible to conclude that energy backflow (16)
[i.e., the area of the negative region of θ (t)] is maximized by
the choice of having initial system and environment at the same
temperature, which can be understood considering the fact that
in this case there is no initial temperature gradient. We note
that the choice (32) for the class of initial system’s states does
not affect the validity of this result. In fact, since the equations
of motion for the coherences and populations are decoupled
from each other and since the coherences do not enter the
expression of θ (t), any initial state with nonzero coherence
is equivalent for this purpose to a diagonal state, which can
always be recast in a Gibbs form (32) relative to an effective
temperature TS . We have thus evaluated the amount of energy
backflow, as estimated by Eq. (16); the result 〈�q〉back(�,TE)
is given in Fig. 2, for the value of the coupling strength λ = 0.1
and for values of the parameters (�/ω0,TE/ω0) in the range
(0.2,5) × (0.2,5). We remark that the values of the amount of
energy backflow, given in units of ω0, are represented on a
color-bar scale for better visualization.

The calculation has been explicitly carried out by nu-
merically evaluating the integral (16) over a fine grid of
2500 points. The maximization over the initial system state
has been performed by setting the effective temperature TS of
the system to be equal to the environmental one TE . Moreover,
the upper limit in the integral (16) has been chosen to be
equal to 100 ω−1

0 : After such time interval, in fact, the energy
flow per unit of time θ (t) superimposes, for this value of the

FIG. 2. Plot of the energy backflow 〈�q〉back(�,TE) in units of
ω0 as given by Eq. (16), for values of the parameters (�/ω0,TE/ω0)
in the range (0.2,5) × (0.2,5). The coupling constant is chosen to
be λ = 0.1 in conformity with the choice for the non-Markovianity
measure in [38]; see also Fig. 5 in Appendix C . The upper limit
of time integration has been chosen to be equal to 100 ω−1

0 . The
effective system temperature TS has been chosen equal to TE in order
to maximize the oscillations of θ (t).

coupling strength, the Born-Markov solution, i.e., oscillation
of θ (t) as well as negativity regions are no longer significant.

In order to understand the behavior of the energy backflow
shown in Fig. 2, one has to consider in some detail the
dependence on the relevant parameters � and TE of both the
maximum and the correlation time of the noise and dissipation
kernels D1(t) and D2(t), as given by (25). These behaviors
are shown in Figs. 3(a), 3(b), 3(c), where the correlation time
of noise kernel can be inferred from the width of the ratio
D1(t)/D1(0). More precisely the observed vertical gradient in
Fig. 2 can be traced back to the varying amplitude of the noise
kernel, whose maximum increases with growing temperature
[see Fig. 3(a)], where one has to compare the initial value of
the solid lines with the one of the dashed lines relative to the
same �. Similarly, the observed horizontal gradient in Fig. 2 is
mainly determined by the correlation time of the noise kernel,
which decreases with growing cutoff frequencies; see Fig. 3(b).
For fixed temperature TE , the correlation time of the noise
kernel decreases for growing values of the cutoff frequency, so
that for very large � the bath has a very short correlation time,
which, in turn, is known to lead to a semigroup dynamical
regime. This last horizontal trend, however, is compensated
in the low-temperature region by the opposite behavior of
the amplitude of the dissipation kernel which increases with
growing cutoff frequency; see Fig. 3(c).

Finally, in order to explain the region of parameters where
the energy backflow is suppressed (black region in Fig. 2), we
have to consider the behavior of the effective spectral density.
In particular, Jeff(ω,�,TE) possesses one maximum ωmax

with respect to its ω dependence, around which the dominant
environmental modes are distributed. Following the discussion
in [38], which is recovered more thoroughly in Sec. IV, if such
maximum ωmax, identified by the condition ∂ωJeff(ω,�,TE) =
0, is equal to the system’s transition frequency ω0, then one
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FIG. 3. (a) Time evolution of the noise kernel for different choices
of the cutoff frequencies � and temperature TE . (b) Time evolution
of the environmental correlation function, inferred from the width
of the noise kernel, normalized by its maximum value (attained at
time t = 0) for TE = 5 and different choices of cutoff frequency �.
(c) Time evolution of the dissipation kernel for different choices of
the cutoff frequencies �.

has the resonance condition

∂

∂ω
Jeff(ω,�,TE)|ω=ω0 = 0. (34)

Figure 4 displays the absolute value of ∂ωJeff(ω,�,TE)|ω=ω0

for all the values (�/ω0,TE/ω0) in the range (0.2,5) × (0.2,5),
displayed on a colored scale, showing the deviation from the
resonance condition (34), denoted by the white curve in the

FIG. 4. Plot of the absolute value of ∂ωJeff (ω,�,TE)|ω=ω0 , for λ =
0.1 and values of the cutoff frequency and environmental temperature
(�/ω0,TE/ω0) in the range (0.2,5) × (0.2,5). The black region of
this plot, which has to be compared with the one in Fig. 2, indicates
those values of the parameters for which the resonance condition (34)
approximately holds, while the white curve denotes those for which
(34) strictly holds.

plot. It is immediate to see that energy backflow is almost
suppressed (black region in Fig. 2) whenever these deviations
are small, i.e., when the resonance condition approximately
holds.

Our analysis further provides a tool to identify the param-
eters region in which the energy backflow shows a maximum
value. From Fig. 2 it is, in fact, evident that this condition is
reached for high values of the temperature TE and for values
of the cutoff frequency � around the system proper frequency
ω0.

IV. CORRESPONDENCE BETWEEN ENERGY
BACKFLOW AND NON-MARKOVIANITY

In the present section we discuss in detail the connection
between our thermodynamic quantity, namely the energy
(back-)flow between a reduced system and its environment,
obtained in the FCS formalism, and the concept of non-
Markovianity. Among the different criteria and measures
introduced so far to define and quantify non-Markovianity
[16–24], we concentrate our attention to the one introduced
by Breuer, Laine, and Piilo [17], which has also been
experimentally measured in all-optical settings [8,42,43]. The
reason for this choice is the physical interpretation behind it,
which we briefly recall. According to [17], any change in the
distinguishability between two reduced states can be read in
terms of an information flow between system and environment.
Such distinguishability is quantified through the trace distance
[44], which is a metric on the space of states induced by the
trace norm and has the property to be a contraction under
the action of completely positive and trace-preserving maps
(i.e., physically implementable channels). The evolution of
the trace distance between two states of the reduced system
coupled to the same environment but evolved from different
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initial conditions, which we denote with

D(t,ρ1,2
S ) ≡ D(ρ1

S(t),ρ2
S(t)), (35)

describes the information exchange between the system and
its environment. In particular, a decrease of (35) indicates a re-
duced ability to discriminate between the two initial conditions
ρ1

S(0) and ρ2
S(0), this in turn meaning that some information has

flown out of the system towards the environment. Analogously,
a temporary increase of the trace distance can be ascribed to a
backflow of information from the environment to the system
again. Non-Markovian quantum dynamics are accordingly
defined as those which show a nonmonotonic behavior of the
trace distance, i.e., such that there exist time intervals where

σ (t,ρ1,2
S ) = d

dt
D(t,ρ1,2

S ) > 0. (36)

Building on this definition, the non-Markovianity measure
introduced in [17] is just the sum of the trace-distance
regrowths, conveniently maximized over all possible couples
of initial states of the system:

N = max
ρ

1,2
S (0)

1

2

∫ +∞

0
dt[|σ (t,ρ1,2)| + σ (t,ρ1,2)]. (37)

This measure of non-Markovianity has already been calculated
for the spin-boson model in [38], where it turned out to be a
function of the temperature of the environment TE and of the
cutoff frequency �. We comment in more detail about this in
a short while.

Let us proceed to discuss the connection between the
occurrence of non-Markovianity and of energy backflow, the
latter being witnessed by the time behavior of θ (t) according
to (15). First of all, we have already shown that in the
Born-Markov approximation the energy flow per unit of time
(27) becomes a positive nonoscillating function; see Fig. 1(b)
and Eqs. (A14) and (A11). This physically corresponds to
the case of a system which steadily loses energy to the envi-
ronment with a positive rate, i.e., a monotonic unidirectional
flow of energy pointed towards the environment. Moreover,
since such limiting dynamics corresponds to a quantum
dynamical semigroup, i.e., the master equation reduces to
GKSL form [6,45], the non-Markovianity measure vanishes.
More strongly, semigroup dynamics actually represents a
Markovian dynamics for every criterion so far introduced,
making this particular result independent from the definition
of non-Markovianity chosen. Apart from this limiting case the
function θ (t) has been proven to oscillate in time for every
value of the relevant parameters, namely cutoff frequency,
as well as temperatures of the bath and of the system and
coupling strength (always within weak-coupling regime that
allows the second-order time-convolutionless expansion of
the GME). Such oscillations reflect the time behaviour of
the rate by which the system loses its energy in favor
of the environment: If θ (t) remains positive, then the energy
flow still remains unidirectionally pointed from the system
towards the environment. If, however, for certain values of
the parameters, θ (t) temporarily takes on negative values, then
energy backflow occurs.

As mentioned above, the non-Markovianity measure (37)
for the spin-boson model has already been evaluated for this
model [38], where the calculations have been carried out for

a slightly different choice of the spectral density J (ω). In
[38], in fact, the authors employed a Lorentzian cutoff instead
of an exponential one [see our Eq. (23) and their Eq. (19)];
we have reevaluated such measure N (�,TE) with the current
spectral density and the result has turned out to be substantially
unchanged, this confirming the suggestion that the information
backflow does not significantly depend on the high-frequency
part of the spectrum [46], at least in the case of a bosonic bath.
Therefore, in order to avoid redundancy, we limit ourselves
to recall here the most significant features of this measure,
referring to Appendix C for the plot of N (�,TE). First, for
large values of the cutoff frequency � (�10ω0) the spectral
density can be approximated with J (ω) � λω, this leading to a
Markovian dynamics. On the other hand, for decreasing values
of the cutoff frequency � the amount of non-Markovianity, in
general, increases, the only exception being represented by
the region of parameters in which the resonance condition
(34) holds. Such condition expresses the requirement of local
flatness of the effective spectral density around the system’s
transition frequency and describes a curve in the (�, TE)
plane called resonance curve along which a predominantly
Markovian regime is expected and found [38]. In the case here
considered of exponential cutoff, the resonance curve, which
reads

�res(TE) = TE

TE

ω0
− cosech

(
ω0
TE

) , (38)

continues to retrace well the observed Markovian region at low
temperatures of the bath (see Fig. 5 in Appendix C).

A comparison between Figs. 2 and 5 clearly shows that
the amount of non-Markovianity of the dynamical map as
measured by (37) and the amount of energy backflow as
quantified by (16) are connected to each other. First of all, in
fact, for every value of the cutoff frequency �, both quantities
increase with increasing values of the temperature, this being
related to the fact that in this model, when TE grows, the
lower frequency part of the effective spectrum Jeff(ω,�,TE)
is enhanced. Moreover, both the non-Markovianity and the
energy backflow measures generally increase for decreasing
values of the cutoff frequency. This is due to the fact that the
correlation time of the noise kernel reduces for growing values
of �, so that the correlation function of the bath is almost δ

correlated in time, which leads to a semigroup (and therefore
Markovian) dynamics. Finally, as already highlighted in
Sec. III A, both quantities are strongly related to the resonance
condition (34). In particular, while the non-Markovianity
measure (37) vanishes only when (34) holds strictly, the energy
backflow is suppressed even when (34) is approximately
satisfied. This result, together with the one discussed above
in the Born-Markov regime, makes it possible to conclude that
in a Markovian regime energy backflow is suppressed. The
opposite is, however, in general, not true; namely, the absence
of energy backflow does not imply absence of information
backflow, thus preventing a one-to-one relation between these
two concepts, as expected from both a mathematical and a
conceptual point of view.

The occurrence of energy backflow, in conclusion, appears
as a stricter condition than non-Markovianity. On the other
hand, however, for values of the parameters � and TE for which
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the amount of non-Markovianity is significant, it becomes
possible to measure a backflow of energy, as witnessed by the
colored region in Fig. 2. We also stress that the relationship
between the amount of energy backflow and non-Markovianity
has to be intended at the level of the respective measures (16)
and (37), which are properties of the dynamical map uniquely
determined by the choice of the parameters λ, �, and TE .
The connection we have found between non-Markovianity and
energy backflow measures can finally represent a powerful hint
in relation to the practical usefulness of non-Markovianity: It
is, in fact, clear from this result that a convenient engineering of
the reservoir such to achieve non-Markovianity [27,47] allows
to have energy backflow and therefore to treat the environment
as a potential quantum energy buffer.

V. CONCLUSIONS

Using the FCS formalism, we have studied the mean
value of the energy exchange between a system of interest
and its environment in the framework of the second-order
time-convolutionless GME, introducing a suitable condition
and quantifier for the occurrence of energy backflow from
the environment back to the system. We have then applied
this construction to the spin-boson model, where we also
showed how the first moment of the energy increment in the
environment does not correspond only to the amount of energy
lost by the system in the short and intermediate time scale, but
has an additional oscillating contribution which reflects the
quantum-mechanical feature of the interaction. Such deviation
has been proven to vanish in the long-time limit, where the
Born-Markov approximated solution faithfully describes the
dynamics, given in terms of a semigroup. Moreover, choosing
an Ohmic spectral density with exponential cutoff to describe
the distribution of bath modes and their interaction with the
two-level system, we have studied the time behaviour of the
energy flow as a function of the many relevant parameters of
the model, such as the environmental and effective system’s
temperatures, the cutoff frequency, and the coupling strength.
Results have shown that, for certain values of these parameters,
the energy which has flown from the two-level system to the
environment can effectively come back. We point out that,
while in this work we have focused our attention on the first
cumulant of the exchanged energy, higher-order cumulants can
also be considered using the FCS formalism [14], making it
possible to discuss, for example, bunching properties of bosons
in the presence of energy backflow. We have finally considered
an important criterion of non-Markovianity, namely the one
based on the time behavior of the trace distance between
two distinct initial states, and connected it, relying on an
analysis of the behavior of the effective spectral density at
the system frequency, to the occurrence of energy backflow
in the considered system. The comparative analysis has
shown that non-Markovianity allows for the observation of
energy backflow. Our quantifier of energy backflow might
also have interesting applications in the context of quantum
thermodynamics of open quantum systems [48], also in the
connection with non-Markovianity, a topic recently attracting
much attention [49], as well as in the study of environment-
induced entanglement [50].
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APPENDIX A: EVALUATION OF THE GROUND-STATE
POPULATION ρ00(t)

In this Appendix we explicitly give the differential equation
for the ground-state population of the reduced system ρ00(t), as
well as its formal solution, starting from the GME formalism
of Eq. (20).

As written in the main body of the paper, if we simply set
the counting field parameter χ = 0, we obtain the usual master
equation for the statistical operator of the reduced system
ρ(t). In particular, it is clear from (20) that the dynamics of
the coherences is decoupled from the one of the populations,
and therefore only the evolution of the latter determines the
behavior of Eq. (27). It is therefore convenient to introduce the
vector |ρd (t)〉 = [ρ00(t),ρ11(t)]T and the 2 × 2 matrix �d (t)
obtained extracting the elements of �χ=0(t) relative to |ρχ

d 〉

�d (t) =
(

a+(t) −a−(t)
−a+(t) a−(t)

)
, (A1)

where a±(t) = − ∫ t

0 dτV±(τ ) and where we have used the
relation

W
χ=0
± (τ ) = −V∓(τ ). (A2)

The differential equation for the ground-state population ρ00(t)
therefore reads

d

dt
ρ00(t) = [a+(t) + a−(t)]ρ00(t) − a−(t), (A3)

whose formal solution has the form

ρ00(t) = e
∫ t

0 dτazz(τ )

[
ρ00(0) −

∫ t

0
dτa−(τ )e− ∫ τ

0 dsazz(s)

]
, (A4)

with

azz(t) ≡ a+(t) + a−(t) = −2
∫ t

0
dτD1(τ ) cos(ω0τ ) (A5)

being one of the right eigenvalues of �d (t). We finally notice
that, for reasons of computation-time advantages, it is better
to express the quantity a−(t) as

a−(t) = 1

2
[azz(t) + bz(t)], (A6)

where azz(t), given by Eq. (A5), and

bz(t) = −2
∫ t

0
dτ D2(τ ) sin(ω0τ ) (A7)

have been usually employed in the treatment of the spin-boson
model [38,39]. In fact, while both azz(t) and a−(t) can only
be numerically accessed, the quantity bz(t) can be analytically
solved. This splitting of the nonhomogeneous term a−(t) (A3)
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into a numerical part azz(t) and an analytic term bz(t) (A6)
allows for shorter computation times.

The long-time limit approximation of the dynamics can
be obtained by taking the limit for t → +∞ in Eq. (20), this
corresponding to the Born-Markov approximation. The matrix
(A1) which governs the evolution of populations takes the form

�
χ

d,LT =
(−�n(ω0) �(1 + n(ω0))

�n(ω0) −�(1 + n(ω0))

)
, (A8)

where � ≡ 2πJ (ω0). In order to arrive to this expression, the
general relation

∫ +∞

0
dτei(ω−ω0)τ = πδ(ω − ω0) + iP

1

ω − ω0
(A9)

has been used [36]. As a consequence, the differential equation
for the ground-state population (A3) becomes

d

dt
ρ00,LT (t) = −�(1 + 2n(ω0))ρ00,LT (t) + �(1 + n(ω0)),

(A10)

whose solution reads

ρ00,LT (t) = 1 + n(ω0)

1 + 2n(ω0)
+ ρ00(0)e−�(1+2n(ω0))t . (A11)

Using (A9) we can also finally compute the expression of the
long-time limit version of the energy flux per unit of time
θLT (t). In fact, since

w+,LT =
[

∂

∂(iχ )

∫ +∞

0
dτW

χ
+ (τ )

]
χ=0

= −ω0�(1 + n(ω0))

(A12)

and

w−,LT =
[

∂

∂(iχ )

∫ +∞

0
dτW

χ
− (τ )

]
χ=0

= ω0�n(ω0), (A13)

the expression for θLT (t) becomes

θLT (t) = ω0
d

dt
ρ00,LT (t). (A14)

The integral form of this expression gives the result

〈�q〉t,LT = ω0
[
ρ00,LT (t) − ρ00(0)

]
. (A15)

APPENDIX B: PROOF OF EQ. (30)

In this Appendix we show the detailed calculations required
to arrive at expression (29) for the energy flow per unit of time
θ (t) starting from (27). First, since the simple identity

∂�(±τ − χ )

∂(iχ )

∣∣∣∣
χ=0

= ±i
∂�(±τ )

∂τ
(B1)

holds, it becomes possible to reexpress both the terms w+(t) −
w−(t) and w+(t) that appear in (27) in an equivalent form. In

particular, one gets

w+(t) − w−(t) = 2
∫ t

0
dτ [∂τD1(τ )] sin(ω0t),

w+(t) =
∫ t

0
dτ [∂τD1(τ )] sin(ω0t)

−
∫ t

0
dτ [∂τD2(τ )] cos(ω0t). (B2)

An integration by parts of the quantities above, using
D1(0) sin(0) = 0 and D2(0) = 0 and Eqs. (A3), (A5), (A6),
and (A7), then gives

w+(t) − w−(t) = 2D1(t) sin(ω0t) + ω0azz(t),

w+(t) = D1(t) sin(ω0t) − D2(t) cos(ω0t) + ω0a−(t), (B3)

from which Eq. (29) immediately follows.

APPENDIX C: PLOT OF THE NON-MARKOVIANITY
MEASURE N (�,TE)

We give in this Appendix the plot of the non-Markovianity
measure for the spin-boson model described by the Hamil-
tonian (17) and calculated for a spectral density of the form
(23). Figure 5 shows N (�,TE) for λ = 0.1 and for values of
the parameters (�/ω0,TE/ω0) in the range (0.2,5) × (0.2,5),
chosen as in Fig. 2. The couple of initial states ρ1(0) and
ρ2(0) used is the one that maximizes (37) in accordance with
[38], namely those with Bloch vectors v1(0) = (0,1,0)T and
v2(0) = (0, − 1,0)T . Finally, the upper limit in the integral
(37) has been chosen equal to t = 100 ω−1

0 . A comparison with
Fig. 3 of [38] shows that the change in the high-frequency
part of the spectral density does not affect significantly the
non-Markovianity measure.

The white line in Fig. 5 finally shows the resonance curve
(38) around which the dynamics result to be Markovian.

FIG. 5. Plot of the non-Markovianity measure N (�,TE) up to
integration time t = 100 ω−1

0 , for λ = 0.1 and for values of the
parameters (�/ω0,TE/ω0) in the range (0.2,5) × (0.2,5). The white
line corresponds to the resonance curve (38), which provides an
approximate estimate of the region of Markovianity of the dynamics.
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