
PHYSICAL REVIEW A 93, 012113 (2016)

Transition from non-Markovian to Markovian dynamics for generic environments

Nephtalı́ Garrido,1 Thomas Gorin,2 and Carlos Pineda3

1Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, University of Nottingham, University Park,
Nottingham NG7 2RD, United Kingdom

2Departamento de Fı́sica, Universidad de Guadalajara, Boulevard Marcelino Garcı́a Barragan y Calzada Olı́mpica,
Guadalajara C.P. 44840, Jalisco, México
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Using random matrices, we study the reduced dynamics of a two-level system interacting with a generic
environment. In the weak-coupling limit, the result can be obtained directly from known results for purity decay,
and result in Markovian dynamics. We then focus on the case of strong coupling, when the dynamics is known
to be non-Markovian. In this regime, the coupling dominates over the local parts of the Hamiltonian, and thus
we treat the latter as a perturbation of the former. With the help of a linear response approximation, this allows
us to obtain an analytical description of the reduced dynamics. Finally, we find a transition from non-Markovian
to Markovian dynamics at a point where the coupling and the local Hamiltonian are comparable in size.
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I. INTRODUCTION

In Ref. [1] it was shown that one should expect non-
Markovian behavior when a central system is coupled strongly
to a generic environment. In that work everything else but
the coupling operator was neglected [2,3]. In the present
paper, we will study the fate of non-Markovianity, when the
coupling to the environment is still strong, but a local part
is also present. The main mathematical tool to address these
questions is random matrix theory (RMT). This theory has
found a wide variety of applications in several fields [4],
including quantum chaos, where a direct link between the
ensembles studied in RMT and classically chaotic systems has
been well established [5–8]. Moreover, the idea of complicate
interactions has been extrapolated to encompass interactions
between two systems; an idea which was formalized, under
certain conditions, by Lutz and Weidenmüller [9]. This can be
exploited to, say, develop a theory of decoherence with RMT;
see [10,11]. Considering the coupling term as the unperturbed
system, and the local (free) Hamiltonian as the perturbation, we
find a critical perturbation strength, beyond which the system
becomes Markovian. At this point the free part is equally
important as the coupling part.

While in the infinitely strong coupling case (i.e., without
local terms) [1] it was possible to obtain an exact analytical
solution, here we have to resort to a linear response
approximation [12]. Even then, the analytical solution is quite
involved, as it requires the calculation of a large number of
monomial integrals over the unitary group (for simplicity,
we will assume the absence of any symmetries, including
anti-unitary ones) [13,14].

The paper is organized as follows: In the following section,
we will describe the system and environment, and show that
the dynamics of the central two-level system is completely
determined by a single real function α(t). We describe the
measure of non-Markovianity which we are using, and review
known results of the system in the limit of strong [1] and weak
coupling [10,15]. Next, in Sec. III, we use the results for the
evolution of purity to calculate the channel for weak coupling.
In Sec. IV, we calculate the linear response approximation
for α(t), when both the free part and the coupling term are

present. We obtain an explicit expression when the dimension
of the environment is finite, and a much simpler one in
the infinite case. We then compare our results to numerical
simulations. In Sec. V, we discuss the sharp transition between
non-Markovian and Markovian dynamics halfway between
strong and weak coupling, in the limit of infinite dimension,
where the dimension of the environment and the corresponding
Heisenberg time are both going to infinity. We finish the paper
with Sec. VI, in which the conclusions are given.

II. THE SYSTEM

Consider the usual system-environment setting, with the
Hilbert space being factored in,

H = Hs ⊗ He, (1)

where Hs corresponds to the system and He to the envi-
ronment. Moreover, let us choose a single two-level system
(qubit) as central system, such that dimHs = 2, and a finite
dimensional environment with dimHe = N . The Hamiltonian
governing the system is set to be

H = s12 ⊗ He + V. (2)

This represents the simplest nontrivial choice for the local
part of the Hamiltonian, where any dynamics in the qubit
is neglected. We shall distinguish three regimes: the fully
coupled system, when s = 0; a strongly coupled regime when
the norm of the coupling V is comparable to the norm of the
free Hamiltonian sHe; and a weak coupling regime when the
norm of the coupling is much smaller than that of the free
Hamiltonian. The evolution of the qubit is given by

ρ(t)
s = tre

[
Utρ(0)

s ⊗ ρeU
−t

]
, (3)

where the evolution operator is Ut = exp(−iH t). We use
the Pauli basis, to represent the quantum channel induced by
Eq. (3). The corresponding matrix elements are given by

�̃
(t)
j,k = 1

2 tr[σ j ⊗ 1eU
tσ k ⊗ ρeU

−t ], (4)

where σ 0 = 1 and σ 1,2,3 = σx,y,z. Notice that choosing He

and V in Eq. (2) from unitarily invariant ensembles, results in
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an ensemble of Hamiltonians H that is invariant under local
unitary transformations. In the case of the central system, this
implies that after averaging, the channel must be isotropic, so
its structure is

�(t) = 〈�̃(t)〉 =

⎛
⎜⎝

1 0 0 0
0 α(t) 0 0
0 0 α(t) 0
0 0 0 α(t)

⎞
⎟⎠. (5)

Here, we introduced the notation 〈 · 〉 for averages over the
ensemble of random matrices. In the case of the environment,
the above invariance property implies that �(t) does not depend
on the initial state ρe of the environment. This allows us to
replace ρe with the maximally mixed state and write

α(t) = 1

N
〈tr[σ 3 ⊗ 1eU

−t σ 3 ⊗ 1eU
t ]〉. (6)

A. Full coupling

The solution to the fully coupled case, corresponding to
s = 0 in Eq. (2), has been worked out in detail in Ref. [1].
Here, we only recall the most important results as they are to
be generalized in the present work. This allows us to introduce
some notations. For s = 0, the quantity to be calculated is

α0(t) = 1

N
〈tr[σz ⊗ 1 e−iV t σz ⊗ 1 eiV t ]〉. (7)

Recall that V is just the coupling term, to be chosen from
the Gaussian unitary ensemble (GUE) of dimension 2N . We
shall diagonalize V (and thus the evolution operator) with the
unitary matrix O. We thus have

Ut = e−iV t = Odiag(e−ivj t )O†, (8)

where the {vj }j are the eigenvalues of V . We use units for time
and energy such that � is eliminated and the spectral range of
V is equal to 2 (unless stated otherwise, the level density for
V obeys a semicircle law). As a result, energies and times are
denoted by dimensionless quantities. One then averages with
respect to O, with the Haar measure, as explained in [13,16],
and obtains the general expression

α0(t) = 4N2|f (t)|2 − 1

4N2 − 1
, (9)

where f (t) = 1
2N

∑
j exp(−ivj t) is the Fourier transform of

the spectral density of the Hamiltonian (remember that, for
s = 0, V is the Hamiltonian of the system). Notice that this
expression is valid for any unitarily invariant ensemble, not
just the GUE. One can rewrite the above expression as

α0(t) = 4N2b2
1(t) + 2N [1 − b2(t)] − 1

4N2 − 1
, (10)

where b1 is the Fourier transform of the level density of V , and
b2 is the two-point form factor without unfolding; cf. Ref. [17].
For the GUE, both functions are known analytically and are
given in Appendix A in Eqs. (A3) and (A4) (together with
further details).

Spectral correlations are expected to be limited to an energy
scale of the order of the mean level spacing, which is N

times smaller than the energy scale of the level density. As
a consequence, the relevant time scales for b1 and b2 become

very different for large dimensions. We chose matrices V from
the GUE such that 〈VijVkl〉 = δjkδil/N . In this way, in the limit
N → ∞, the level density tends to a semicircle on the interval
(−1,1). As we have set � = 1, the relevant timescale for b1

is therefore of order 1 (we call this timescale “macroscopic”),
while for b2 the relevant timescale is the Heisenberg time
which is of order N . In the limit N → ∞, we get for the GUE
an oscillating function in time:

lim
N→∞

α0(t) =
[
J1(2 t)

t

]2

. (11)

B. Non-Markovianity in the fully coupled system

Quantum non-Markovianity does not have a unique
definition. Definitions include considering any deviation
from the Lindblad equation as non-Markovian behavior
[18], the backflow of information from the environment
into the system [19], and also the impossibility of defining
an instantaneous quantum map for intermediate times [20].
Accordingly, several measures have been proposed to quantify
the degree of non-Markovianity, each with different properties
and problems [21,22]. However, for simple channels, like
a depolarizing channel, as in our case, most definitions
coincide as far as the distinction between Markovianity
and non-Markovianity is concerned [1], even though the
measures of the degree of non-Markovianity are usually not
comparable. For the sake of definitiveness we shall use the
measure proposed in [19], although other measures could be
easily incorporated in this framework. The measure is defined
as the maximum of the integrated backflow of information
measured in terms of increasing distinguishability, where the
maximum is taken over all possible pairs of initial states. In
the present case, where the quantum process is determined in
terms of the function α(t), one gets [1]

M = 2
∫ ∞

α̇>0
dt α̇(t). (12)

The measure will be greater than zero if and only if α̇(t) > 0
for some time, i.e., if the Bloch sphere expands during a time
interval. One of the results of Ref. [1] says that the system will
generically display non-Markovianity, even in the limit of an
infinite dimensional environment (N → ∞); see Fig. 1. One
may compare the present model to the case of an environment
modeled by a collection of harmonic oscillators, characterized
by a spectral density J (w); see [23], chap. 10. This spectral
density has a role in those models similar to the level density
in ours (however, see [24,25]), as it is the forms of those
functions which determine the reduced dynamics and thereby
the (non-)Markovianity. This similarity is surprising, since
we are dealing with a very strong coupling limit, whereas
the description based on the spectral density relies on a
weak coupling approximation. In this respect, we also find it
surprising that, at strong but finite coupling, our model shows
a transition to Markovian dynamics, independent of the level
density. That case will be discussed in Sec. IV.

At finite N , the non-Markovianity has two contributions
acting at different time scales. The first comes from the
oscillations in the one-point function b1(t), which appear on a
timescale independent of the dimension N of the environment
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FIG. 1. α0(t) as a function of time for different dimensions N .
Nonmonotonic behavior, causing non-Markovianity, is observed even
in the limit of large dimensions, N → ∞. Here, as well as in
all subsequent figures, time is measured in dimensionless units, as
explained in the main text below Eq. (8).

(the macroscopic timescale). The second contribution comes
from a recovery of α(t) between the first zero of J1(2t) and the
long-time limit

lim
t→∞ α(t) = 1

2N + 1
. (13)

That occurs on the timescale of the Heisenberg time τH of the
environment, which is proportional to N . In the semiclassical
limit, N → ∞, the Heisenberg time goes to infinity and the
recovery goes to zero. As a consequence, limN→∞ M = 0,
also.

III. THE WEAK-COUPLING LIMIT

The behavior of α(t) in the weak-coupling limit can be
deduced from previous results [10,15], where the purity for
a model equivalent to Eq. (2) was studied. In that limit,
the relevant time scale is the Heisenberg time τH of the
Hamiltonian He of the environment. Since the focus was then
put on the evolution of purity, P = tr ρ2, we use the fact that
purity can be expressed in terms of α(t) from Eq. (5) as follows:

P (t) = tr(�(t)[ρ])2 = 1 + α(t)2

2
. (14)

Switching from the parameter s, which scales the factorized
term, to λ scaling the coupling, we can write

H = He ⊗ 1 + λV. (15)

V is chosen from a GUE, but now with an N -independent
scaling 〈VijVkl〉 = δjkδil . In order to map this Hamiltonian on
Eq. (2), we would have to set λ = 1/(sN ). In the case that He

and V are both members of a GUE, it was found that, in the
linear response approximation, the average purity is given by

PLR(t) = 1 − λ2g(t) (16)

with

g(t) = 2t max{t,τH} + 2

3τH
(min{t,τH})3, (17)

with τH being the Heisenberg time of He.

To go beyond the reach of linear response theory, we
exponentiate the result, such that (i) the first two terms in
a Taylor series coincide with the linear response result and (ii)
the asymptotic value coincides with a theoretical expectation.
Such a heuristic procedure, known as exponentiation, has lead
to excellent results [12]. In our case, the procedure leads to

PELR(t) = 1

2
+ 1

2
exp

[
1

2
(PLR(t) − 1)

]
. (18)

Relying on self-averaging, which is often the case in these kind
of systems [10], one can reconstruct α(t) for moderate values
of the perturbation. Thereby, we obtain

α(t) = exp

(
−λ2

2
g(t)

)
. (19)

Notice that when the Heisenberg time becomes infinite, we
obtain an exponential decay for α(t), a result also known as the
Fermi golden rule. Notice also that g(t) as defined in Eq. (17) is
a monotonically increasing function, which implies that α(t) is
monotonically decreasing. This means that the corresponding
dynamics is Markovian, independent of the shape of the level
density.

IV. THE STRONGLY COUPLED SYSTEM

So far we found that, for N → ∞, the fully coupled
system (s = 0) shows non-Markovian dynamics, while at weak
coupling the system becomes Markovian. In this section, we
consider the crossover region, when s is small but finite. The
linear response theory developed below is applicable as long
as s � 1 when the free evolution term and the coupling in the
Hamiltonian in Eq. (2) are of the same size. From a technical
point of view, the calculation is much more demanding than
usual, because the linear response expansion is around the fully
coupled case.

A. Linear response theory

We will calculate

α(t) = 1

N
〈tr[σz ⊗ 1ee

−iH tσz ⊗ 1ee
iHt ]〉 (20)

with the ensemble defined in Eq. (2). To apply linear response
theory for small s, we consider the unperturbed propagator to
be e−iV t , and the perturbation sHe. Hence, we have for the
echo operator:

eiV t e−iH t ≈ 1 − is

∫ t

0
dt ′H̃e(t ′)

− s2
∫ t

0
dt ′

∫ t ′

0
dt ′′H̃e(t ′)H̃e(t ′′), (21)

where X̃(t) = eiV tXe−iV t denotes the interaction picture of
operator X. After some calculations, detailed in Appendix B,
we find that

α(t) ≈ α0(t) − s2α2(t), (22)

where

α2(t) = 2

N
Re

∫ t

0
dt ′

∫ t ′

0
dt ′′(A(1) − A(2)) (23)

012113-3



GARRIDO, GORIN, AND PINEDA PHYSICAL REVIEW A 93, 012113 (2016)

and

A(1) = 〈tr[eiV tσze
−iV (t−t ′)Hee

−iV (t ′−t ′′)Hee
−iV t ′′σz]〉, (24)

A(2) = 〈tr[eiV (t−t ′′)σze
−iV (t−t ′)Hee

−iV t ′σze
iV t ′′He]〉. (25)

B. Averaging over the unitary group

We shall work in the eigenbasis of the environmental
Hamiltonian, so that He = diag εk . Let us call O the matrix
of eigenvectors of V so that eiV t = Oei	vtO†, with 	v being the
eigenvalues of V . Since V is taken from a GUE, O must be an
element of the unitary group U (2N ) equipped with the Haar
measure. Eq. (24) may be rewritten as

〈A(1)〉 = 〈eit(vα−vβ )+it ′(vβ−vγ )+it ′′(vγ −vδ )〉〈εkεj 〉(−)a+d

×〈Odl,αO∗
ai,αOai,βO∗

bj,βObj,γ O∗
ck,γ Ock,δO

∗
dl,δ〉. (26)

In this equation the Einstein summation convention is used.
The indices a, b, c, and d run through the basis states of
the qubit; the indices i, j , k, and l through those of the
environment; and the greek indices through the 2N eigenstates
of the coupling operator V . Equation (26) is composed of
three independent parts: The first part contains time and the
eigenvalues of the coupling. The second one contains the
eigenvalues of the environment Hamiltonian, and the third part
contains the term (−)a+d and the eigenvectors of V . The term
A(2) can be decomposed similarly. Notice that one can go from
Eq. (24) to Eq. (25) performing the following substitutions:

A(1) → A(2) A(1) → A(2)

t → t ′′ α → δ

t ′ → t β → α

t ′′ → t ′ γ → β

δ → γ

(27)

Using these rules, one can write the analogous expression for
A(2), starting from Eq. (26). As is well known [13], averages
over the unitary matrices with respect to the Haar measure
are invariant under arbitrary permutations of columns and/or
rows. Hence, the result of those averages only depends on
the question of whether these indices coincide among each
other or not. We may use this invariance property to get rid
of the factor (−)a+d as follows: Assume i �= l; then the row
ai is always different from dl and the group average does
not depend on a and d, so the summation over a and d can
be factored and yields

∑
a,d (−)a+d = 0. Therefore, we may

restrict the summation to the case i = l.

The different terms in the summation in Eq. (26) can
be grouped according to the degeneracy of the indices;
the particular value of each index is unimportant. One can
therefore divide the set of values for the four Greek indices into
15 different partitions, which will be enumerated as follows:

1 : α = β = γ = δ

2 : α = β = γ �= δ

3 : α = β = δ �= γ

4 : α = γ = δ �= β

5 : α �= β = γ = δ

6 : α = β �= γ = δ

7 : α = γ �= β = δ

8 : α = δ �= β = γ

9 : α = β �= γ �= δ

10 : α = γ �= β �= δ

11 : α = δ �= β �= γ

12 : α �= δ �= β = γ

13 : α �= γ �= β = δ

14 : α �= β �= γ = δ

15 : α �= β �= γ �= δ

(28)
For the latin index pairs we can proceed likewise. Due to the
invariance properties of the averages of the monomials, based
on the above labeling of the partitions, we can write

A(1) =
15∑

I=1

15∑
J=1

CIM
(1)
IJ F

(1)
J = CT M (1) F(1),

A(2) = CT M (2) F(2).

(29)

Notice that we are using capital latin letters as indices for the
different partitions. In this equation, C is a vector containing
all CI cases, in which the terms 〈εj εk〉 and (−)a+d are taken
into account; in the matrices M (1,2), the group averages over
the monomials of matrix elements of O are arranged, and
the time-dependent phases containing the eigenvalues of the
coupling are are included in F(1,2). The partitions, Eq. (28),
with respect to row indices (latin index pairs) and column
indices (greek indices) have different multiplicities, which are
included in the vectors C and F(1,2), respectively. The factors
CI are the same for A(1) and A(2). We find that

C1 = −C2 = −C5 = −C6 = −C7 = 2N,

C3 = C4 = −2(N − 2), C8 = 2N (2N − 1)

C9 = 4(N − 1), C10 = −C12 = C13 = C14 = 4(N − 1)

C11 = −4(N − 1)(N − 2), C15 = 4(N − 1)(N − 4).

The group averages appearing in the matrices M (1,2) are
calculated exactly for arbitrary N , based on recursion formulas
developed in [14], available as computer code in [26]. We
report the results of the vectors CT M (1,2):

CT M (1) = 1

N (2N + 1)(2N + 3)

(
N + 4,

N − 1

2N − 1
,
2(N − 1)(N + 2)

2N − 1
,

N − 1

(2N − 1)
,
2(N2 + 3N + 1)

(2N − 1)
, − N − 1

N (2N − 1)
,

× (N − 1)(N + 2)(2N + 1)

N (2N − 1)
, − N − 1

N (2N − 1)
, − N − 1

2N (2N − 1)
, − 3N + 2

2N (2N − 1)
, − N − 1

2N (2N − 1)
,

− N − 1

2N (2N − 1)
,
4N3 + 6N2 − 3N − 2

2N (2N − 1)
, − N − 1

2N (2N − 1)
,

5

2(2N − 3)(2N − 1)

)
, (30)

and

CT M (2) = 1

N (2N + 1)(2N + 3)

(
N + 4,

N − 1

2N − 1
,

N − 1

2N − 1
,

N − 1

2N − 1
,

N − 1

2N − 1
, − N − 1

N (2N − 1)
,
2(N − 1)(N + 1)

N (2N − 1)
,
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× (N + 1)(4N + 1)

N (2N − 1)
,
2N2 + 2N + 1

2N (2N − 1)
,
(N − 1)(N + 1)

N (2N − 1)
,
2N2 + 2N + 1

2N (2N − 1)
,
2N2 + 2N + 1

2N (2N − 1)
,
(N − 1)(N + 1)

N (2N − 1)
,

× 2N2 + 2N + 1

2N (2N − 1)
,

2(N − 1)(N + 1)

(2N − 3)(2N − 1)

)
. (31)

C. Average over the eigenvalues of V

We now calculate the components F
(1,2)
I of the time-

dependent factors F(1,2). As we are mainly interested in the
case of large N , we shall ignore all spectral correlations, as
these could only affect the dynamics of the qubit at times
proportional to N , where α(t) already is of order of 1/N . We
have seen this explicitly in Sec. II A, where we considered
the case of full coupling, s = 0. We expect that, for the
perturbed case with finite s, the situation will be similar, and
will be justified a posteriori with the numerical simulations.
In other words, we assume that the eigenvalues of the coupling
term V have a semicircle spectral density, but are otherwise
statistically independent. Note, however, that in principle, one
could take into account correlations and describe the behavior
up to times of the order of the Heisenberg time, if required.

That said, all components F
(1,2)
I will depend solely on the

Fourier transform of the spectral density b1. With the help of
the auxiliary functions

F(x) = (2N )!

(2N − 2)!
b2

1(x),

G(x,y,z) = (2N )!

(2N − 3)!
b1(x)b1(y)b1(z), (32)

H(x,y,z) = (2N )!

(2N − 4)!
b1(x)b1(y − x)b1(z − y)b1(z),

we may write〈
F

(1)
1

〉 = 2N,
〈
F

(1)
9

〉 = G(t ′,t ′′ − t ′,t ′′),〈
F

(1)
2

〉 = F(t ′′),
〈
F

(1)
10

〉 = G(t + t ′′ − t ′,t ′ − t,t ′′),〈
F

(1)
3

〉 = F(t ′ − t ′′),
〈
F

(1)
11

〉 = G(t − t ′′,t ′ − t,t ′′ − t ′),〈
F

(1)
4

〉 = F(t − t ′),
〈
F

(1)
12

〉 = G(t,t ′′ − t,t ′′),〈
F

(1)
5

〉 = F(t),
〈
F

(1)
13

〉 =G(t,−t + t ′ − t ′′,t ′′ − t ′),〈
F

(1)
6

〉 = F(t ′),
〈
F

(1)
14

〉 = G(t,t ′ − t,t ′),〈
F

(1)
7

〉 = F(t − t ′ + t ′′),
〈
F

(1)
15

〉 = H(t,t ′,t ′′) .〈
F

(1)
8

〉 = F(t − t ′′), (33)

Finally, using the mapping (27), we also obtain the components
of F (2):〈
F

(2)
1

〉 = 2N,
〈
F

(2)
9

〉 = G(t ′′,t ′ − t ′′,t ′),〈
F

(2)
2

〉 = F(t ′′),
〈
F

(2)
10

〉 = G(t ′′,−t ′′ + t − t ′,t ′ − t),〈
F

(2)
3

〉 = F(t ′),
〈
F

(2)
11

〉 = G(t,t ′ − t,t ′),〈
F

(2)
4

〉 = F(t − t ′),
〈
F

(2)
12

〉 = G(t ′′,t − t ′′,t),〈
F

(2)
5

〉 = F(t ′′ − t),
〈
F

(2)
13

〉 = G(t ′′ + t ′ − t,t − t ′′,t ′),〈
F

(2)
6

〉 = F(t ′′ − t ′),
〈
F

(2)
14

〉 = G(t ′′ − t ′,t − t ′′,t ′ − t),〈
F

(2)
7

〉 = F(t ′′ − t + t ′),
〈
F

(2)
15

〉 = H(t ′′,t,t ′) .〈
F

(2)
8

〉 = F(t), (34)

Equations (22), (23), and (29), together with Eq. (30) to
(34), provide the final, general result. It is valid, either in
the absence of spectral correlations in He, or for large N at
times sufficiently small compared to the Heisenberg time. In
our case, b1(t) is given in Eq. (11), which corresponds to a
semicircle level density. However, other cases with different
level densities could be considered, also. Our general result still
requires the evaluation of the double time integral in Eq. (23).
Typically, one would have to do this evaluation numerically.

D. The solution for large dimensions and times

It is possible to simplify the general expressions, discussed
above, considering explicitly the limit of large N . Table I
indicates the leading order in N−1 of all relevant terms,
in Eqs. (30), (31), and (32). By proper selection of the
highest order terms, we obtain for α∞

2 (t) = limN→∞ α2(t) the
following:

α∞
2 (t) = 2

∫ t

0
dt ′

∫ t ′

0
dt ′′(b1(t)b1(t ′ − t − t ′′)b1(t ′′ − t ′)

− b1(t ′′)b1(t − t ′′)b1(t ′ − t)b1(t ′)). (35)

We have tested the reach of this limit in Fig. 2, where we can see
that already for N = 210 there is almost no visible difference,
for the times reported, between the full expression and the
large-environment limit. Although this expression means a
considerable simplification for the b1 from a semicircle level
density, we were still not able to solve the time integrals in
closed form. We found only one case where that is possible.

TABLE I. Order of magnitude of the 15 different terms [see
Eq. (28)] contributing to Eq. (22). The leading terms are in boldface.
Thus, for large N , it is enough to consider the 13th term of A(1) and
the 15th term of A(2).

ν [CT M (1)]ν F (1)
ν [A(1)]ν [CT M (2)]ν F (2)

ν [A(2)]ν

1 −2 1 −1 −2 1 −1
2 −3 2 −1 −3 2 −1
3 −2 2 0 −3 2 −1
4 −3 2 −1 −3 2 −1
5 −2 2 0 −3 2 −1
6 −3 2 −1 −4 2 −2
7 −2 2 0 −3 2 −1
8 −4 2 −2 −3 2 −1
9 −4 3 −1 −3 3 0
10 −4 3 −1 −3 3 0
11 −4 3 −1 −3 3 0
12 −4 3 −1 −3 3 0
13 −2 3 1 −3 3 0
14 −4 3 −1 −3 3 0
15 −5 4 −1 −3 4 1
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α

2
(t

),
α
∞ 2

(t
)

t
00 44 88

−0.2

−0.2

−0.1

0.

0.

0.1

0.1

−0.1

N = 28

N = 24 N = 26

N = 210

FIG. 2. Exact value of the integral α2(t) in Eq. (23), with all
terms (yellow curves) and only taking into account the leading terms
in N (blue curves); that is, the value of α∞

2 (t), for several values of
the dimension N .

This case, where the level density is a Gaussian function, is
treated in Appendix D.

E. The solution for large times

Linear response theory is valid whenever the corrections
in the echo operator, Eq. (21), with respect to the identity
are small; that is, whenever |eiV t e−iH t − 1| � 1 (here, | · |
denotes the operator norm). This implies that the eigenvalues
of the echo operator must remain close to 1. Departure from
that happens for any value of the perturbation s, for sufficiently
long times. However, the smaller the s, the larger the time of
the validity of the linear response approximation.

The extension of linear response formulas in this context is
often done using exponentiation, as in Sec. III. However, in the
present case such attempts have been unsuccessful [27]. As an
alternative, we have opted to combine the two linear response
theories, namely the ones discussed in Secs. III and IV A. We
shall use the linear response formula Eq. (22) until the time in
which the largest (in absolute value) eigenphase reaches ±π .
Afterwards, an exponential decay is fitted.

V. THE TRANSITION FROM NON-MARKOVIAN TO
MARKOVIAN BEHAVIOR

As the coupling of the system diminishes (that is, when
s increases), one should fall back to the Markovian case in
the large-dimension limit [10,21]; cf. also Sec. III. This is
indeed observed in Fig. 3, where the curves for α(t) become
monotonic as s increases. Thus, we would like to know whether
there is a particular value for s beyond which the dynamics
is Markovian. This question is answered in Fig. 4, where the
measure for non-Markovianity, from Eq. (12) is plotted as a
function of the coupling s. The points mark the numerical
results for M where the integration in Eq. (12) has been
restricted to the interval t ∈ [0,10]. While this introduces
an error at small dimensions, this error vanishes at large
N . The solid lines mark the same quantity, but calculated
from the composite linear response results shown in Fig. 3.
One can observe that there is a seemingly sharp transition in
the large-dimension limit, which is not observed for smaller

1

0.1

0.01

0.001
2 4 6 8 100

FIG. 3. Comparison of the linear response theory, with an
exponential tail, and the numerical simulation, with N = 64, for
several perturbations.

dimensions due to the two-point correlations that cause an
increase in the function α, and are not taken into account in
the linear response results.

It is remarkable that a critical value of the coupling
is needed to go from one regime into the other. It must
be noticed, however, that in our calculation we are using
an ensemble of Hamiltonians to describe the environment
and the coupling to it. In a real experiment this would
correspond to measurements which require many repetitions
of the quantum process, during which the dynamics in the
environment changes, e.g., due to fluctuating classical fields.
A particular member of the ensemble will exhibit oscillations
that will result in non-Markovianity. However, one should
distinguish oscillations due to the particularities of the system,
from generic oscillations due to general features of the whole
ensemble.

N =16
N =32

N =64

N =128

0.0 0.2 0.4 0.6

0.03

0.05

0.01

FIG. 4. Measure of non-Markovianity for a random Hamiltonian
of the form Eq. (2). Here, both matrices V and He are taken
from the GUE, and the dimension of the environment N is varied.
Symbols indicate calculations done with the linear response theory,
extended with an exponential decay, while continuous lines are
obtained numerically. One can see that, at a critical intensity of
the coupling s ≈ 0.4, the system switches from non-Markovian to
Markovian. It should also be noted that, as the dimension increases,
the approximations are more accurate.
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0.0 0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.15

0.20
w 0.0

w 0.5

w 1.

w 0.1

FIG. 5. The effect of an internal Hamiltonian in the central
system, as in Eq. (36), is studied. The level splitting, ω, amplifies
the non-Markovian effects, but apparently conserves the transition
from non-Markovian to Markovian behavior, which occurs at ap-
proximately the same critical value for s.

For completeness, we have also studied the case in which
the qubit has an internal Hamiltonian, where Eq. (2) is
substituted by

H = ωσz + s12 ⊗ He + V. (36)

This Hamiltonian is no longer invariant under unitary transfor-
mations in the central system, and hence Eq. (5) is no longer
valid. Instead, the new quantum channel will be a combination
of a dephasing and a depolarizing channel. The only energy
scale retained in the limit of large dimensions is the spectral
span of the coupling Hamiltonian V [the level density has the
shape of a semicircle in the interval (−1,1)]. Therefore, one
may expect that the effect of the additional term depends on the
size of ω as compared to the spectral span. Hence, for ω � 1
the effect should be negligible; we do expect differences for
ω � 1. In Fig. 5, we present simulations for different values
of ω. The figure shows our measure for non-Markovianity
as a function of s, just as in Fig. 4. We can observe that
increasing ω leads to larger values for the measure, but that
the transition from non-Markovian to Markovian behavior is
essentially unchanged.

VI. CONCLUSIONS

We considered a quantum two-level system coupled to a
generic environment modeled by random matrix theory. We
obtained analytical expressions for the reduced dynamics using
linear response approximations, both around the weak and
strong coupling limits. For the weak-coupling limit, an explicit
expression is obtained. The corresponding expression involves
a double time-integral of one- and two-point functions of the
coupling in the general case, and of one-point functions in
the large dimension limit. In the limit N → ∞, the result
becomes much simpler [see Eq. (35)]: only two terms survive,
which contain one-point functions. Nevertheless, the double
time-integral still has to be evaluated numerically.

We then studied the degree of non-Markovianity in the
system, using the measure proposed in [19], based on distin-

guishability. We show that the degree of non-Markovianity
of the s = 0 case (infinite coupling) considered in Ref. [1]
diminishes as the coupling term becomes less important, and
that in the large-N limit it vanishes at a point where the free
and coupling terms of the Hamiltonian are of equal size.
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APPENDIX A: DETAILS FOR THE FULLY COUPLED
CASE, IN THE GUE CASE

The spectral correlations for the GUE are expressed in terms
of the functions

φj (E) = e−2NE2/4√
2j j !

√
2π/(2N )

Hj (E
√

N ),

where Hj are Hermite polynomials [17].
We fix the normalization so the average of the square of the

diagonal elements in the matrices is 1/N . Then, the spectral
density for finite dimensions is

R1(E) =
2N−1∑
j=0

φj (E)2 (A1)

and the cluster function, containing the correlations between
levels, is

T2(E1,E2) =
⎛
⎝2N−1∑

j=0

φj (E1)φj (E2)

⎞
⎠

2

. (A2)

If we define

b1(t) = 1

2N

∫
dEe−iEtR1(E) (A3)

and

b2(t) = 1

2N

∫
dE1dE2e

−i(E1−E2)t T2(E1,E2), (A4)

we have, for this case,

〈α0(t)GUE〉 = 4N2b2
1(t) + 4N [1 − b2(t)] − 1

4N2 − 1
, (A5)

since

N2〈f (t)|2〉 = N +
∫

dE1dE2e
−i(E1−E2)t

× [R1(E1)R1(E2) − T2(E1,E2)]. (A6)

In the large-dimension limit, we have

b1(t) = J1(2t)

t
(A7)

and thus

lim
N→∞

〈α0(t)〉GUE =
[
J1(2 t)

t

]2

. (A8)
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APPENDIX B: DETAILS FOR THE LINEAR
RESPONSE THEORY

Now, we write α(t) in terms of the echo operator as follows:

α(t) = tr[σz ⊗ 1 e−iV t M σz ⊗ 1M† eiV t ]. (B1)

Using Born approximation, Eq. (21), we obtain

α(t) = tr[σ̃z(t) M σz ⊗ 1M†]

≈ α0(t) − s2
∫ t

0
dt ′

∫ t ′

0
dt ′′ tr A(t ′′,t ′,t),

where

α0(t) = tr[σ̃z(t)σz ⊗ 1] (B2)

represent the exact known solution for s = 0, and

A(t ′′,t ′,t) = σ̃z(t)H̃e(t ′)H̃e(t ′′)σz − σ̃z(t)H̃e(t ′)σzH̃e(t ′′)

+ σzH̃e(t ′′)H̃e(t ′)σ̃z(t) − σ̃z(t)H̃e(t ′′)σzH̃e(t ′).

Due to the fact that the matrices H̃e, σ̃z and σz ⊗ 1 are
Hermitian, we obtain the useful identities

tr[σ̃z(t)H̃e(t ′)H̃e(t ′′)σz]
∗ = tr[σzH̃e(t ′′)H̃e(t ′)σ̃z(t)]

and

tr[σ̃z(t)H̃e(t ′)σzH̃e(t ′′)]∗ = tr[H̃e(t ′′)σzH̃e(t ′)σ̃z(t)]

= tr[σ̃z(t)H̃e(t ′′)σzH̃e(t ′)].

This implies that the trace of A(t ′′,t ′,t) can be written as twice
the real part of the trace of Ac(t ′′,t ′,t), where the latter quantity
only contains the two terms on the left-hand side of the above
equation. We may thus write for α(t) in the linear response
approximation

α(t) ≈ α0(t) − 2 s2 Re
∫ t

0
dt ′

∫ t ′

0
dt ′′ tr[Ac(t ′′,t ′,t)],

where

Ac(t ′′,t ′,t) = σ̃z(t)H̃e(t ′)H̃e(t ′′)σz − σ̃z(t)H̃e(t ′)σzH̃e(t ′′).

Now we split Ac in its two parts,

tr Ac(t ′′,t ′,t) = A(1) − A(2),

insert identity operators e−iV t eiV t wherever necessary, and use
the cyclical property of the trace, to rewrite more conveniently
the term under the integral.

APPENDIX C: NORMALIZATION OF THE
ENSEMBLES CONSIDERED

In Sec. IV A, we are free to consider any normalization
condition.

We conveniently assume that, with respect to an arbitrary
basis, the matrix elements of both V and He have a variance
equal to their inverse dimension. Let H be either V or He, so

the normalization condition reads

〈Hij Hkl〉 = δjkδli

N
. (C1)

That implies for the average of the trace of H 2 and for the
square of the trace of H

tr(H 2) =
∑
jk

〈HjkHkj 〉 = N2

N
= N, (C2)

[tr(H )]2 =
∑
jk

〈HjjHkk〉 =
∑

j

〈
H 2

jj

〉 = 1. (C3)

In turn, this means that the eigenvalues εj of He lie essentially
in the interval (−2,2), and have a semicircle distribution, for
large N . In addition, since

∑
j 〈ε2

j 〉 = N ,
〈
ε2
j

〉 = 1, (C4)

and, since
∑

jk〈εj εk〉 = N + N (N − 1)〈εj εk〉 = 1,

〈εj εk〉j �=k = − 1

N
. (C5)

APPENDIX D: THE GAUSSIAN PUE

Initial calculations were done in a Poissonian ensemble
with Gaussian level density. This could correspond to spin
models. Even though non-Markovian effects are not visible
here (the Fourier transform of a Gaussian is another Gaussian),
some results are easier to obtain, and provide a guide to the
more complicated calculations in the GUE case. We present
some details here, which might also provide a guide for the
calculations using other spectral densities.

We now assume that the coupling V is taken from the GPUE
(Gaussian PUE). This means that V is chosen as

VGPUE = UDU †, (D1)

with U chosen from the unitary group with the Haar measure,
and D is a diagonal matrix with Gaussian independent numbers
with σ = 1. This means that the variables vμ in Eq. (26) are,
again, independent Gaussian variables with mean zero and unit
standard deviation.

The subsequent calculation runs in identical way as shown
in Sec. IV, except that in Eq. (A7) we have

b1(t) = e− t2

2 , (D2)

and one has to propagate this difference through Eq. (32). In
this case, some of the integrals involved in the terms F (i)

ν can
be performed, though not all.

In this case, the compact expression for the large dimension
limit,

α∞
2 (t) � √

π te− 3t2

4 Erf

(
t

2

)
− πe− t2

2 Erf

(
t

2

)2

, (D3)

is obtained.
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