
PHYSICAL REVIEW A 93, 012111 (2016)

Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation
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That superpositions of states can be useful for performing tasks in quantum systems has been known since
the early days of quantum information, but only recently has a quantitative theory of quantum coherence
been proposed. Here we apply that theory to an analysis of the Deutsch-Jozsa algorithm, which depends on
quantum coherence for its operation. The Deutsch-Jozsa algorithm solves a decision problem, and we focus on
a probabilistic version of that problem, comparing probability of being correct for both classical and quantum
procedures. In addition, we study a related decision problem in which the quantum procedure has one-sided error
while the classical procedure has two-sided error. The role of coherence on the quantum success probabilities in
both of these problems is examined.
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I. INTRODUCTION

It is well known that entanglement is a resource that can be
used for a number of tasks, for example, teleporting a quantum
state from one system to another. More recently, other quantum
properties have been explored as resources. The most recent
is coherence [1]. Coherence is a basis-dependent property,
and it depends on the off-diagonal matrix elements of the
density matrix expressed in that basis. The standard example
is that of a particle going through an interferometer. In order
to see an interference pattern at the output, there has to be
coherence between the paths the particle can take inside the
interferometer. One way to decrease the coherence between
the paths is to gain information about which path the particle
took, and doing so decreases the visibility of the interference
pattern [2–8]. In Ref. [1] two different ways of quantifying
coherence were proposed, and we shall make use of one of
them.

Certain quantum-mechanical properties of states can be
treated as resources that are useful in accomplishing tasks.
The most thoroughly studied of these is entanglement. It can
be used to perform certain tasks, for example teleportation or
dense coding, and it is consumed in the process. In order to
treat something as a resource, one needs a measure in order
to quantify how much of that resource one has. In the case of
a pure, bipartite entangled state, the von Neumann entropy of
one of the reduced density matrices of the state has proven to
be a useful measure. In the case of coherence, one defines a
set of incoherent states (this set is basis dependent), and the
coherence of a state can be characterized by its distance from
this set. In [1], several possible distances were explored, and
two with particularly nice properties were singled out. One is
based on relative entropy, and the other on the l1 norm of the
density matrix. Here we shall use the latter.

In the context of coherence as a resource, it is useful to see
how the performance of a quantum algorithm that depends
on coherence changes as the amount of coherence in the
system decreases. One of the first quantum algorithms, the
Deutsch-Jozsa algorithm, depends on quantum coherence for
its operation, and it is particularly simple [9]. In fact, it can be
rephrased as a particle going through a multiarm interferometer
and looking at the interference pattern at the output. We will

use a quantum walk version of the Deutsch-Josza algorithm
to show this. The Deutsch-Josza algorithm solves a decision
problem and does the following. One is given an oracle that
evaluates a Boolean function, which is promised to be constant
or balanced, and ones task is to determine which. We will
assume that our Boolean function maps n-bit strings to either
0 or 1, and if the input to the oracle is the string x, its output
is f (x). A constant function is the same on all inputs and a
balanced one is 0 on half of the inputs and 1 on the others.
In the worst case scenario, one would have to check 2n−1 + 1
inputs to be certain which kind of function one had, while in
the quantum case only one function evaluation is necessary.

If one is willing to accept a probabilistic answer, classically
one would only have to check a few inputs in order to
determine which type of function the oracle represented with
a small probability of making a mistake. Consequently, the
Deutsch-Jozsa algorithm is not a practical one, but it does
serve to illustrate how quantum mechanics allows one to
perform tasks in a different way than would be possible on
a classical computer, and gain some quantum advantage. The
classical-quantum comparison can be made precise by asking
for the probability of obtaining the correct answer, constant or
balanced, in a fixed number of runs.

Here we wish to examine the effect of decoherence on the
performance of the Deutsch-Jozsa algorithm, and a variant of
it, using a recently defined measure of coherence [1]. The
Deuthsch-Jozsa algorithm depends on quantum coherence,
and the less of it there is, the worse the algorithm will
perform. We wish to make this statement quantitative using
one of the measures for coherence proposed in [1] and several
different measures for the performance of the algorithm. We
will see how the amount of coherence affects our ability
to distinguish the balanced and constant cases for a fixed
number of measurements and compare this to the result of
a classical procedure. We will then examine the modified
decision problem, deciding between a balanced function and
one that is biased, i.e.,

∑
x f (x) = ε2n, where ε is known.

II. QUANTUM WALK

We will use a quantum walk version of the Deutsch-Jozsa
algorithm. The reason for doing so is that this version of the
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FIG. 1. Graph on which the quantum walk takes place. The
vertices A and B are Fourier vertices, and all other vertices simply
transmit the particle. There are N paths going from vertex A to vertex
B. The rectangles are phase shifters and the j th one multiplies the
state by exp(iφj ). The tails, one starting at the vertex 0 and the other
starting at the vertex N + 1, are semi-infinite.

algorithm shows that the Deutsch-Jozsa algorithm is analogous
to sending a particle through an interferometer that has a
large number of paths. This use of the interferometer makes it
clear that the quantum resource we are using is just quantum
coherence. The graph on which the walk takes place is shown
in Fig. 1. The tails on the graph are semi-infinite, with the
right-hand tail having vertices N + 1, N + 2, ..., and the
left-hand tail having vertices 0, −1, −2, and so on.

We will be using a scattering walk, which is a discrete-
time quantum walk [10]. In this type of walk, the particle
sits on the edges, not the vertices, and each edge has two
orthogonal states, each corresponding to the particle moving
in a particular direction. For example, the edge between 0
and A has the states |0,A〉 corresponding to the particle being
on that edge and moving from 0 to A, and the state |A,0〉
corresponding to the particle being on that edge and moving
from A to 0. To each vertex of the graph corresponds a unitary
operator that transforms states entering the vertex into states
leaving the vertex. The unitary operator that advances the walk
one time step is composed of the combined actions of the
unitary operators at the individual vertices. The vertices A

and B are Fourier transform vertices and the unitary operators
corresponding to them, UA and UB respectively, act as

UA|j,A〉 = 1√
N + 1

N∑
k=0

e2πjk/(N+1)|A,k〉,

UB |j,B〉 = 1√
N + 1

N+1∑
k=1

e2πjk/(N+1)|B,k〉. (1)

The other vertices just transmit the particle, but those with a
phase shifter also add a phase factor to the transmitted state,

|A,j 〉 → eiφj |j,B〉. (2)

In our case the phases φj will be either 0 or π , and these
phases correspond to the output of the Boolean function in the
Deutsch-Jozsa algorithm. The phases are promised either to
be all the same (constant) or half of them are 0 and half are
π (balanced). Our task is to find out which of the two cases
we have. We will start the particle in the state |0,A〉, run the
walk for three steps, and then see whether or not it is in the
state |B,N + 1〉. If we find the particle in that state we will

conclude the phases were all the same, and if we do not, we
will conclude we had the balanced situation.

In order to compare the quantum walk result to a classical
one, we will assume that classically we are able to sample
the phase shifters, i.e., pick some of them and see how they
are set, whether to 0 or π . Then a classical versus quantum
comparison will consist of a comparison between the number
of phase shifters we sample versus the number of times we
have to run the quantum walk.

III. ANALYSIS OF THE WALK

We start the particle making the walk in the state |0,A〉.
After two steps, its state is

1√
N + 1

⎡
⎣|0,−1〉 +

N∑
j=1

eiφj |j,B〉
⎤
⎦. (3)

One more step yields the state

1√
N + 1

|−1,−2〉 + 1

N + 1

N∑
j=1

N∑
k=1

eiφj e2πijk/(N+1)|B,k〉

+ 1

N + 1

⎛
⎝ N∑

j=1

eiφj

⎞
⎠|B,N + 1〉. (4)

The last term is the one that interests us, because it yields
the probability that the particle is on the edge between B and
N + 1. If all of the phases φj are the same, this probability
is just N2/(N + 1)2, and if half the phases are 0 and half π ,
then, assuming N is even, it is zero. Therefore, with a small
error of order 1/N , which we shall assume we can neglect,
we can determine which of these two possibilities we have by
measuring the walk after three steps to see whether the particle
is between B and N + 1 or not.

Now we want to introduce decoherence into this system.
One way of doing so is to introduce a qubit for each leg of
the graph. In particular, let us suppose that all of these qubits
are initially in the state |0〉. When the particle goes through
the vertex j , in addition to picking up the phase eiφj , the
j th qubit goes from the state |0〉j to the state |μj 〉j , which
is a linear combination of the states |0〉j and |1〉j , |μj 〉j =
αj |0〉j + βj |1〉j . If we let

|ηj 〉 = |μj 〉j
N∏

k=1.k �=j

|0〉k, (5)

for j = 1,2, . . . N and |η0〉 = ∏N
k=1 |0〉k , then the state after

two steps is

1√
N + 1

[
|0,−1〉|η0〉 +

N∑
j=1

eiφj |j,B〉|ηj 〉
]
. (6)

The reduced density matrix corresponding to this state, where
we trace out the ancilla qubits, is given by

ρint = 1

N + 1

N∑
j=1

N∑
k=1

ei(φj −φk )〈ηk|ηj 〉|j,B〉〈k,B|

+O(N−1/2). (7)
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One of the measures of coherence defined in [1] for a general
density matrix ρ on an M-dimensional space is

Cl1 (ρ) =
M∑

i,j=1,i �=j

|ρij |. (8)

If we define

X = 1

(N + 1)2

N∑
j,k=1,j �=k

|〈ηk|ηj 〉|, (9)

then we see that

Cl1 (ρint ) = (N + 1)X + O(N−1/2). (10)

Note that in the case in which all of the qubit states |μj 〉j are
the same, then the inner products 〈ηk|ηj 〉 are independent of j

and k for the case j �= k. Setting ν = |〈ηk|ηj 〉|, we then find
that X = νN (N − 1)/(N + 1)2. If we now let the walk go one
more step, the state is

1√
N + 1

|−1,−2〉|η0〉

+ 1

N + 1

N∑
j=1

N∑
k=1

eiφj e2πijk/(N+1)|B,k〉|ηj 〉

+ 1

N + 1

⎛
⎝ N∑

j=1

eiφj |ηj 〉
⎞
⎠|B,N + 1〉. (11)

Forming a density matrix from this state and tracing out the
ancillas gives us the output density matrix for the particle
making the walk, ρout , and the probability of finding the
particle on the edge between B and N + 1 is

〈B,N + 1|ρout |B,N + 1〉

= 1

(N + 1)2

( N∑
j=1

N∑
k=1

ei(φj −φk )〈ηk|ηj 〉
)

. (12)

Note that

〈B,N + 1|ρout |B,N + 1〉 � N

(N + 1)2
+ X. (13)

What this tells us is that the amount of coherence in the system
places an upper limit on our ability distinguish the constant and
balanced cases. With perfect coherence the particle always [up
to O(1/N )] finishes in the state |B,N + 1〉 and in the balanced
case it never does. When the amount of coherence decreases,
the probability that the constant case will be mistaken for the
balanced case increases. This shows that the quantum resource
that is being used to accomplish this task is coherence.

IV. DEUTSCH-JOZSA ALGORITHM

Now let us see what happens to the results of the Deutsch-
Jozsa algorithm as the amount of coherence in the system is
decreased in more detail. In particular, we will examine the
probability of correctly identifying whether the interferometer
is constant or balanced in a fixed number of runs. We shall look
at the case that 〈ηk|ηj 〉 is independent of j and k for j �= k and
we shall assume the inner product is real and positive so we

can set 〈ηk|ηj 〉 = |〈ηk|ηj 〉| = ν. If all of the φj are the same,
then

〈B,N + 1|ρout |B,N + 1〉 = 1

(N + 1)2
[N + νN (N − 1)]

� ν + O(1/N ). (14)

If half of the φj are 0 and half are π , then we have that

〈B,N + 1|ρout |B,N + 1〉

= 1

(N + 1)2

[
(1 − ν)N + ν

N∑
j,k=1

ei(φj −φk )

]

= (1 − ν)N

(N + 1)2
= O(1/N ). (15)

Our procedure is to run the walk and measure whether the
particle is in the state |B,N + 1〉. If it is, we guess that we have
the constant case, and if not, we guess we have the balanced
case. We see that as the amount of coherence decreases, our
chance of making an error increases. Note that the error is
almost one-sided. If the particle comes out, we know with very
high probability that all of the φj are the same. However, if it
does not come out, and we guess that the φj are in the balanced
configuration, then, assuming the balanced and constant cases
are equally likely, we have a chance of (1 − ν)/2 of being
wrong. Classically, looking at one of the phase shifters gives
us no information about which of the two cases we have, so
for one trial, the quantum case does better. Clearly, coherence
is a resource in the quantum case, because the more coherence
there is in the system, the less likely we are to make a mistake.

Now let us see what happens with two trials. Let us look
at the classical case first. We shall call the results of the trials
y1 and y2, where yj = ±1. Here we are denoting the phase
shifters by eiφ rather than φ, so a phase of 0 corresponds
to 1 and a phase of π corresponds to −1. There are four
possible results, (y1,y2), if we sample two of the phase shifters,
(1,1), (1,−1), (−1,1), and (−1,−1). We will assume that the
balanced and constant cases are equally likely, and that within
the constant category, each value is equally likely. If the results
are different we know we have the balanced case. This happens
with a probability of 1/4 (the probability of the balanced case
occurring times the probability of the results being different).
If we get the same result for each trial, things get a bit more
complicated. We want to find P (c|y1y2), the probability that
we have the constant case given that we have the result (y1,y2),
and similarly P (b|y1,y2), the probability that we have the
balanced case. Clearly P (b|1,−1) = P (b|−1,1) = 1. To find
the probabilities when the results are the same, we use Bayes’
theorem. Let us find P (c|1,1) = P (c = 1|1,1), where we have
specifically indicated which constant value the phase shifter
will have. We then have

P (c = 1|1,1) = P (1,1|c = 1)P (c = 1)

P (1,1)
. (16)

Now P (1,1|c = 1) = 1 and P (c = 1) = 1/4. For the denom-
inator we have

P (1,1) = P (1,1|c = 1)P (c = 1) + P (1,1|b)P (b) = 3
8 .

(17)
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Finally, this gives us that P (c|1,1) = 2/3, which implies that
P (b|1,1) = 1/3. Similarly, P (c|−1,−1) = 2/3. Our strategy,
then, is to guess balanced if the results are different, and
constant if they are the same. Our probability of being correct
is 3/4, i.e., we are always correct if the results are different
and are correct with a probability 2/3 when they are the same.

Now let us look at the quantum case. We run the walk twice,
and we denote the results of the runs by (0,0), (1,0), (0,1), and
(1,1), where 0 denotes we did not find the particle in the state
|B,N + 1〉 and 1 indicates that we did. Neglecting terms of
O(1/N ), we have that

P (0,0|c) = (1 − ν)2,

P (0,1|c) = P (1,0|c) = ν(1 − ν), (18)

P (1,1|c) = ν2,

and P (0,0|b) = 1 and P (0,1|b) = P (1,0|b) = P (1,1|b) = 0.
Now making use of Bayes’ theorem we have that in the cases
(1,0), (0,1), and (1,1), we can conclude that we have the
constant case with certainty. If we obtain (0,0), then we have

P (c|0,0) = (1 − ν)2

(1 − ν)2 + 1
,

(19)
P (b|0,0) = 1

(1 − ν)2 + 1
.

Now the first of these probabilities is less than or equal to the
second, so if our measurement results are (0,0), we should
always guess balanced. In all other cases we guess constant.
Doing so, our probability of being wrong is (1/2)(1 − ν)2. The
quantum error probability will be less than the classical one
when

1
2 (1 − ν)2 < 1

4 , (20)

or ν > (
√

2 − 1)/
√

2. So in the case of two trials, as long as the
amount of decoherence is not too great, the quantum method
is better.

This can be generalized to m trials for m � N . Before
doing so, let us be more careful about specifying our ensemble.
We are assuming that each of the constant cases occurs
with probability 1/4, and that the total probability of the
balanced case is 1/2. Within the balanced case, each of
the balanced sequences has the same probability. So far, we
have assumed that, given the balanced case, this is equivalent
to the probability that a particular phase shifter has yj = 1
is 1/2, the probability that it has yj = −1 is 1/2, and that
different phase shifters can be treated as independent. This
needs to be justified, and this is done in the Appendix. We find
that as long as m � N , this assumption is valid.

In the classical case, the only ambiguous situation is if all
of the examined phase shifters are found to be the same. We
would then guess that we are in the constant situation. In the
quantum case, the only ambiguous case is if the particle is
never found between B and N + 1. We would then guess that
we are in the balanced situation. Let us have a look at these
cases and see what the probability of making a mistake is. In
all other situations, the probability of making a mistake is very
small.

We start with the classical case. Denote the probability that
we have c = 1 given that we examined m phase shifters and

found them to be 1 by P (c = 1|m1). Making use of Bayes’
theorem and

P (m1) = P (m1|c = 1)P (c = 1) + P (m1|b)P (b)

= 1

4
+ 1

2m+1
, (21)

we find that

P (c = 1|m1) = 2m−1

1 + 2m−1
. (22)

The result for the probability for c = −1 when we found m

phase shifters to be −1 is the same. Since we will guess the
constant case in both these situations, the probability of being
wrong is

p(class)
error = 2[1 − P (c = 1|m1)]P (m1)

= 2

1 + 2m−1

(
1

4
+ 1

2m+1

)
= 1

2m
. (23)

Now we move to the quantum case, and P (c|m0) now denotes
the probability that we have the constant case given that the
particle was not found in the state |B,N + 1〉 in m trials. Now
application of Bayes’ theorem and the fact that

P (m0) = P (m0|c)P (c) + P (m0|b)P (b)

= 1
2 (1 − ν)m + 1

2 (24)

gives us

P (c|m0) = (1 − ν)m

1 + (1 − ν)m
. (25)

Now in this case we will guess balanced, so the probability of
being wrong is

p(quant)
error = P (c|m0)P (m0) = 1

2
(1 − ν)m. (26)

If ν > 1 − (21/m/2), then we will have p
(quant)
error < p(class)

error . This
tells us how much coherence we need for the quantum method
to outperform the classical one.

V. VARIATION ON DEUTSCH-JOZSA

The decision problem we looked at in the previous section
was one in which both the quantum algorithm and the classical
one had (almost) one-sided error. In the classical case, if the
interferometer is constant, we will never guess balanced, and
in the quantum case, if it is balanced, we will never guess
constant. Here we would like to look at a situation in which
the quantum algorithm has one-sided error, but the classical
one does not. This can give the quantum algorithm a significant
advantage if the errors have different costs. We again look at
the case where the phase shifts are either 0 or π , but we now
want to distinguish between the case in which the phase shifts
are balanced and the case in which

1

N

N∑
j=1

eiφj = ε, (27)

where we assume that ε � 1. In order to distinguish between
these alternatives, our strategies are the same as before. The
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quantum strategy is to run a quantum walk a certain number of
times, and the classical strategy is to sample the phase shifters.

In this case, the quantum strategy is the easier one to
analyze. Let us first consider the situation without decoher-
ence. We know that in the balanced case, the probability of
measuring the particle to be in the state |B,N + 1〉 after the
walk is, up to O(1/N ), zero. In the second case, which we
shall refer to as the ε case, the probability to find the particle
in that state is ε2. In that case, if the walk is run m times,
the probability of not finding the particle between B and N + 1
is

(1 − ε2)m � e−mε2
, (28)

where we have made use of the fact that ln(1 − ε2)m � −mε2.
Therefore, in order to detect this case, that is to find the particle
at least once in the state |B,N + 1〉, we need mε2 to be at least
of order 1. Our strategy is to assume that if we ever find the
particle in the state |B,N + 1〉 in m runs that we have the
ε case, and that we have the balanced case otherwise. If we
are given the balanced case, we will always be correct, and if
we are given the ε case and mε2 is of order 1 or greater, our
probability of error will also be small. If there is decoherence,
the effect is simply to replace ε2 by νε2, so that as long as ν is
not too small, the effect of decoherence will not be large

Now we turn to the classical case. We will look at m of the
phase shifters. Let each sampled phase shifter be represented
by a variable yj , where yj = 1 corresponds to φj = 0 and
yj = −1 corresponds to φj = π . We define

Y = 1

m

m∑
j=1

yj . (29)

If we find Y � ε/2 we shall assume that we have the ε

case, otherwise we will assume we have the balanced case.
Therefore, we want to find the probability of making an error.

Let us start by assuming that we have the balanced case, and
we would like to find the probability that we would identify it as
the ε case. We will assume that all of the balanced sequences of
N phase shifters are equally probable. If we are only sampling
m � N of the phase shifters, this is equivalent to assuming
that each phase shifter we look at has an equal chance of
having yj = 1 and yj = −1 (see the Appendix). We now want
to find the probability that Y � ε/2. For this purpose we can
use the Chernoff bound [11]. It states that if we have the
independent random variables, Xj , j = 1,2, . . . n, where Xj

can be either 0 or 1, and its probability of being 1 is pj , then
for XT = ∑n

j=1 Xj , μ = ∑n
j=1 pj , and any δ > 0, then

P [XT > (1 + δ)μ] <

[
eδ

(1 + δ)(1+δ)

]μ

. (30)

In our case μ = m/2, and setting Xj = (1/2)(yj + 1), we find
that Y > ε/2 implies XT > m[(ε/2) + 1)/2 so that

P (Y > ε/2) <

[
eε/2

(1 + ε/2)1+ε/2

]m/2

. (31)

Assuming ε � 1 and keeping the lowest-order terms in ε, we
find

ln

[
eε/2

(1 + ε/2)1+ε/2

]
� −ε2/4, (32)

so that the right-hand side of Eq. (31) is approximately e−ε2m/8.

Similarly, let us suppose that we have the ε case. We
will assume that all sequences of N phase shifters satisfying∑N

j=1 yj = εN are equally likely. For a subsequence of length
m, where m � N , this is equivalent to assuming that each
element has a probability of (1 + ε)/2 to be +1 and (1 − ε)/2
to be −1 (see the Appendix). We now want to find the
probability that we would identify this as the balanced case,
which is the same as finding Y < ε/2. We can now use the
following version of the Chernoff bound [11]. With the same
conditions as before,

P [XT < (1 − δ)μ] < e−μδ2/2. (33)

We now have that μ = m(1 + ε)/2 and Y < ε/2 implies XT <

m[(ε/2) + 1]/2, which further implies that

δ = ε

2(1 + ε)
. (34)

Finally, keeping only the lowest-order terms in ε, we find that

P (Y < ε/2) < e−ε2m/8. (35)

Summarizing, we see the following. For both the quantum
and classical methods, the condition for keeping the error small
is the same: mε2 should be at least of order 1. However,
up to O(1/N ), the quantum error is one-sided, if we have
the balanced case, we will not mistake it for the ε case. For
the classical method, the error is two-sided, we can mistake
each case for the other. Therefore, if we are in a situation in
which the cost of mistaking the balanced case for the ε case is
large, the quantum method has an advantage. Note that for this
situation, deciding between the balanced and ε cases, the type
of decoherence we are considering does not affect the fact that
the quantum error is one sided, but it will cause the number
of runs that we need to make in the quantum case, which is
of order 1/(νε2), to increase. The reason it does not affect the
one-sidedness of the error is that the decoherence respects the
symmetry of the problem; it is the same for each branch of
the interferometer. This suggests that for some problems for
which coherence is a resource, not only its total quantity, but
its properties will play a role.

VI. CONCLUSION

We have examined the role played by coherence as a
resource in the Deutsch-Jozsa and related algorithms. The
Deutsch-Jozsa algorithm is a means of solving a decision
problem, in particular, deciding between two alternatives.
In its ideal form, it provides an answer in a single run,
whereas classically in the worst case an exponential number
of runs would be necessary. Decoherence degrades the ability
of the algorithm to decide between the alternatives, and the
smaller the amount of coherence in the system, the worse
the ability of the algorithm to distinguish between the two
cases. This demonstrates that coherence is a resource for this
algorithm. We also looked at the Deutsch-Jozsa algorithm in a
probabilistic setting, and found that as long as there is enough
coherence present, there is a quantum advantage in that for a
fixed number of measurements, one has a higher probability
of making the correct decision using quantum means than by
using classical ones. By looking at a related decision problem,
we found an example in which the number of measurements
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one makes is comparable for the classical and quantum cases,
at least if the coherence in the quantum case remains high
enough, but while the classical procedure has two-sided error,
the quantum procedure has one sided error.
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APPENDIX

We now need to justify what we did in Secs. III and IV. In the
our ensemble in Sec. III, each balanced sequence of length N

occurred with equal probability. A related ensemble occurred
in Sec. IV. We want to show the following. We consider an
ensemble of sequences of length N consisting of ±1, in which
each sequence has pN ones and (1 − p)N minus ones. Each
of these sequences has the same probability. We now consider
fixed subsequences of these sequences of length m, e.g., the
first m elements of each sequence of length N . We want to
show that the probability of a subsequence with m+ ones and
m− minus ones, where m+ + m− = m, is the same as if each
location in the subsequence has a probability p of containing
a one and a probability 1 − p of containing a minus one.

For convenience, we will consider subsequences consisting
of the first m places of the sequences of length N . The
probability, p(m+,m−) that the subsequence has m+ ones is

p(m+,m−) =
(

m

m+

)(
N − m

pN − m+

)
(

N

pN

) =
(

m

m+

)
F, (A1)

where

F = (N − m)!(pN )!(N − pN )!

N !(pN − m+)!(N − pN − m + m+)!
. (A2)

Now we shall assume that m is much less than N , pN , and
(1 − p)N and apply the Stirling approximation, n! �√

2πnnne−n. We then have

(N − m)!

N !
�

√
1 − m

N

em

Nm

(
1 − m

N

)N−m

. (A3)

We can approximate the last factor by taking its logarithm and
expanding in m/N ,

ln

(
1 − m

N

)N−m

= (N − m)

(
− m

N
− m2

2N
+ · · ·

)

= −m − m2

2N
+ O(m/N ). (A4)

This gives us

(N − m)!

N !
�

√
1 − m

N

1

Nm
e−m2/2N . (A5)

Applying this relation to (pN − m+)!/(pN )! and [(1 − p)
N − (m − m+)]!/[(1 − p)N ]! and substituting into the ex-
pression for F , we obtain

F � pm+(1 − p)m−m+ + O(m/
√

N ). (A6)
This gives us

p(m+,m−) �
(

m

m+

)
pm+ (1 − p)m−m+ , (A7)

which is what we would obtain if we assumed that in the
sequence of length m one occurred with probability p and
minus one occurred with probability 1 − p.
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