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A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from
what is predicted by Wilczek–Zee theorem during quantum adiabatic evolution on degeneracy levels. In this
formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space
and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study
by a different method, the current result is qualitatively different in that the first-order deviation derived here is
always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states
is employed to illustrate the adiabatic deviation with degeneracy levels.
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I. INTRODUCTION

Quantum adiabatic evolution is always of fundamental
interests to physicists since the discovery of quantum adiabatic
theorem [1]. It predicts the general and fundamental behavior
of a quantum system under slow external driving. Due to
the approximated nature of the adiabatic theorem, intrinsic
deviation from what is predicted by the adiabatic theorem
inevitably arises [2]. Although most of attention has been
paid to the adiabatic deviations and conditions in the case
of nondegeneracy energy spectra, which seems theoretically
more fundamental and simple [3], the study of adiabatic
evolution for degeneracy spectrum may be more important in
a practical sense, which is more related to holonomic quantum
computation and detection of fractional statistics. The study of
degenerate adiabatic deviation may be closely associated with
assessing the feasibility of topological gates using the concept
of Majorana non-Abelian braiding [4].

Because the analytical formulas about the adiabatic de-
viation in the case of nondegeneracy energy spectra are
already very complicated, few people have ever touched
upon that for the formidable degeneracy-spectrum case [5–7].
The difficulty mostly comes from the abstract nature of
Hilbert space and the quantum kind of formulas. In this
paper, we focus on the adiabatic deviations during which the
state under study is always degenerate with other orthogonal
states by projecting the Hilbert space onto a phase-space of
classical form and mapping the eigenstates onto fixed points
in the phase-space thus defined, which simplifies greatly the
analytical expressions and enables a visual comprehension of
the deviations.

In the current theory the aggregate of eigenstates in the
degeneracy subspace forms a patch in phase space rather than
an isolated point in the nondegenerate case. The patch can
be high dimensional according to the degree of degeneracy.
With the overall phase of the wave function omitted, each
point on the degeneracy subspace is a fixed point of classical
form of Hamiltonian. In the first-order theory with respect to
slow adiabatic speed, which is of overwhelming importance,
the difference between the real state and what is predicted
by the Wilczek–Zee theory [8] is always perpendicular to the
degeneracy patch (see Fig. 1), with the distance between the
average of the oscillating deviation and the Wilczek–Zee point
being proportional to the adiabatic speed [see Fig. 2(b)].

In higher-order formulation, the deviation may have com-
ponents in the degeneracy subspace if, more intuitively and
physically, the degeneracy subspace in the whole phase space
changes its normal direction during the adiabatic manipulation.
We use the example of the tripod scheme, where three laser
beams are interacting with a free Rubidium atom, to verify our
theory. Theoretically, the tripod scheme has been introduced
to implement the non-Abelian vector potential and spin-orbit
coupling on neutral atoms [9].

Technically we take advantage of the classical Hamiltonian
formulation of the Schrödinger equation [10–12]. Note that
this classical formulation is purely mathematical and is not the
traditional semiclassical limit � → 0.

II. GENERAL QUANTUM DYNAMICS IN THE FORM OF
CLASSICAL DYNAMICS

We consider a quantum system described by the Hamil-
tonian Ĥ (R), where R = R(t) represents time-dependent
parameters in an adiabatic protocol. Different from the
ordinary systems, here Ĥ (R) has a discrete degeneracy
spectrum during the entire control protocol. In the case that
the system is initially prepared on the degeneracy levels, the
adiabatic evolution (geometric phase) can be described by the
Wilczek–Zee phase [8]. However, it has been proven that,
so long as the protocol is not executed in the mathematical
limit Ṙ → 0 [5–7], the deviation from what is predicted by
Wilczek–Zee theory should be expected.

For simplicity and concrete discussion, we assume Ĥ (R)
lives in a finite n-dimensional Hilbert space with two eigen-
states being degenerate (the generalization to higher degree of
degeneracy is straightforward). Suppose |D1〉 and |D2〉 are
the two degenerate states of Ĥ (R), any state of the form
c1|D1〉 + c2|D2〉 (|c1|2 + |c2|2 = 1) would be an eigenstate.
In the energy representation, a state can be expressed as
c1|D1〉 + c2|D2〉 + ∑n

i=3 ci |Si〉, with |Si〉(i = 3, . . . ,n) being
nondegeneracy levels.

Due to the abstractness of c numbers in Hilbert space,
we alternatively employ real quantities and the corresponding
classical form of phase space to address the quantum state in
Hilbert space. In particular, in energy representation, we can
define the classical phase-space point

Pi = arg(ci+1) − arg(c1), Qi = |ci+1|2, (1)
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FIG. 1. Illustration of the exact state from first-order calculation
and Wilczek–Zee state on the degeneracy subspace. (a) For conve-
nience, the parameter-dependent degeneracy patch is demonstrated by
a one-dimensional curve, although it is in fact a 2(m − 1)-dimensional
curved patch. The red curve out of the patch and the black curve on
the patch are the trajectory of the exact state and that of the Wilczek–
Zee state during the degenerate adiabatic evolution. (b) From the
perspective of an observer who moves with the patch, a local regime of
the patch which seems fixed is illustrated by a two-dimensional patch.
According to the first-order perturbation theory, the projection of the
exact state on the degeneracy subspace is just the Wilczek–Zee state,
which means that the nonadiabatic deviation has a zero first-order
component in the degeneracy subspace.

with i = 1,2, . . . ,n − 1, to describe the wave function and the
phase space without any approximation. With the phase space
thus defined, the degeneracy region is the patch spanned by
(P1,Q1) in the phase-space.

FIG. 2. (a) Exact-state orbits for degeneracy quantum system
with fixed parameters. (b) Exact-state orbits and evolving degen-
eracy subspace for degeneracy quantum system during adiabatic
evolution. To illustrate the orbits and degeneracy subspace via a
three-dimensional imagination, here the one-dimensional blue lines
stand for the instantaneous degeneracy subspace.

Next, let us turn to the evolution of the wave function,
which definitely satisfies the Schrödinger equation defined by
Ĥ (R). In order to gain an insight into the dynamics in the
perspective of classical form phase space, we should express
the Schrödinger equation via the variables (Pi,Qi) instead
of the initial form of the wave function. Generally, as the
unitary matrix to diagonalize Ĥ (R) is R (time) dependent, it
is more convenient to take advantage of a general but fixed
representation, which may be more physically relevant, rather
than the energy representation. In the fixed representation, a
wave function can be expressed as

|ψ〉 =
n∑

i=1

ai |Bi〉, (2)

with |Bi〉 being the orthogonal bases in Hilbert space. The
classical phase-space and phase-space point is defined by

pi = arg(ai+1) − arg(a1), qi = |ai+1|2, (3)

with i = 1,2, . . . ,n − 1. (Pi,Qi) and (pi,qi) are related via
an R-dependent canonical transformation. By construction,
the Schrödinger equation then yields the following Hamilton’s
equations of motion without any approximation [10–12]:

dpi

dt
= −∂H (R)

∂qi

,
dqi

dt
= ∂H (R)

∂pi

, (4)

where the classical Hamiltonian H (R) is obtained from the
quantum Hamiltonian Ĥ (R) via

H (R) = 〈ψ |Ĥ (R)|ψ〉. (5)

With the overall phase removed, the phase space in this
classical formalism is just the projective Hilbert space, which
provides a clear perspective of the wave function and its
adiabatic evolution.

One final technical comment is in order. The mapping from
the wave-function components ai to phase-space variables
(pi,qi) [see Eq. (3)] becomes ambiguous when any one of
the wave-function components ai becomes zero. Fortunately,
this ambiguity can be easily overcome by adopting a different
representation to reexpress the wave function. For example, a1

in Eq. (3) is used to remove the overall wave-function phase.
If a1 = 0, one can always select another nonzero ai to carry
out a similar mapping.

III. DYNAMICS FOR THE DEGENERATE ADIABATIC
DEVIATION: FIRST-ORDER THEORY

During the adiabatic evolution, the initial wave function on
the degeneracy patch should always be on the instantaneous
degeneracy patch and follow the Wilczek–Zee theory. How-
ever, as in the case of nondegenerate adiabatic following [2],
the deviation from what is predicted by Wilczek–Zee theory
has been proven to arise [5,7]. In the language of phase-space
point, the deviation should be expressed as

pi(t) = p̄i[R(t)] + δpi, qi(t) = q̄i[R(t)] + δqi, (6)

with (δpi,δqi) being time-dependent deviations from the ideal
adiabatic trajectory [p̄i(R),q̄i(R)] predicted by Wilczek–Zee
theory. In what follows we develop the dynamics for (δpi,δqi)
to first order in Ṙ.
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Employing the dynamics (4) and the expression (6), the
dynamics for (δpi,δqi) associated with the fixed representation
|Bi〉 defined in Eq. (2) can be written as (keeping only the linear
term of deviation, i.e., in the first-order approximation)(

dp̄(R)
dR

Ṙ + dδp

dt

dq̄(R)
dR

Ṙ + dδq

dt

)
= �

(
δp

δq

)
, (7)

where

� =
(− ∂2H (R)

∂q∂p
− ∂2H (R)

∂q∂q

∂2H (R)
∂p∂p

∂2H (R)
∂p∂q

)
p=p̄,q=q̄

(8)

is an R-dependent 2(n − 1) × 2(n − 1) matrix obtained from
the second-order derivatives of H (R) defined in Eq. (5). In
fact, Eq. (7) describes the dynamics in the vicinity of the
Wilczek–Zee solution. The expression p (q) without subscript
stands for the matrix stack of the whole set of pi (qi), with
i = 1,2, . . . ,n − 1, e.g.,

(δp δq)T ≡ (δp1 · · · δpn−1 δq1 · · · δqn−1)T ,

(p̄ q̄)T ≡ (p̄1 · · · p̄n−1 q̄1 · · · q̄n−1)T . (9)

Because Ĥ (R) is degenerate, which gives rise to the null
dynamics ṗi = q̇i = 0 as long as the deviation (δpi,δqi) is
on the degeneracy patch, the matrix � must be of linear
dependence and the determinant |�| = 0.

In order to associate the dynamics with the Wilczek–Zee
phase, we here carry out a canonical R-dependent transforma-
tion from (pi,qi) to (Pi,Qi) defined in Eq. (1), i.e.,

� ≡ (P1 Q1 P2 Q2 · · · Pn−1 Qn−1)T , (10)

and

� = U

(
p

q

)
, �̄ = U

(
p̄

q̄

)
, δ� = U

(
δp

δq

)
, (11)

where U is a 2(n − 1) × 2(n − 1) matrix diagonalizing �,

�dia = U�U−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 d1 0 · · · 0

0 0 0 d2 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · d2(n−2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

(12)
δ� (�̄) is a column vector with each component being the
linear combination of δpi,δqi (p̄i ,q̄i) (i = 1, . . . ,n − 1). The
first two columns (lines) of �dia with null diagonal elements
stand for the direction along P1 and Q1 defined in Eq. (1),
i.e., on the degeneracy patch. Even though the nonzero
diagonal elements di [i = 1, . . . ,2(n − 2)] may generally be
complex numbers, the dynamics induced by �dia and the
corresponding vector � is totally equivalent to the initial
dynamics. The relation between � and (p,q)T is embedded in
the R-dependent matrix U (R).

The transformation defined in Eq. (11) is equivalent to the
unitary transformation from the original fixed representation
|Bi〉 defined in Eq. (2) to the energy representation. Disregard-
ing the overall phase of wave functions as in the mappings (1)

and (3), each energy eigenstate becomes a fixed point in phase
space. Since any state in the superposition of two degenerate
eigenstates c1|D1〉 + c2|D2〉 is still an eigenstate, arbitrary
deviation only in the directions along P1 = arg(c2) − arg(c1),
Q1 = |c2|2 (without component in Pi , Qi for i > 1) will give
rise to a fixed point on the degeneracy patch. Clearly then, the
diagonal elements of dynamical matrix �dia, corresponding to
the deviation in P1 and Q1, i.e., along the degeneracy patch,
must be zero. When the deviation is on the patch, the temporal
evolution of the deviation vanishes.

One can readily generalize that, for m-folder degeneracy,
any state in the form

∑m
j=1 cj |Dj 〉 is still an eigenstate

such that any deviation along the directions P1,P2, . . . ,Pm−1,
Q1,Q2, . . . ,Qm−1 gives rise to a fixed point. Clearly then,
the degeneracy regime is 2(m − 1) dimensional, with the
dynamical matrix in the form

�dia = dia

⎛
⎝ 2(n−1) dimensional︷ ︸︸ ︷

0,0, . . . ,0︸ ︷︷ ︸
2(m−1) zeros

,d1,d2, . . . d2(n−m)

⎞
⎠. (13)

Thus the dynamics for the deviation reads

U

(
dδp

dt

dδq

dt

)
= �diaδ� − U

(
dp̄(R)
dR

dq̄(R)
dR

)
Ṙ. (14)

Expressed all by new variables, the above equation becomes

dδ�

dt
= �diaδ� −

(
d�̄

dR
− dU

dR
U−1�̄

)
Ṙ + dU

dR
U−1δ�Ṙ.

(15)
In Eq. (15), the last term on the right-hand side is at least

second order with respect to Ṙ which is negligible in the
first-order theory; the second term on the right-hand side is
tightly associated with the Wilczek–Zee phase since p̄ (q̄) is
defined as the variable predicted by Wilczek–Zee theory. At
this stage, one may naturally ask what this term would be
like in the current framework of phase space of the classical
kind. To answer this question, employing the original Wilczek–
Zee formula becomes compulsory. For doublet degeneracy,
the Wilczek–Zee theory predicts the wave function during the
adiabatic evolution as

|ψ〉 = c1(R)|D1(R)〉 + c2(R)|D2(R)〉, (16)

with c1(R) and c2(R) satisfying

d

dR

(
c1

c2

)
= −

(
〈D1| ∂

∂R
|D1〉 〈D1| ∂

∂R
|D2〉

〈D2| ∂
∂R

|D1〉 〈D2| ∂
∂R

|D2〉

)(
c1

c2

)
. (17)

Consider now an infinitesimal segment of the adiabatic process
dR. After each dR, the difference of the final wave function
and the initial one according to Eq. (17) reads

|ψ(R + dR)〉 − |ψ(R)〉
= c1

∂|D1〉
∂R

dR + c2
∂|D2〉
∂R

dR − c1〈D1| ∂

∂R
|D1〉dR|D1〉

− c2〈D1| ∂

∂R
|D2〉dR|D1〉 − c1〈D2| ∂

∂R
|D1〉dR|D2〉

− c2〈D2| ∂

∂R
|D2〉dR|D2〉, (18)
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FIG. 3. Illustration of the relationship between Wilczek–Zee
path and the evolution of the degeneracy subspace in phase space,
defined by Eq. (3), as the parameter R is scanned. For convenience,
the parameter-dependent degeneracy patch is demonstrated by a
one-dimensional straight line, although it is in fact a 2(m − 1)-
dimensional curved patch. According to the Wilczek–Zee formula,
the path determined by the Wilczek–Zee solution is always locally
perpendicular to the degeneracy patch.

which can be easily proven to be orthogonal with any
differential of the wave function on the degeneracy patch,
d|ψ〉 = dc1|D1〉 + dc2|D2〉,

[〈ψ(R + dR)| − 〈ψ(R)|]d|ψ〉 = 0. (19)

Equation (19) implies that, after an infinitesimal time interval,
the change of Wilczek–Zee state is orthogonal with any
infinitesimal state defined on the degeneracy patch, which
is illustrated in Fig. 3. In the language of phase space, the
projection of ( dp̄

dR
,

dq̄

dR
) onto the degeneracy patch vanishes.

Employing the same gauge as in Eq. (12), this term assumes
the form

U

(
dp̄(R)
dR

dq̄(R)
dR

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
A1

A2
...

A2(n−2)

⎞
⎟⎟⎟⎟⎟⎟⎠. (20)

When generalized to the case of m degree of degeneracy, there
will be 2(m − 1) zeros in the vector,

U

(
dp̄(R)
dR

dq̄(R)
dR

)
=

⎛
⎝ 2(n−1) dimensional︷ ︸︸ ︷

0,0, . . . ,0︸ ︷︷ ︸
2(m−1) zeros

,A1,A2, . . . ,A2(n−m)

⎞
⎠

T

. (21)

Combining Eqs. (12) and (20) and neglecting the third
term on the right-hand side of Eq. (15), one can finally
derive the dynamics for the deviation within the first-order
approximation. Specifically, the deviations in the degeneracy
patch satisfy

dδP1

dt
= dδQ1

dt
= 0, (22)

which reveals the fact that, during degenerate adiabatic evolu-
tion, the deviation in the first-order approximation is always
perpendicular to the degeneracy patch, with the projection

of first-order state onto the degeneracy patch satisfying the
Wilczek–Zee theory [as shown in Fig. 1(b)]. This property can
be qualitatively explained as follows: to fulfill the adiabatic
following dictated by adiabatic theorem, a general driving
force impelling the system along the adiabatic path must
be present. Suppose during the adiabatic process there is no
deviation from fixed point (eigenstate), the dynamics for the
quantum state, described by p and q defined in Eq. (3), will
always be

dpi

dt
= −∂H (R)

∂qi

≡ 0,
dqi

dt
= ∂H (R)

∂pi

≡ 0, (23)

giving rise to a constant p and q (quantum state). On the other
hand, according to the adiabatic theorem, the state should
not be a constant but follow the Wilczek–Zee path during
the adiabatic evolution. This paradox legalizes the emergence
of the intrinsic adiabatic deviation. However, in the case of
degeneracy levels, the deviation in the degeneracy subspace
cannot induce a force (all the states on the subspace are
dynamical fixed point), i.e., Eq. (23) still holds. Thus it is
natural that the deviation prefers to be perpendicular to the
degeneracy patch.

This result is in sharp contrast to the previous result
of first-order deviation [5,7] obtained by quantum adiabatic
perturbation theory [13], where the projection of first-order
deviation onto the degeneracy subspace is not zero. This
contradiction might arise from the fact that the ansatz of
the evolving wave function taken in Ref. [5] has reduced the
Hilbert space and is thereby insufficient to describe all possible
states during degenerate adiabatic evolution, i.e., the first-order
state derived here falls out of the ansatz taken in Ref. [5].

Figure 2(a) shows that the deviation vertical to the patch will
generally oscillate. To evaluate the deviation, it is convenient
to take the nonzero part of �dia and the right-hand side of
Eq. (20) associated with the dynamics perpendicular to the
degeneracy subspace,

�NZ
dia =

⎛
⎜⎜⎜⎜⎝

d1 0 · · · 0

0 d2 · · · 0
...

...
. . .

...

0 0 · · · d2(n−2)

⎞
⎟⎟⎟⎟⎠, (24)

M =

⎛
⎜⎜⎜⎜⎝

A1

A2

...

A2(n−2)

⎞
⎟⎟⎟⎟⎠. (25)

The dynamics for the deviation then reads

dδ�NZ

dt
= �NZ

dia

[
δ�NZ − �

NZ,−1
dia MṘ

]
, (26)

which clearly shows that the deviation orthogonal to the
degeneracy region behaves like a multidimensional harmonic
oscillator. The averaged deviation, proportional to the adiabatic
speed Ṙ as shown in Fig. 2(b), reads

δ�NZ = �
NZ,−1
dia MṘ, (27)
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and the first-order deviation in the representation of �,
according to our convention (10), should be written as

δ1� = (0 0 (δ�NZ)T )T , (28)

which shows clearly again that the first-order deviation
vanishes in the degeneracy subspace.

As mentioned above, the relation between vector � and the
initial variables (pi,qi) is embedded in U , i.e.,(

δ1p

δ1q

)
= U−1δ1�, (29)

from which the first-order wave function can be obtained in
the representation defined by Eq. (3).

Because the first-order adiabatic deviation behaves like a
harmonic oscillator, it forms another Hamiltonian dynamics
like that in the nondegenerate case [14]. As the center of the
oscillator depends on Ṙ, the first-order deviation will undergo
a tiny adiabatic evolution as both R and Ṙ evolve slowly, which
is identical to the situation in the nondegenerate adiabatic
process.

The above treatment can be naturally generalized to the
cases of higher-degeneracy degrees. The only difference is that
there are 2 × (m − 1) zero diagonal elements of �dia shown
in Eq. (13) and the same number of zero-elements of vector
shown in Eq. (21), with m being the degree of degeneracy.

IV. DYNAMICS FOR THE DEGENERATE ADIABATIC
DEVIATION: HIGH-ORDER THEORY

In the last section, the first-order deviation is shown to be
orthogonal to the degeneracy subspace. In this section, we give
the general formula for the high-order deviation.

Returning back to Eq. (15), the deviation δ� is in fact the
sum of all orders of the deviations,

δ� = δ1� + δ2� + · · · . (30)

The dynamics of δ� ≡ δPi,δQi is in fact the Taylor expansion
instead of the first-order approximation associated with �dia.
However, the higher-order terms in the expansion is only
associated with �NZ

dia since the deviation on the degeneracy
patch can never generate any driving force.

First, let us consider the second-order term in Eq. (15). The
dynamics for the second-order deviation then reads

dδ2�

dt
= 1

2
δ�diaδ

1� + dU

dR
U−1δ1�Ṙ, (31)

where δ�dia is defined as

δ�dia =
∑

i

(
∂�dia

∂Pi

)
p̄,q̄

δPi +
∑

i

(
∂�dia

∂Qi

)
p̄,q̄

δQi

≡
((

∂�dia

∂P

)
p̄,q̄

,

(
∂�dia

∂Q

)
p̄,q̄

)
δ1�, (32)

which has the same matrix dimension as �dia.
Next, according to Eq. (15), the dynamics for the kth-order

deviation can be iteratively obtained as

dδk�

dt
=

k−1∑
j=1

(�j�dia)δk−j� + dU

dR
U−1δk−1�Ṙ, (33)

with

�j�dia = T j

⎧⎨
⎩

j∑
i=1

1

(i + 1)!

[(
∂

∂P
,

∂

∂Q

) j∑
r=1

δr�

]i

�

⎫⎬
⎭

(34)

The function T j (· · · ) in Eq. (34) is to take the j th-order terms
in (· · · ).

Because dU/dR is generally very different from U itself,
the deviation with the order higher than one will not be
zero on the degeneracy subspace. However, if the normal
direction of the degeneracy subspace in the whole Hilbert
phase space keeps fixed as parameter R changes, dU/dR

vanishes and the last term in Eq. (15) is always zero, which
means that, in this case, deviations of all orders are vertical
to the degeneracy subspace and the formulation reduces to
that for the nondegenerate case [14]. This sheds more light
on the difference between the degenerate and nondegenerate
adiabatic evolutions.

As seen iteratively from Eqs. (31) and (33), arbitrary-order
deviation evolves dynamically like a harmonic oscillator,
with the center of the kth order depending on the temporal
derivatives of R up to the kth order. This situation is identical
with that in the nondegenerate case.

V. NUMERICAL SIMULATIONS

To verify our results, we employ the tripod-scheme
Hamiltonian implemented by three laser beams interacting
with a rubidium atom. For convenience we adopt the same
configuration as in Ref. [15], where two laser beams are
counterpropagating along the x axis and the third laser beam is
along the z axis. The associated Hamiltonian under the rotating
wave approximation (RWA) is given by

H4 =
3∑

n=1

�n|0〉〈n| + H.c., (35)

with

�1 = �0 sin(ξ )√
2

e−iklx , (36)

�2 = �0 sin(ξ )√
2

eiklx, (37)

�3 = �0 cos(ξ )eiklz, (38)

where the parameter ξ is set to satisfy cos(ξ ) = √
2 − 1, as in

Ref. [15], and kl is the wave vector of the laser fields.
The Hamiltonian H4 has two degenerate states with null

eigenvalue. We denote these two degenerate states as |D1(2)〉,
and it is straightforward to find their spatial dependence as
follows [15]:

|D1〉 = (|1̃〉 − |2̃〉)e−iκ ′z/
√

2

|D2〉 = [cos(ξ )(|1̃〉 + |2̃〉)/
√

2 − sin(ξ )|3〉]e−iκ ′z, (39)
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FIG. 4. Numerical adiabatic deviations from the Wilczek–Zee
theory measured by the dimensionless quantity d for the tripod-
scheme Hamiltonian as z is scanned with x = 1. The dashed green
curve and dotted red curve are the results of deviations in the
perpendicular direction and in the degeneracy subspace, respectively,
when the initial state is set on |D2〉; with the initial state set according
to Eq. (27), the blue solid line is for the perpendicular deviation.
(a) z is scanned with velocity v = 0.0005 and (b) z is scanned with
velocity v = 0.005. Throughout, x and z are in units of 1/kl , v is in
units of �0/�kl , and t is in units of �/�0.

where

κ ′ ≡ kl[1 − cos(ξ )], (40)

|1̃〉 ≡ |1〉eikl (x+z), (41)

|2̃〉 ≡ |2〉e−ikl (x−z). (42)

In the numerical simulation, we consider two scenarios:
the quantum state emanates from (i) degeneracy subspace and
(ii) the state predicted by Eq. (27). Then the parameter x or
z is scanned as in the tripod scheme and we calculate (1)
the distance between the real state derived by numerically
integrating the Schrödinger equation and its projection state
in degeneracy subspace and (2) the distance between the
projection state and the state obtained by Wilczek–Zee theory.
According to our results, the former, which stands for the
deviation in the vertical direction, should be a first-order
quantity in ż(ẋ) while the latter, which stands for the deviation
in the degeneracy subspace, should be at least second order.
The typical results depicted in Fig. 4 as well as other numerical
results clearly demonstrate this property, which verifies our
theory numerically. Here the distance between two states |ψ1〉
and |ψ2〉 is defined as d = √

(〈ψ1| − 〈ψ2|)(|ψ1〉 − |ψ2〉).

VI. CONCLUSION

In summary, the deviation during quantum adiabatic evolu-
tion for degeneracy energy levels is studied both analytically
and numerically. In the first-order formulation with respect
to adiabatic speed, the deviation between exact state and
Wilczek–Zee state will always be in the direction perpen-
dicular to the degeneracy subspace. Thus, the deviation in
the degeneracy subspace will be at least second order. Our
findings are of fundamental interest to non-Abelian quantum
computation and topological braiding. The implications of this
work for designing optimal protocols of degenerate adiabatic
quantum gates should be a fascinating topic in our future
studies.
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