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We investigate the remarkable role of position-dependent damping in determining the parametric regions of
symmetry breaking in nonlinear PT -symmetric systems. We illustrate the nature of PT -symmetry preservation
and breaking with reference to a remarkable integrable scalar nonlinear system. In the two-dimensional cases of
such position-dependent damped systems, we unveil the existence of a class of twofold-PT -symmetric systems
which have twofold PT symmetries. We analyze the dynamics of these systems and show how symmetry
breaking occurs, that is, whether the symmetry breaking of the two PT symmetries occurs in pair or occurs one
by one. The addition of linear damping in these nonlinearly damped systems induces competition between the
two types of damping. This competition results in a PT phase transition in which the PT symmetry is broken for
lower loss or gain strength and is restored by increasing the loss or gain strength. We also show that by properly
designing the form of the position-dependent damping, we can tailor the PT -symmetric regions of the system.
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I. INTRODUCTION

In recent times, considerable interest has been shown in
investigating systems which do not show parity (P) and
time-reversal (T ) symmetries separately but which exhibit
a combined PT symmetry. These PT -symmetric systems
have several intriguing features such as power oscillations [1],
absorption enhanced transmission [2], double refraction, and
nonreciprocity of light propagation [1]. Thus, these systems
open up applications in optics [1], quantum optics [3,4],
solid state physics [5], metamaterials [6,7], optomechanical
systems [8,9], etc. The understanding of PT -symmetric
systems as nonisolated systems with balanced loss and gain
has led to the exploration of these systems in mechanics as
well as in electronics. Such observations of PT -symmetric
mechanical and electronic systems provide the simplest ground
to experiment on these PT -symmetric systems [10–14].

A. Twofold PT symmetry

The above oscillator-based PT -symmetric systems are
generically constructed by coupling an oscillator with linear
loss to an oscillator with equal amount of linear gain [11–14].
Apart from the above type of systems, there exist a class of
interesting dynamical systems with position-dependent damp-
ing (or position-dependent loss-gain profile) where the amount
of damping depends on its displacement. Consequently, one
can have PT -symmetric systems even with a single degree of
freedom. In this case, the systems are invariant with respect to
the PT operation defined by P: x → −x, T : t → −t , so that
PT : x → −x, t → −t which we denote as the PT − 1 oper-
ation. As the position-dependent damping term is found to be a
nonlinear term in the evolution equation, we call this damping
as nonlinear damping for simplicity. The main aim of this
paper is to investigate the dynamics and underlying structures
in these systems in comparison with the standard ones.

The recent explorations on the damping in systems with
one or more atomic-scale dimensions have unveiled that

the damping present in these systems is strongly position
dependent [15–17]. Reference [15] shows that this type of
damping in mechanical resonators enhances the figure of merit
of the system tremendously. In particular, with this type of
damping, a quality factor of 100 000 has been achieved with
graphene resonators. In addition, such systems are found to
play an important role in many areas of physics, biology, and
engineering [18] and they are typically called Liénard systems
or Liénard oscillators. Recently, a class of chemical and
biochemical oscillations which are governed by two-variable
kinetic equations are shown to be reducible to Liénard systems
by linear transformations. As the nonlinear damping term
in the Liénard systems can act as a damping term or a
pumping term depending on the amplitude of the oscillation,
through an internal energy source, it gives rise to self-sustained
oscillations. The above property enables one to understand and
to control several chemical and biochemical oscillations which
are discussed in [19]. Liénard systems are also found to be
paradigmatic models in the biological regulatory systems [20].
For example, they have been used to model the heart and res-
piratory systems (van der Pol equation [21,22]) and the nerve
impulse (FitzHugh-Nagumo equations [23]). The Liénard
equation with a cubic polynomial potential has been used to
describe the isotropic turbulence [24]. One can also find the ap-
pearance of these systems in reaction-diffusion systems [25].

Concerning the importance of the above type of nonlinearly
damped systems, we here focus on thePT -symmetric cases of
this category. The Hamiltonian structure [26] and quantization
[27,28] of some of the nonlinearly damped PT -symmetric
systems with single degree of freedom have been studied
recently, which show interesting symmetry breaking in these
systems (see also Sec. III).

A proper coupling of two scalar nonlinearly damped PT -
symmetric systems can yield twofold-PT -symmetric systems
which are invariant with respect to the PT − 1 (x → −x,
y → −y, t → −t) operation as well as with the PT − 2
operation which is defined as PT − 2: x → −y, y → −x,
t → −t . Such type of studies on the systems with multiplePT
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symmetries is interesting; for example, one can see an earlier
paper on such multiple PT -symmetric cases [29]. In this
paper, we point out that the study of twofold PT symmetries
in such coupled nonlinear damped systems can lead to
interesting dynamical states of PT -symmetry-preserving and
-breaking types, aside from oscillation death and bistable
states.

B. Spontaneous symmetry breaking

An interesting mechanism that is found to arise in the PT -
symmetric systems is the spontaneous symmetry breaking,
where the system in the symmetric state transits to an
asymmetric state by the variation of certain parameters. In
classical systems, the simplest state of broken symmetry is the
equilibrium state which may correspond to the minimum of
the potential but which does not possess all the symmetries
underlying the dynamical equation. Let G be the transforma-
tion under which the dynamical equation is invariant. Then,
a symmetric state u = us corresponds to the state which
remains invariant under the transformation us = Gus . But,
an asymmetric or symmetry-broken state ua (that may also
correspond to the minimum of the potential) is the one that
gets transformed into another asymmetric state ui = Gua

under the transformation G. Here, the transformed state ui

also corresponds to an equilibrium of the system. A typical
example is the reflection symmetry in a double-well quartic
anharmonic oscillator. From a dynamical point of view, the
spontaneous breaking of symmetries is also manifested in
the stability nature of the fixed points and the trajectories
around it in the phase space and nature of bifurcations as a
system parameter is varied, again as in the case of the double-
well quartic oscillator undergoing spontaneous P-symmetry
breaking. In this paper, we also show that the above existence
of symmetry-preserving and -breaking equilibrium states can
be identified with the existence or nonexistence of the general
solution of the initial value problem underlying the dynamical
system satisfying the symmetry and the system can admit
more general classes of solution corresponding to symmetry
preservation and breaking.

A universal feature of the standard PT -symmetric systems
is that the PT symmetry is broken by increasing the loss or
gain strength and is restored by reducing it [11,12]. In contrast
to this behavior, Liang et al. [30] have observed a reverse
PT phase transition phenomenon in a lattice model known
as PT -symmetric Aubry-Andre model [31], in which the PT
symmetry is broken for lower loss or gain strength and is
restored for higher loss or gain strength. They observed this
phenomenon only when two lattice potentials that introduce
loss or gain in the system are applied simultaneously (which
is not observed when a single lattice potential is present).
This type of inverse PT phase transition arises as a result of
the competition between the two lattice potentials. Similarly,
Miroshnichenko et al. [32] have studied the competing effect
of linear and nonlinear loss-gain profile in discrete nonlinear
Schrödinger system. The observation of PT restoration at
higher loss-gain strengths also attracted wide interests and
the recent studies show that it could happen even through
an interplay of kinematical and dynamical nonlocalities
[33].

C. Nonlinear damping and PT symmetry

From a different point of view, in this work, we add a
linear damping in addition to the nonlinear damping and study
the competing effects of the linear and nonlinear damping
forces. With a single nonlinear damping, our system shows
PT symmetry breaking like the standard PT -symmetric
systems, but as soon we add the linear damping to the
nonlinear damping, we observe PT restoration at higher loss
or gain strength similar to the case of Aubry-Andre model.
Importantly, we illustrate that this competition among the
damping terms in addition to the position-dependent nature
of damping aid in tailoring the PT regions of the system.

The organization of the paper is as follows: In Sec. II,
we discuss the loss-gain profiles of the scalar PT -symmetric
and non-PT -symmetric nonlinearly damped systems. In
Sec. III, we consider a specific model of scalar PT -symmetric
nonlinear damped oscillator, namely, the modified Emden
equation. Analyzing the initial value problem of an integrable
case explicitly, we greatly clarify the nature of PT -symmetry
preservation and breaking. In Sec. IV, we consider a coupled
system with a simple nonlinear damping h(x,ẋ) = xẋ, which
is also a twofold-PT -symmetric system. In Sec. V, in addition
to the nonlinear damping, we introduce a linear damping in the
system and show the occurrence of PT restoration at higher
values of loss or gain strength. In Sec. VI, we consider a general
coupled system with linear and nonlinear damping and show
the tailoring of PT regions in the system. In Sec. VII, we
summarize the results of our work. In Appendix A, we consider
the initial value problem of a double-well oscillator and discuss
the spontaneous P-symmetry breaking from solution point of
view. In Appendix B, we consider non-PT -symmetric scalar
systems. In Appendixes C, D, and E, we have presented the
eigenvalues obtained through the linear stability analysis for
the systems we considered.

II. NONLINEARLY DAMPED SYSTEMS REVISITED

To start with, we analyze the loss-gain profiles of position-
dependent scalar nonlinearly damped systems. For this pur-
pose, we first consider a system which is described by the
second-order nonlinear differential equation

ẍ + h(x,ẋ) + g(x) = 0

(
˙= d

dt

)
. (1)

Here, h(x,ẋ) = f (x)ẋ is the position-dependent damping
which we call for simplicity as the nonlinear damping term.
Also, f (x) is taken as a nonconstant function in x. The above
equation can be considered as a dynamical system on its
own merit, often with a nonstandard Hamiltonian description
[26], or as a conservative nonlinear oscillator perturbed by
a nonlinear damping force h(x,ẋ) which supplies or absorbs
energy at different points in the (x,ẋ) phase space,

ẍ + g(x) = −h(x,ẋ) = −f (x)ẋ. (2)

The kinetic and the potential energies of the unperturbed
particle are given, respectively, by

T (ẋ) = 1

2
ẋ2; V (x) =

∫
g(x)dx. (3)
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Thus, the total energy of the particle in the potential V (x) when
h(x,ẋ) = 0 is

E = 1

2
ẋ2 +

∫
g(x)dx. (4)

The rate of change of energy of the particle is

dE

dt
= ẋ[ẍ + g(x)]. (5)

From Eq. (1), we can write

dE

dt
= −ẋh(x,ẋ) = −f (x)ẋ2. (6)

If the quantity dE
dt

< 0 [or ẋh(x,ẋ) > 0] in a region in (x,ẋ)
phase space, then the energy is withdrawn from the system for
the states lying in this region and the role of h(x,ẋ) is like a
damping or loss term and if dE

dt
> 0 [or ẋh(x,ẋ) < 0], then in

the corresponding region the effect of h(x,ẋ) is like negative
damping or gain.

The above type of nonlinearly damped systems can be
classified as (i) PT -symmetric systems and (ii) non-PT -
symmetric systems depending on the form of h(x,ẋ), whereas
all linearly damped systems are always non-PT symmetric.
Here, the PT -symmetric systems are those systems that are
invariant under the combined operation of PT (and not
individual operation of P or T ): x → −x, t → −t . We denote
this as PT − 1 symmetry (in order to distinguish it from
the additional PT symmetry in two-dimensional systems).
Then, PT − 1 symmetric systems belonging to (1) are those
systems where h(x,ẋ) is a nonlinear function in x, ẋ that
is odd in x as well as ẋ. In this article, we focus our
attention towards the systems with h(x,ẋ) = f (x)ẋ, where
f (x) and g(x) in (1) are odd functions. Systems of the form
(1) which do not meet this requirement are non-PT symmetric.
These non-PT -symmetric systems are typically of two types:
(i) systems exhibiting damped oscillations and (ii) systems
admitting limit cycle oscillations. In the following, we present
specific examples of these three cases:

(1) PT -symmetric conservative system: modified emden
equation (MEE) [26,34]

ẍ + αxẋ + βx3 + ω2
0x = 0. (7)

(2) Non-PT -symmetric damped system [35]

ẍ + αx2ẋ + βx3 + ω2
0x = 0. (8)

(3) Limit cycle oscillator (van der Pol oscillator) [36]

ẍ + (x2 − 1)ẋ + ω2
0x = 0. (9)

The system (7) is known as the modified Emden equation
and is obviously invariant under the PT − 1 operation. The
PT -symmetric nature of this system [26] and its quantization
[27] have been studied for the specific case β = α2

9 which
admits symmetry-breaking states for λ < 0. A critical analysis
of the PT symmetry of (7) is given in Sec. III. The systems
given in Eqs. (8) and (9) are examples of non-PT -symmetric
ones, as the damping terms in these cases are found to be even
functions of x. The system (8) admits damped oscillations,
while the system (9) (the famous van der Pol oscillator) is
found to have self-sustained oscillations which are also noted
in Appendix B.

FIG. 1. Loss-gain profiles dE

dt
of the systems given by (a) Eq. (7),

(b) Eq. (8), and (c) Eq. (9) in the (x,ẋ) space: the pink shaded regions
in the figures correspond to the regions in which dE

dt
is positive (or

it denotes the region in which gain is present). Similarly, the gray
shaded regions denote the regions in which dE

dt
is negative.

Figure 1 shows the loss-gain profiles corresponding
to Eqs. (7)–(9), which are obtained by substituting the
corresponding forms of f (x) in Eq. (6). From the loss-gain
profile [shown in Fig. 1(a)] corresponding to the PT − 1
symmetric case (7), we can find that we have varying loss
along the positive x axis and varying gain along the negative
x axis. The amount of gain present for x < 0 is balanced by
the amount of loss present for x > 0. Then, from Figs. 1(b)
and 1(c), we can see that in the case of non-PT -symmetric
systems, the loss and gain will not be balanced. In the case of
the non-PT -damped oscillator (8), from Fig. 1(b) we can find
that loss is present everywhere in space. In the case of limit
cycle oscillator (9), from Fig. 1(c), we can find that gain exists
in the region |x| < 1 and loss exists in the region |x| > 1.
This clearly shows that in this case, the amount of loss present
in the (x,ẋ) space is not balanced by an equal amount of gain.

From Fig. 2, we can see that in the PT -symmetric and limit
cycle oscillator cases, there exist periodic and self-sustained
oscillations [Figs. 2(a) and 2(e)], respectively, and in the non-
PT -symmetric damped oscillator case [Fig. 2(c)], we have
damped oscillations. The corresponding rates of change of
energy dE

dt
profiles are shown in Figs. 2(b), 2(d), and 2(f),

respectively.
Comparing the periodic oscillations [Figs. 2(a) and 2(e)]

corresponding to the PT -symmetric oscillator case [Eq. (7)]
and the limit cycle oscillator case [Eq. (9)], we can find that the
PT -symmetric system takes up different paths for different
initial conditions, but the limit cycle oscillator for different
initial conditions tends to a particular path as time t → ∞.
The reason is that the balanced loss-gain profile [shown in
Fig. 1(a)] of the PT -symmetric system allows it to have
multiple paths along which net dE

dt
is zero. But in the case of

limit cycle oscillator, Fig. 1(c) shows that the loss and gain are
not balanced in the (x,ẋ) space. Thus, the paths along which
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FIG. 2. Figures (a), (c), and (e) depict the solution of Eqs. (7),
(8), and (9), respectively, for two different initial conditions. Figures
(b), (d), and (f) show the corresponding rates dE

dt
as a function of time.

total dE
dt

is zero are limited in this case. Consequently, the phase
space of limit cycle oscillators contains isolated paths only.

Now, let us consider a system of coupled nonlinear damped
oscillators (for simplicity we consider a linear coupling)

ẍ + h1(x,ẋ) + h2(x,ẋ) + g(x) + κy = 0,

ÿ + h1(y,ẏ) − h2(y,ẏ) + g(y) + κx = 0, (10)

where h1(x,ẋ) = f1(x)ẋ and h2(x,ẋ) = f2(x)ẋ are the two
position-dependent nonlinear damping terms. Here, the func-
tions f1(x) and f2(x) are chosen to be odd and even functions
in x, respectively, and also the function g(x) is chosen
as odd. Consequently, the system becomes symmetric with
respect to the PT − 2 operation (which is defined as PT − 2:
x → −y, y → −x, t → −t). Now, by making f2(x) to be
zero, the system is symmetric with respect to both PT − 1
and PT − 2 operations. (Here, PT − 1 corresponds to the
operation x → −x, y → −y, t → −t .) Thus, the system is
twofold PT symmetric in this case.

Similar to the scalar case, we can consider the above system
as a system of two coupled oscillators

ẍ + g(x) + κy = 0,

ÿ + g(y) + κx = 0, (11)

acted upon by additional external forces h1(x,ẋ) and h2(x,ẋ).
The total energy of the system (in the absence of nonlinear
damping) is given by

E = 1

2
ẋ2 +

∫
g(x)dx + 1

2
ẏ2 +

∫
g(y)dy + κxy. (12)

The rate of change of energy in the system due to the weak
nonlinear damping term as specified by Eq. (10) is given by

dE

dt
= −ẋ[h1(x,ẋ) + h2(x,ẋ)] − ẏ[h1(y,ẏ) − h2(y,ẏ)]. (13)

The above expression shows that similar to the scalar case,
the coupled system (10) also has position-dependent loss-
gain profile. Further, the question whether a nonstandard
Hamiltonian description similar to the scalar case (Sec. III)
exists for (10) has not yet been answered in the literature as
far as the knowledge of the authors goes, although a class of
such systems has recently been identified [37,38].

III. PT SYMMETRY BREAKING IN
THE MODIFIED EMDEN EQUATION

The system mentioned in Eq. (7), namely,

ẍ + αxẋ + βx3 + λx = 0, λ = ω2
0, (14)

is the simplest example forPT − 1 symmetric system. The re-
versible nature of the system has been studied and this equation
is used as a normal form for describing the symmetry-breaking
bifurcation in certain reversible systems which includes an
externally injected class B laser system [39]. This xẋ type
damping has been found to appear in many chemically relevant
kinetic equations [19]. The model is found to be useful in fluid
mechanics where the linearly forced isotropic turbulence [24]
can be described in terms of a cubic Liénard equation which is
of the form similar to (14). This system is also found to appear
in some important astrophysical phenomena and it occurs in
the study of equilibrium configurations of a spherical cloud
acting under the mutual attraction of its molecules and is
subject to the thermodynamic laws [40]. Equation (14) is
known to admit a nonstandard conservative Hamiltonian
description [34] and interesting dynamical properties [35].
In particular, the specific choice β = α2

9 admits isochronous
properties [26] (see following) and can be even quantized in
momentum space, exhibiting PT symmetry and broken PT
symmetry as shown by Ruby et al. [27] recently (see Sec. III B).

A. Linear stability analysis

Let us analyze the dynamical behavior of the system (14)
qualitatively through a linear stability analysis. Equation (14)
can be rewritten as

ẋ = x1, ẋ1 = −αxx1 − βx3 − λx. (15)

This system has a trivial equilibrium point E0: (x∗,x∗
1 ) = (0,0)

and a pair of nontrivial equilibrium points symmetrically

positioned along the x axis about x = 0, E1,2: (±
√

− λ
β
,0)

(which exist only if λ < 0 and β > 0). In our following
analysis, we take β > 0 and so E1,2 exist only for λ < 0.
The Jacobian matrix corresponding to the system (15) is given
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FIG. 3. Plot of the real part of the eigenvalues of J associated
with the equilibrium point E0, E1, E2 of the system (14) for the
values of α = 2 and β = 1.

by

J =
[

0 1
−αx∗

1 − 3βx∗2 − ω2
0 −αx∗

]
. (16)

The eigenvalues of J corresponding to the equilibrium
point E0 are μ

(0)
1,2 = ±i

√
λ. Similarly, the eigenvalues of

J corresponding to E1 and E2 are μ
(1)
1,2 = 1

2
√

β
[−α

√−λ ±√
−λ(α2 − 8β)], μ

(2)
1,2 = 1

2
√

β
[α

√−λ ±
√

−λ(α2 − 8β)].
The real part of the eigenvalues of J associated with the

above equilibrium points are given in Fig. 3. The figure shows
that in the region λ > 0, the equilibrium point E0 alone
exists and all the eigenvalues of E0 are found to be pure
imaginary (or Re[μ] = 0). So, in the region λ > 0, periodic
oscillations exist in the system corresponding to which the
phase trajectories around the equilibrium point E0 preserve
their structure under PT operation, where E0 itself remains
invariant: PT [E0] = E0. Thus, PT symmetry is unbroken
while λ > 0. But, by varying λ to λ < 0, a pair of equilibrium
points (E1 and E2) with opposite stabilities arise, where E1

is stable (as all the eigenvalues have Re[μ] < 0) while E2 is
unstable (as all eigenvalues have Re[μ] > 0). In this region,
E0 becomes a saddle (as one of the eigenvalues of E0 has
Re[μ] > 0 and the other eigenvalue has Re[μ] < 0). Under
the PT operation, E1 gets transformed to E2 and vice versa:
PT [E1] = E2 and PT [E2] = E1 so that the PT symmetry
gets broken. Correspondingly, the trajectories around E1 get
transformed to trajectories around E2 and vice versa under the
PT operation. Note that the above kind of bifurcations fall
within the scope of Thom’s catastrophe theory [41].

To appreciate these aspects more clearly, we plot the phase
portraits of the system for the explicitly integrable case β =
α2

9 , obtained from the exact solutions of the system [26]. A
qualitatively similar set of phase portraits results for the general
case β �= α2

9 , which can be drawn through a numerical analysis.

B. Exactly integrable case: β = α2

9

We consider the specific case β = α2

9 of Eq. (14), namely,

ẍ + αxẋ + α2

9
x3 + λx = 0 (17)

or, equivalently,

ẋ = y, ẏ = −αxy − α2

9
x3 − λx. (18)

Equation (17) or (18) admits a nonstandard Lagrangian or
conservative Hamiltonian description [26] with

L = 27λ3

2α2

(
1

αẋ + α2

3 x2 + 3λ

)
+ 3λ

2α
ẋ − 9λ2

2α2
. (19)

Then, the canonically conjugate momentum is

p = −27λ3

2α

[
1(

αẋ + α2

3 x2 + 3λ
)2
]

+ 3λ

2α
, (20)

so that the Hamiltonian H ,

H = 9λ2

2

{[(
ẋ + α

3 x2
)2 + λx2

]
(
αẋ + α2

3 x2 + 3λ
)2
}

= 9λ2

2α2

[
2 − 2

(
1 − 2αp

3λ

) 1
2

+ α2x2

9λ
− 2αp

3λ
− 2α3x2p

27λ2

]
,

(21)

which is a conserved quantity and we may call it as the
“energy” E .

Now, the exact solution of (17) for the three cases λ > 0,
λ = 0, and λ < 0 are as follows [26]:

(i) Case 1: λ > 0: Here, one has periodic solutions of (17)
or (18) as

x(t) = A sin(ω0t + δ)

1 − A α
3ω0

cos(ω0t + δ)
, ω0 =

√
λ (22a)

ẋ(t) = Aω0 cos(ω0t + δ)

1 − A α
3ω0

cos(ω0t + δ)
− α

3
x2(t), (22b)

where A and δ are constants. Note that the solution is periodic
and bounded for 0 � A < 3ω0

α
. For A � 3ω0

α
, the solution is

singular and periodic. Also, one can evaluate from (21) using
(22) the “energy” in this case as

H = E = 1
2ω2

0A
2. (23)

(ii) Case 2: λ = 0: One has a decaying type or frontlike
solution in this case as

x(t) = I1 + t

αt2

6 + I1αt
3 + I2

, (24a)

ẋ(t) = 1
αt2

6 + I1αt
3 + I2

− α

3
x2(t), (24b)

such that

H = E = 0, (25)

where I1 and I2 are arbitrary constants.
(iii) Case 3: λ < 0: Here, we have the general solution

x(t) = 3
√|λ|(I1e

√|λ|t − e−√|λ|t )
α(I1I2 + I1e

√|λ|t + e−√|λ|t )
, (26a)

ẋ(t) = 3|λ|(I1e
√|λ|t + e−√|λ|t )

α(I1I2 + I1e
√|λ|t + e−√|λ|t )

− α

3
x2(t) (26b)

012102-5



S. KARTHIGA et al. PHYSICAL REVIEW A 93, 012102 (2016)

with

H = E = 18|λ|2
α2

1

I1I
2
2

, (27)

where I1 and I2 are arbitrary constants.
Now, treating the nonlinear differential equation (17) or (18)

as a dynamical system, we shall consider the solution of its
initial value problem (IVP) admitting thePT symmetry. Since
we require the PT symmetry to be valid for the entire duration
of evolution, starting from the initial reference time which may
be taken without loss of generality as t = 0, we require the
initial values of the dynamical variables corresponding to a
definite energy satisfy the PT -symmetry conditions [x(t) →
−x(−t), t → −t , ẋ(t) → ẋ(−t)]:

x(0) = c1 = −x(0),

ẋ(0) = c2 = ẋ(0), (28)

where c1 and c2 are arbitrary constants. Then, one can identify
two possibilities.

(i) PT -symmetric solution:

c1 = 0, c2 = c (29)

such that

PT [x(t)] = −x(−t) = x(t),

PT [ẋ(t)] = ẋ(−t) = ẋ(t), for all t � 0. (30)

(ii) PT -asymmetric solution: One can consider two dis-
tinct values

x1(0) = c1, x2(0) = −c1, c1 �= 0 (31)

such that for t > 0, one can have a disjoint set of two
disconnected solutions and trajectories for a given E :

PT [x1(t)] = −x1(−t) = x2(t) �= x1(t),

PT [ẋ1(t)] = ẋ1(−t) = ẋ2(t) �= ẋ1(t), (32)

and

PT [x2(t)] = −x2(−t) = x1(t) �= x2(t),

PT [ẋ2(t)] = ẋ2(−t) = ẋ1(t) �= ẋ2(t), for all t � 0 (33)

associated with the same energy value E . Since x1(t) and x2(t)
correspond to two distinct unconnected trajectories in phase
space but with the same energy value, they represent solutions
of broken PT symmetry.

We now point out explicitly the above type of solutions for
the system (17) or (18) in the following, depending on the
sign of λ. We also demonstrate in Appendix A that a similar
type of consideration exists for the P-symmetric system also,
for example, in the case of the double-well cubic anharmonic
oscillator.

C. Observation of symmetry breaking
from the solution point of view

Case-1: λ > 0, PT -invariant solutions

Considering the general solution (22) for λ > 0, without
loss of generality we consider the solution of the initial value

FIG. 4. Phase portrait of the system (14) for λ = 1, α = 3, and
β = 1. The green colored diamond in the figure denotes the position
of the neutrally stable equilibrium point E0.

problem with

x(0) = 0, ẋ(0) = B = 3Aω2
0

3ω0 − Aα
(34)

which is itself PT invariant. This fixes δ = 0 in the solution
(22). Then, the resultant general solution (22) with δ = 0 of
the initial value problem is fully PT invariant for all t � 0,
that satisfies (30). The energy associated with the solution
is again E = 1

2ω2
0A

2 as given in (23). Note that the above
solution includes the equilibrium point E0 = (0,0) when
A = 0 with the energy E taking the minimum value. The
corresponding phase trajectories in (x,ẋ) space are plotted in
Fig. 4 which form concentric closed curves around E0 as long
as A < 3ω0

α
, so that it is a center-type equilibrium point. The

associated eigenvalues of the equilibrium point E0 are ±i
√

λ

(as shown in Sec. III A above). Note that for A � 3ω0
α

, the
solution becomes singular at finite times giving rise to open
trajectories in the phase space Fig. 4 but which shall show PT
symmetry.

One can also observe that the phase trajectories are
invariant under time translation. Consequently, the solution
corresponding to any other initial condition obtainable from
(22) also follows an identical phase trajectory for a given A and
so a given value of energy E as it is obtained by a time transla-
tion which is an allowed symmetry of the original dynamical
system (14). Hence, these solutions may not be treated as
distinct from the one corresponding to (34), if time-translation
symmetry is also included, along with PT symmetry. Due to
the reason, no symmetry-breaking asymmetric solution exists
here.

Case-2: λ = 0, bifurcation point

Here again the solutions of the initial value problem,
with x(0) = 0, ẋ(0) = 1

I2
deduced from (24) corresponding

to E = 0, satisfy the PT symmetry as shown with the phase
trajectories in Fig. 5.

Case-3: λ < 0, PT -symmetry breaking

In this case, one can identify three distinct classes of
solutions from the general solution (26) of (17) or (18) for
λ < 0, namely, x0(t), x1(t), and x2(t). Among them x0(t)
forms the symmetric solution satisfying (30) and the set
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FIG. 5. Phase portrait of the system (14) at the bifurcation point
λ = 0 with α = 3 and β = 1.

x(t) = (x1(t),x2(t)) satisfying (32) and (33) constitutes a
spontaneously symmetry-breaking set of solutions which are
discussed following.

(a) Symmetric solution: The explicit form of the solution
satisfying the initial conditions x0(0) = 0, ẋ0(0) = constant
turns out to be the following:

x0(t) = 3
√|λ|(e

√|λ|t − e−√|λ|t )
α(I2 + e

√|λ|t + e−√|λ|t )
,

ẋ0(t) = 3|λ|(e
√|λ|t + e−√|λ|t )

α(I2 + e
√|λ|t + e−√|λ|t )

− α

3
x2

0 (t), (35)

as can be deduced from the general solution (26). Here, I2 is an
arbitrary constant. Note that the solution (35) satisfies the PT
symmetry PT (x0(t),ẋ0(t)) = (x0(t),ẋ0(t)) and that (x0,ẋ0)
= (0,0) = E0 in the limit I2 → ∞. Also, we observe that
asymptotically, as t → ∞, (x0(t),ẋ0(t)) −→

t→∞ ( 3
√|λ|
α

,0) = E1.

That is, all the nonsingular trajectories approach the fixed point
E1, except E0, so that E0 is a saddle.

(b) Asymmetric solution: Next, we have the other two
distinct solutions which break the PT symmetry. The first
one is given by

x1(t) = 3
√|λ|(I1e

√|λ|t − e−√|λ|t )
α(−2 + I1e

√|λ|t + e−√|λ|t )
, I1 < 0

ẋ1(t) = 3|λ|(I1e
√|λ|t + e−√|λ|t )

α(−2 + I1e
√|λ|t + e−√|λ|t )

− α

3
x2

1 (t). (36)

Note that (x1(0),ẋ1(0)) = ( 3
√|λ|
α

,
6|λ|

α(I1−1) ) and asymptotically

(x1(∞),ẋ1(∞)) = ( 3
√|λ|
α

,0) = E1. Also when I1 → ∞,
(x1(0),ẋ1(0)) tends to E1. Again, all the nonsingular trajec-
tories approach E1 asymptotically.

Similarly, we have the other distinct set of trajectories

x2(t) = 3
√|λ|(e

√|λ|t − I1e
−√|λ|t )

α(−2 + e
√|λ|t + I1e−√|λ|t )

, I1 < 0

ẋ2(t) = 3|λ|(e
√|λ|t + I1e

−√|λ|t )
α(−2 + e

√|λ|t + I1e−√|λ|t )
− α

3
x2

2 (t). (37)

Note that (x2(0),ẋ2(0)) = (− 3
√|λ|
α

,
6|λ|
α

1
I1−1 ). In the limit I1 →

−∞ this approaches the equilibrium point E2 = (− 3
√|λ|
α

,0).

FIG. 6. Phase portrait of the system (14) for λ = −1, α = 3, and
β = 1. The green circle denotes the stable-node-type equilibrium
point E1, red colored triangle and square correspond to the saddle-
type equilibrium point (E0) and unstable-node-type equilibrium point
E2, respectively. The continuous line denotes the orbits corresponding
to symmetric solutions and the dashed lines correspond to that of
asymmetric solutions.

Interestingly, these trajectories (except E2) also approach E1

asymptotically: (x2(∞),ẋ2(∞)) = ( 3
√|λ|
α

,0). Note that in the
above each distinct trajectory corresponds to the invariant
energy E = 18|λ|2

α2
1

I1I
2
2

.
The above facts are illustrated by the corresponding phase

trajectories for the case λ < 0 in Fig. 6. In the case 0 < I1 < ∞
(but not equal to 1), the evolution corresponding to x1(t) and
x2(t) from initial time t = 0 to ∞ lie along the same path, the
trajectory corresponding to x1(t) is found to be a part of the
trajectory of x2(t) {= PT [x1(t)]} (for I1 > 1) as well as that
of x0(t) or the trajectory corresponding to x2(t) is found to be a
part of the trajectory of x1(t) {= PT [x2(t)]} for 0 < I1 < 1 as
well as that of x0(t). Under time translation these trajectories
may be mapped onto each other and so may be considered
equivalent to the symmetrical trajectories x0(t). These are not
shown explicitly in Fig. 6.

But, the most important fact is that for I1 < 0, x1(t) and
x2(t) are truly asymmetric and so break the PT symmetry.
Consequently, the solutions x1(t) and x2(t) give rise to distinct
trajectories, depending on the choices of the arbitrary constants
I1 and I2.

Thus, the above detailed analysis of the completely inte-
grable nonlinear damped system (17) or (18) establishes the
fact that a necessary and sufficient condition for the preser-
vation of PT − 1 symmetry is the existence of a single fixed
point which is ofPT − 1 invariant center type (that is neutrally
stable fixed point associated with imaginary eigenvalues of the
linearized equation). Note that this requirement demands the
existence of a single-well potential and rules out cases such as
three-well potential for PT − 1 symmetry preservation. Also,
the origin has to be necessarily the fixed point for PT − 1
invariance, x → −x, t → −t . The above requirement allows
the existence of PT -symmetric nonisolated periodic solutions
around the fixed point corresponding to concentric closed
curves as trajectories as shown in Fig. 4. Otherwise, the PT
symmetry is broken as confirmed for the λ < 0 case. The above
discussion also confirms that the existence of PT -symmetric
fixed point and PT -symmetric solutions near it alone does not
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imply PT symmetry of the full system if the fixed point is
not of center type as seen in the case of λ < 0. Now, we can
use the above criteria as the basis for PT invariance for our
further studies.

We also note that the above results hold good for the
case of standard Hamiltonian-type complex classical PT -
symmetric systems also, where one can find that the symmetry
implies x(t) = −x∗(−t) which implies Re[x(t)] = xR(t) =
−xR(−t), Im[x(t)] = xI (t) = xI (−t), Re[p(t)] = pR(t) =
ẋR(t) = ẋR(−t) = pR(−t), and Im[p(t)] = pI (t) = ẋI (t) =
−ẋI (−t) = −pI (−t). Thus, in these cases the PT -preserving
fixed point will be of the form (xR(t),xI (t),pR(t),pI (t))
= (0,c1,c2,0), where c1 and c2 are arbitrary constants. The
studies on the classical trajectories of complex PT -symmetric
systems show the existence of regular periodic orbits (possibly
with some unbounded orbits) in the unbroken PT regions
and nonperiodic or open and irregular trajectories in the case
of broken PT regions [42–44]. In addition, in [42,44] one
can also note that the closed orbits are centered around the
PT -preserving fixed point as discussed above which confirms
our results.

IV. A TWOFOLD-PT -SYMMETRIC SYSTEM

As a simple case of the coupled nonlinear damped system
(10), we consider a system of coupled modified Emden
equations (MEE)

ẍ + αxẋ + βx3 + ω2
0x + κy = 0,

ÿ + αyẏ + βy3 + ω2
0y + κx = 0. (38)

Here, α is the nonlinear damping coefficient, κ is the coupling
strength, and ω0 is the natural frequency of the system when
ω2

0 > 0. However, we will also consider the case ω2
0 < 0

corresponding to the double-well potential. It is obvious that
the system (38) admits a twofold PT symmetry. (i) It is
invariant under the PT − 1 symmetry: x → −x, y → −y,
and t → −t . Equation (38) is also invariant under (ii) PT − 2
symmetry: x → −y, y → −x, and t → −t . Note that the
above two symmetries also imply the symmetry x(t) → y(t).

Equation (38) can be rewritten as

ẋ = x1, ẋ1 = −αxx1 − βx3 − ω2
0x − κy,

ẏ = y1, ẏ1 = −αyy1 − βy3 − ω2
0y − κx. (39)

The above set of dynamical equations (39) admit five symmet-
rical equilibrium points e0, e1, e2, e3, and e4:

(i) The trivial equilibrium point e0: (x∗,x∗
1 ,y∗,y∗

1 ) =
(0,0,0,0).

(ii) A symmetric pair of nonzero equilibrium points e1,2:

(x∗,x∗
1 ,y∗,y∗

1 )=(±a∗
1 ,0, ∓ a∗

1 ,0), where a∗
1 =

√
κ−ω2

0
β

.
(iii) Another pair of symmetric nonzero equilibrium points

e3,4: (x∗,x∗
1 ,y∗,y∗

1 ) = (±a∗
2 ,0, ± a∗

2 ,0), where a∗
2 =

√
−κ−ω2

0
β

.
Aside from the above five fixed points, there exist four more

asymmetric fixed points which turn out to be unstable in the
parametric range of our interest. So, we do not consider them
in this paper further.

TABLE I. Symmetric equilibrium points of (39) in different
regions of the (κ,ω0) parametric space with β > 0 and � = ω2

0 > 0,
ω2

0 = 0, and ω2
0 < 0.

κ < −ω2
0 −ω2

0 � κ � ω2
0 κ > ω2

0

� = ω2
0 > 0 e0, e3, e4 e0 e0, e1, e2

� = ω2
0 = 0 e0, e3, e4 e0 e0, e1, e2

κ < ω2
0 ω2

0 � κ � −ω2
0 κ > −ω2

0

� = ω2
0 < 0 e0, e3, e4 e0, e1, e2 e0, e1, e2

e3, e4

A. Case: � = ω2
0 > 0

In analyzing (38), we first consider the case where � =
ω2

0 > 0. The existence of the above-mentioned equilibrium
points in different regions in the parametric space for this case
is indicated in Table I [for our further studies we let β > 0 in
Eq. (38) or (39)].

Before entering into the classification of unbroken and
broken PT regions of the system, we note here that the
equilibrium points are also playing a key role in identifying
symmetry breaking as shown in the scalar case in the previous
section. In this connection, we classify the PT − 1 and
PT − 2 invariant fixed points of the system (38), which can
be identified by looking for the fixed points which satisfy
PT − k[ei] = ei , where k = 1,2 and i = 0,1,2,3,4. Using
this, one can find that the fixed point e0 alone is PT − 1
invariant (that is, PT − 1[e0] = e0), while the three fixed
points e0, e1, and e2 are PT − 2 invarant and the fixed points
e3 and e4 are invariant neither under PT − 1 symmetry nor
under PT − 2 symmetry.

Generalizing the discussion in the previous section, we can
identify the following two criteria on the fixed points of the
coupled system of the type (38) or (39) for the invariance of
PT − 1 and PT − 2 symmetries:

(i) For the preservation of PT − 1 symmetry again one
requires the existence of a single fixed point at the origin

FIG. 7. Linear stability of equilibrium points of (39) for � =
ω2

0 > 0 given in Table I. Real parts of eigenvalues of J given by
Eq. (40) are plotted as a function of κ for the parameters α = 1.0,
β = 1.0, and ω0 = 1.0.

012102-8



TWOFOLD PT SYMMETRY IN NONLINEARLY . . . PHYSICAL REVIEW A 93, 012102 (2016)

FIG. 8. Illustration of broken PT − 1 and unbroken PT − 2 in
region R3: (a) (x − ẋ), (b) (y − ẏ) projections show the oscillations
about the equilibrium points e1 and e2 in the region R3 for κ =
1.5, α = 1.0, β = 1.0, and ω2

0 = 1.0 obtained by solving Eq. (39)
numerically. (The trajectories away from e1 and e2 are not shown
here.) The filled square and the circle represent the positions of e1

and e2, respectively. By PT − 1 operation on e1 we transit to e2 and
so PT − 1 symmetry is broken. But, on the operation of PT − 2 on
e1 the equilibrium point remains unchanged, thereby the symmetry
remains unbroken.

which is of neutrally stable type. The requirement that for
PT − 1 symmetry x → −x, y → −y, t → −t demands the
exclusion of any other fixed point and that the origin will be
the sole fixed point.

(ii) For the preservation of PT − 2 symmetry which
demands x → −y, y → −x, t → −t , the criterion is the
existence of one or more fixed points which are all PT − 2
invariant out of which at least one should be neutrally stable
type. For example, in the above system (39) as well as (47)
aside from the origin e0, the fixed points e1 and e2 are also
PT − 2 invaraint and it is sufficient that at least one of them
is neutrally stable for preservation of PT − 2 symmetry (see
Figs. 7 and 11). A specific case is illustrated in Fig. 8.

1. Linear stability analysis

Now, to explore the regions in which PT symmetries are
found to be broken and unbroken, we first deduce the Jacobian
matrix obtained from the linear stability analysis of the above
system. It is given by

J =

⎡
⎢⎣

0 1 0 0
c21 −αx∗ −κ 0
0 0 0 1

−κ 0 c43 −αy∗

⎤
⎥⎦, (40)

where c21 = −αx∗
1 − 3βx∗2 − ω2

0, c43 = −αy∗
1 − 3βy∗2 −

ω2
0, and (x∗,x∗

1 ,y∗,y∗
1 ) are the equilibrium points of (39).

The eigenvalues of the above matrix determine the dynamical
behavior of the system in the neighborhood of the equilibrium
points qualitatively and the results will be helpful in identifying
the broken and unbrokenPT -symmetric regions of the system.
In the unbroken PT region, the trajectories of the system, in
addition to the evolution equation, replicate the full symmetry
of the system, while in the symmetry-broken region it does not.
In order that the trajectories of the system to be symmetric
under PT operation, it should have a nonisolated periodic
nature (due to the presence of the time-reversal operator T in
the PT operator). Thus, we look for the regions of the system

parameters for which the equilibrium point is neutrally stable,
that is, the eigenvalues of the Jacobian matrix corresponding
to the equilibrium point are pure imaginary. These regions give
rise to unbrokenPT -symmetric ranges. The eigenvalues of the
linear stability matrix J corresponding to different equilibrium
points of the system are presented in Appendix C, where the
ranges of linear stability are also discussed.

Fixing the parameters α, ω0, β as α = 1.0, ω0 = 1.0, and
β = 1.0, Fig. 7 shows the real parts of the eigenvalues of the
equilibrium points e0, e1,2, and e3,4 [given in Appendix C,
Eqs. (C1), (C2), and (C8)] under the variation of κ . Whenever
the real parts of all the eigenvalues of J (Re[μ]) corresponding
to an equilibrium point become zero, the eigenvalues are purely
imaginary and the latter is said to be neutrally stable. On the
other hand, when all Re[μ]’s corresponding to an equilibrium
point are less than zero, it is said to be stable, while the
equilibrium point is unstable in all the other cases. From
the forms of the fixed points and the nature of their stability
properties, we can identify four separate regions R1, R2, R3,
and R4 in the (κ,Re[μ]) plane, as follows: (i) R1: κ < −ω2

0, (ii)
R2: −ω2

0 < κ < ω2
0, (iii) R3: ω2

0 < κ < cω2
0, where c is given

in Eq. (C5), (iv) R4: κ > cω2
0. Note that ω2

0 = 1.0 in Fig. 3.
Then, using the criteria discussed above, we can identify the
following facts, as depicted in Fig. 7.

(i) In the region R1 (denoted in Fig. 7), where κ < −ω2
0 =

−1.0, one can see that three branches appear for e0, and a
single branch appears each for e3 and e4. Among the four
eigenvalues of e0 [see Eq. (C1)], two are found to be pure
imaginary, while the third one has a positive real part and the
other has a negative real part. Thus, in the region R1, there are
three branches corresponding to e0. In each of the cases of e3

and e4, all the eigenvalues have the same real parts [as seen
from Eq. (C8)]. Thus, e3 and e4 have a single branch each in
Fig. 7. From the values of Re[μ] in the region R1, we can find
that among the equilibrium points e0, e3, and e4, only e3 is
found to be stable. The stabilization of e3 in the region gives
rise to oscillation death. Here, oscillation death in a system
of coupled oscillators denotes the stabilization of the system
to a nontrivial steady state due to the interaction of oscillators
in the system. We can also note that the equilibrium points e3

and e4 get transformed to one another by both PT − 1 and
PT − 2 operations (that is, PT − 1[e3]=e4, PT − 2[e3]=e4

and vice versa) and the symmetry-preserving equilibrium state
e0 (that is, PT − 1[e0]=e0 and PT − 2[e0]=e0) is unstable.
Thus, both the PT − 1 and PT − 2 symmetries are broken in
this region.

(ii) In the region R2, where −ω2
0 � κ � ω2

0 (that is, region
−1 � κ � 1), the equilibrium points e3 and e4 disappear, and
e0 alone exists. The eigenvalues of the equilibrium point e0 in
this region are found to be pure imaginary [see also Eq. (C1)].
The neutral stability of the symmetric state e0 signals that in
this region R2 both the PT − 1 and PT − 2 symmetries are
unbroken.

(iii) For κ > ω2
0 = 1, in the region R3 [defined by

Eq. (C5)], e0 loses its stability and gives rise to two new
equilibrium points e1 and e2. These new equilibrium points
are found to be neutrally stable. Further, they also get
transformed to each other by PT − 1 operation: PT −
1[e1] ⇒ PT − 1[(a∗

1 ,0, − a∗
1 ,0)] = (−a∗

1 ,0,a∗
1 ,0) = e2 and

similarly PT − 1[e2] = e1. However, the equilibrium points

012102-9



S. KARTHIGA et al. PHYSICAL REVIEW A 93, 012102 (2016)

FIG. 9. Unbroken and brokenPT regions in the parametric space
of (κ,α) for � = ω2

0 > 0 = 1.0 and β = 1.0. Here, the light gray
shaded region denotes the region where both PT symmetries are
unbroken and the dark gray shaded region denotes unbroken PT −
2 symmetric region. The dark gray shaded regions are denoted as
bistable regions in the sense that the equilibrium points e1 and e2

are neutrally stable in that region. The light blue shaded regions
correspond to the oscillation death regions.

show invariance under PT − 2 operation: PT − 2[e1] ⇒
PT − 2[(a∗

1 ,0, − a∗
1 ,0)] = (a∗

1 ,0, − a∗
1 ,0) = e1 and similarly

PT − 2[e2] = e2. The invariance of the equilibrium points
e1 and e2 with PT − 2 operation is also illustrated in terms
of the phase portraits in Fig. 8 obtained by numerical analysis
of (39). As the fixed point preserving PT − 1 symmetry (e0)
is not of neutrally stable type and due to the coexistence of
PT − 1 violating fixed points e1 and e2, thePT − 1 symmetry
is broken in the region. In the case of PT − 2 symmetry, all
the fixed points (e0, e1, and e2) preserve the symmetry and also
two of them (e1 and e2) are neutrally stable. Thus, the PT − 2
symmetry is unbroken, as demonstrated in Fig. 8.

(iv) For values of κ in the region R4 (beyond R3), all the
equilibrium points e0, e1, and e2 are found to be unstable.
Thus, both the PT − 1 and PT − 2 symmetries are found to
be broken in the region.

2. Dynamics in the (κ,α) parametric space

Next, we extend our study as a function of the damping
parameter α also. Figure 9 shows the broken and unbroken
PT -symmetric regions corresponding to system (38) in the
(κ,α) parametric space. It shows that oscillation death appears
in the region κ < −1 due to the stabilization of e3 as seen
earlier in Fig. 7 [as can be seen from Eq. (C8)]. Looking at
the region −1 � κ � 1 in Fig. 9, we can observe that the
coupled nonlinearly damped system (38) like the scalar case
(7) (see Sec. III) does not show any symmetry breaking on

increasing α [see Eq. (C1)]. This is in contrast to the systems
with linear damping which show symmetry breaking when the
loss or gain strength is increased [11]. As mentioned in the
previous section, in this region (that is the region R2 seen in
Fig. 7), both PT − 1 and PT − 2 symmetries are unbroken.
Increasing κ further (κ > 1), the system shows breaking of
PT − 1 symmetry (for the values of κ > 1 or in the region
R3 in Fig. 7) through a pitchfork bifurcation. In this region,
PT − 2 symmetry alone is unbroken. Figure 9 shows that
the PT − 2 symmetry is unbroken only if α is small [from
Eq. (C6) in Appendix C] and it is broken for increased α. (Note
that this type of symmetry breaking at higher values of loss or
gain strength is a universal feature of all the PT -symmetric
systems [11].) On further increasing κ , Fig. 9 shows that the
PT regions with respect to α get reduced.

3. Rotating-wave approximation

In this section, we analyze the stability of the symmetric
orbits centered around e0 in the region R2 using the well-known
rotating-wave approximation. We consider periodic solutions
for the system in the region R2 to be of the form

x(t) = R1(t)eiωt + R∗
1 (t)e−iωt ,

y(t) = R2(t)eiωt + R∗
2 (t)e−iωt , (41)

where ω = ω0 − 	ω, and 	ω is a small deviation. Here, R1(t)
and R2(t) are the slowly varying amplitudes with respect to a
slow time variable. Substituting (41) in (38), and by rotating-
wave approximation, we obtain

Ṙ1 = 1

2iω

[−3β|R1|2R1 + (ω2 − ω2
0

)
R1 − κR2

]
, (42)

Ṙ2 = 1

2iω

[− 3β|R2|2R2 + (ω2 − ω2
0

)
R2 − κR1

]
. (43)

Now, we separate the real and imaginary parts of the
equation as R1 = a1 + ib1, R2 = a2 + ib2. We have steady
periodic solutions when ȧi = ḃi = 0, i = 1,2. Thus, the
equilibrium points of the system represent steady pe-
riodic solutions. The system has five symmetric equi-
librium points representing symmetric orbits, which are
E0:(0,0,0,0), E1,2:(0, ± b∗

11,0, ∓ b∗
11), E3,4:(0, ± b∗

22,0, ±
b∗

22), where b∗
11 =

√
κ+ω2−ω2

0
3β

and b∗
22 =

√
−κ+ω2−ω2

0
3β

. The
system also has asymmetric equilibrium points, which
are E5,6: (0, ± b∗

33,0, ± 2κ
6β

b∗2

44b
∗
33), E7,8: (0, ± b∗

44,0, ±
2κ
6β

b∗2

33b
∗
44), where b∗

33 =
√

(ω2−ω2
0)+

√
−4κ2+(ω2−ω2

0)2

6β
and b∗

44 =√
(ω2−ω2

0)−
√

−4κ2+(ω2−ω2
0)2

6β
. As ω = ω0 − 	ω and 	ω is a small

deviation, ω2 − ω2
0 is also small. Thus, b∗

22, b∗
33, and b∗

44 cannot
be real and the equilibrium points E3,4, E5,6 will not exist. So,
we confine our attention to the equilibrium points E0, E1, and
E2.

Now, in order to investigate the stability of the above
periodic solutions through a linear stability analysis, we
obtain the eigenvalue equation as Aχj = λjχj , where
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χj = [ξ1 η1 ξ2 η2]T and

A =

⎡
⎢⎢⎢⎢⎣

− 3βa∗
1 b∗

1
ω

c11 0 − κ
2ω

c12
3βa∗

1 b∗
1

ω
κ

2ω
0

0 − κ
2ω

− 3βa∗
2 b∗

2
ω

c21

κ
2ω

0 c22
3βa∗

2 b∗
2

ω

⎤
⎥⎥⎥⎥⎦. (44)

Here, ci1 = − 3β(a∗
i

2+3b∗
i

2)
2ω

+ ω2−ω2
0

2ω
, ci2 = 3β(3a∗

i
2+b∗

i
2)

2ω
− ω2−ω2

0
2ω

,
i = 1,2. λj and χj (j = 1,2,3,4) are the eigenvalues and
eigenfunctions of the above eigenvalue equation. The eigenval-
ues of A corresponding to the equilibrium point E0: (0,0,0,0)
are

λj = ±i

[−κ + (ω2 − ω2
0

)]
2ω

, ±i

[
κ + (ω2 − ω2

0

)]
2ω

. (45)

The eigenvalues of A corresponding to E1 and E2 are

λj = ±
√

−2κ2 − κ
(
ω2 − ω2

0

)
ω

,0,0. (46)

The eigenvalues of A corresponding to E0 are found to be
neutrally stable always, whereas two of the eigenvalues asso-
ciated with E1 and E2 are pure imaginary when 2κ2 + κ(ω2 −
ω2

0) > 0. When all the eigenvalues of A corresponding to an
equilibrium point are pure imaginary, the neutral stability of
the equilibrium point will make the oscillation with frequency
ω to be modulated by a slowly varying periodic amplitude.
It indicates that the system shows beats-type oscillations. As
the equilibrium point E0 is always neutrally stable, we have
stable beats-type periodic oscillations in the complete region
R2. However, the equilibrium points E1,2 have two of their
eigenvalues as zero, and so one needs to include higher-order
corrections to conclusively decide about their stability.

B. Case: � = ω2
0 = 0

In this case, the existence of equilibrium points for different
values of κ is demonstrated in Table I. The eigenvalues of J

with respect to e0 [Eq. (C1)] clearly show that it is always
unstable. The equilibrium points e1 and e2 are found to be
neutrally stable for κ > 0 and for the values of α specified in
(C6). The equilibrium points e3 or e4 stabilize for κ < 0 and
give rise to oscillation death.

C. Case: � = ω2
0 < 0

Next, we wish to show the unbroken and brokenPT regions
corresponding to the system (38) with � = ω2

0 < 0 or the
double-well potential case. The equilibrium points at different
values of κ for this case are also given in Table I. From the
table, we can note that in contrast to the previous cases, in the
region −ω2

0 � κ � ω2
0, the equilibrium points e3,4 coexist with

e1,2. From the results of the linear stability analysis of this case
(where � = ω2

0 < 0), we can find that the equilibrium point
e0 [see Eq. (C1)] completely loses its stability. Thus, when
� < 0, as in the scalar case, PT − 1 symmetry is always
broken. The symmetric pair of equilibrium points e1, e2 and
e3, e4 are still found to be stable in some regions in the (κ,α)
parametric space. The region in which they are found to be
neutrally stable or stable is given by Eqs. (C6) and (C8) and

FIG. 10. Phase diagram of (38) in (κ,α) parametric space for
� = ω2

0 < 0. Figure is plotted for � = −1.0, β = 1.0, which shows
the regions in oscillations about e1 and e2 exists (dark gray shaded
region) and the region where oscillation death (light blue shaded
region) occurs. One can clearly note from the figure that the PT − 1
symmetry is broken everywhere. In the region denoted by R0 (region
outlined by thick black line), we can find that there exists oscillations
about e1,2 and oscillation death occurs about e3, thus PT − 2
symmetry is broken in the region. The gray shaded region excluding
R0 region gives rise to unbroken PT − 2 region.

are shown by Fig. 10. From the figure, we can observe that
the PT − 1 symmetry is broken everywhere in the parametric
space.

Regarding the PT − 2 symmetry, Fig. 10 shows the region
in which the PT − 2 preserving fixed points e1 and e2 are
neutrally stable (gray shaded region) and the region in which

FIG. 11. Linear stability of equilibrium points of (47) for � =
ω2

0 > 0 given in Table I. Real parts of eigenvalues of J given by
Eq. (48) are plotted as a function of κ for the parameters γ = 0.5,
α = 1.0, β = 1.0, and ω0 = 1.0.
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PT − 2 violating fixed point e3 is stable (light blue shaded
regions). All the regions in which e3 is stable obviously
correspond to the broken PT − 2 region. Interestingly, in this
case, there exists a region denoted by R0 in Fig. 10, in which
the stable region of e1 and e2 overlaps with the oscillation death
region (stable region of the PT − 2 violating fixed point e3).
Due to such coexistence, PT − 2 symmetry is broken in the
region R0. Thus the PT − 2 symmetry is unbroken only in the
gray shaded region excluding R0.

V. NONLINEAR PLUS LINEAR DAMPING

Next, we wish to investigate the effect of the introduction of
a linear damping on the dynamics of the nonlinearly damped
system (38). For this purpose, let us introduce the linear
damping terms in addition to the nonlinear damping introduced
in Eq. (38). Now, the system takes the form

ẍ + γ ẋ + αxẋ + βx3 + ω2
0x + κy = 0,

ÿ − γ ẏ + αyẏ + βy3 + ω2
0y + κx = 0, (47)

where γ is the linear loss-gain strength. Obviously, the added
linear damping term in (47) breaks the PT − 1 symmetry.
Thus, the system is only symmetric with respect to thePT − 2
operation. Note that the equilibrium points of this system are
the same as that of (38). The stability determining Jacobian
matrix in this case becomes

J =

⎡
⎢⎣

0 1 0 0
c21 −γ − αx∗ −κ 0
0 0 0 1

−κ 0 c43 γ − αy∗

⎤
⎥⎦, (48)

where c21 = −αx∗
1 − 3βx∗2 − ω2

0, c43 = −αy∗
1 − 3βy∗2 −

ω2
0. The eigenvalues of this Jacobian matrix for different

equilibrium points are given in Appendix D. For simplicity,
we take β = 1 for further studies. As in Sec. III, we look for
PT regions of (47) for the cases � = ω2

0 > 0 and ω2
0 � 0,

respectively.

A. Case: � = ω2
0 > 0

To begin, we look for the PT regions of the system with
respect to κ for the case � = ω2

0 > 0. By fixing all the other
parameters of the system as α = 1.0, γ = 0.5, β = 1.0, and
ω2

0 = 1.0 in (47), Fig. 11 shows the plot of the real part of
eigenvalues of J corresponding to the equilibrium points e0,
e1, e2, e3, and e4 as κ is varied. It is divided into seven regions
S1, S2, . . . , S7 along the κ axis. For the system (47), PT − 2
symmetry alone exists and the PT regions correspond to the
regions in which the PT − 2 symmetry is unbroken. The
details are as follows.

(i) In the region S1 of Fig. 11, where κ < −ω2
0 = −1.0,

we can find that among the equilibrium points e0, e3, and e4,
only e3 is found to be stable which leads to oscillation death.
As mentioned in the previous case, the PT − 2 symmetry is
broken in this region.

(ii) The region corresponding to the values of κ between
−ω2

0 < κ < ω2
0 (−1 < κ < 1) is now divided into three

regions, namely, S2, S3, and S4. In these regions, as mentioned
in Table I, the equilibrium point e0 alone exists.

FIG. 12. Broken PT symmetry in the region S3: figures (a) and
(b) are plotted for κ = 0.01, γ = 0.2, α = 1.0, ω0 = 1.0, and β = 1.0
that show the time-series plots of x and y. The damped and growing
oscillations of x(t) and y(t) indicate that for finite values of κ , the
PT − 2 symmetry is broken.

(a) In the region S2, where −ω2
0 < κ �

−
√

4ω4
0−(2ω2

0−γ 2)2

4 (that is, −1 � κ � −0.484), we
can note that the equilibrium point e0 is found to be
neutrally stable [which can also be seen from Eq. (D2)]
and gives rise to an unbroken PT region.

(b) In the region S3, where κ takes smaller values,

−
√

4ω4
0−(2ω2

0−γ 2)2

4 � κ �
√

4ω4
0−(2ω2

0−γ 2)2

4 (that is, −0.484 �
κ � 0.484), we can see that the equilibrium point e0

loses its stability [can be seen also from Eq. (D2)] and
the PT − 2 symmetry is broken now. As this PT − 2
symmetry appears because of coupling (that is, the PT − 2
symmetry disappears when κ = 0) it will not be preserved
for smaller values of κ . Figures 12(a) and 12(b) are plotted
in the region, which shows the damped oscillation in x

and growing oscillations in y which shows the unbalanced
energy between the x and y oscillators.

(c) Now, increasing κ , in the region S4, for√
4ω4

0−(2ω2
0−γ 2)2

4 � κ < ω2
0, e0 again becomes neutrally sta-

ble and gives rise to unbroken PT region.
(iii) For κ > ω2

0 = 1, there exist three regions which are
designated as S5, S6, and S7, identified from Eq. (D4). In these
regions, the equilibrium points e0, e1, and e2 are found to exist
(see Table I).

(a) In the region S5 (1.0 < κ < 1.28), the equilibrium
point e0 is found to be unstable, but e1 and e2 are found to be
neutrally stable [can be seen also from Eq. (D4)]. As these
equilibrium points trace itself upon PT − 2 operation (that
is, PT − 2[e1]=e1), the PT − 2 symmetry in the region is
said to be unbroken.

(b) In the region S6 (1.28 < κ < 4.4), in addition to
e0, e1 also loses its stability [can be seen also from
Eq. (D4)]. But e2 is still neutrally stable, thus the region
again corresponds to an unbroken PT region.

(c) On further increasing κ , for κ > 4.4, in the region
S7, all the equilibrium points e0, e1, and e2 become unstable.
Thus, PT is broken for higher values of κ .
For α = 1.0, ω0 = 1.0, and β = 1.0, the broken and

unbroken regions in the (κ,γ ) parametric space of (47) are
indicated in Fig. 13. By comparing Fig. 13 with Fig. 9, we can
find the appearance of oscillation death for the values κ < −1
as in the previous case (38). But, in contrast to the previous
case, the oscillation death regime disappears with an increase
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FIG. 13. Broken and unbroken PT regions corresponding to the
system (47) in the (κ,γ ) parametric space for � = ω2

0 > 0, which
is plotted for α = 1.0, ω0 = β = 1.0. The light blue shaded region
corresponds to the oscillation death region. The light and dark gray
shaded regions denote the unbroken PT − 2 region. The dark gray
shaded region corresponds to the bistable region in the sense that the
equilibrium points e1 and e2 are neutrally stable in the region.

of γ . By increasing κ , the unbroken PT region appears in
the range −ω2

0 � κ � ω2
0 (where ω0 = 1.0). In this region

by increasing γ , the system shows symmetry breaking [see
Eqs. (D1) in Appendix D]. But, in the previous case (38), we
cannot find this type of behavior, where the PT symmetry is
never broken by increasing the loss-gain strength α [see Fig. 9
and Eq. (C1)].

For κ > 1 (the region in which e1 and e2 appear), Fig. 13
indicates that when κ is smaller than ≈2.2, the PT symmetry
of the system is preserved for lower values of γ and it is
broken for higher values of γ . Increasing κ beyond ≈2.2,
the PT symmetry of the system is broken for lower values
of γ , and on increasing γ the PT symmetry is restored
or it becomes unbroken for the values of γ mentioned in
Eq. (D6). On further increasing γ , the symmetry is again
broken. Generally, in the standard type of PT -symmetric
systems, PT is unbroken for lower values of γ and broken
for higher values of γ . Thus, this type of PT restoration
with the increase of loss-gain strength is unusual compared
to the general PT -symmetric systems, except for the case of
Aubry-Andre model with two lattice potentials [30,31]. As
mentioned in the Introduction, the latter model is a lattice
model in which the lattice potential is applied in such a way
that each element of the lattice has different amount of loss and
gain that makes the loss and gain present in the lattice to be
position dependent. Then, the phenomenon of PT restoration
at higher values of loss-gain strength appears only when two
such lattice potentials are applied simultaneously. The reason

for this type of PT restoration is the competition between the
two applied potentials which introduces loss and gain in the
system [30].

Similarly, in our case, if a single damping is present in the
system (38), we cannot observe such PT restoration at higher
loss-gain strength (see Fig. 9). But, when two or more types of
damping present in the system, as in the case of (47) (where lin-
ear and nonlinear dampings are present in the system), we can
observe this type of PT restoration (see Fig. 13). The above
point will be further discussed in detail in the next section,
where we will also show that by properly choosing the form
of nonlinear damping, we can also tailor the PT regions of
the system in the parametric space. Figure 13 shows that there
exist bistable regions for finite values of γ and by increasing
the coupling strength κ the bistable region disappears.

B. Rotating-wave approximation

Now, we look for the stability of the periodic orbits about e0

in the region −ω2
0 � κ � ω2

0. As we did in the previous case
(38), we find that the amplitude equations are

Ṙ1 = 1

2iω

[−iγ ωR1 − 3β|R1|2R1 + (ω2 − ω2
0

)
R1 − κR2

]
,

Ṙ2 = 1

2iω

[
iγ ωR2 − 3β|R2|2R2 + (ω2 − ω2

0

)
R2 − κR1

]
.

(49)

Now, separating the real and imaginary parts of the equation
as R1 = a1 + ib1, R2 = a2 + ib2, and from the linear stability
analysis of the above equation, we can find that the system has
an equilibrium point (0,0,0,0), whose eigenvalues are

λ = ± 1

2ω

√[− (κ2 − γ 2ω2) − (ω2 − ω2
0

)2 ± 2
√

c1
]
, (50)

where c1 = (κ2 − γ 2ω2)(ω2 − ω2
0)2. The equilibrium points

are found to be neutrally stable for −√ κ
ω

� γ �
√

κ
ω

.
The linear stability discussed in the previous section tells that
the equilibrium point e0 can become neutrally stable in the
region given by Eq. (D3) (see Appendix D) and the above
stability analysis of periodic orbits in the region shows that
the oscillations are found to be stable only for the values of γ

mentioned above.

C. Case: � = ω2
0 � 0

By taking � = ω2
0 � 0, the equilibrium point e0 loses its

stability [see Eq. (D1)]. The equilibrium points e1,2 and e3,4

alone are found to be stable and the stable regions of these
equilibrium points are given in Appendix D. Similar to the
previous case, we have observed a region denoted by S0 in
Fig. 14, in which a neutrally stable PT -preserving fixed point
(e2) coexists with PT -violating fixed points. Thus, this region
S0 corresponds to broken PT region. The gray shaded region
excluding S0 alone corresponds to the unbroken PT region.
As in the case where � > 0, here alsoPT restoration at higher
loss and gain occurs.
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FIG. 14. Broken and unbroken PT regions corresponding to the
system (47) in the (κ,γ ) parametric space for � = ω2

0 < 0, which
is plotted for α = 1.0, � = −1.0, β = 1.0. The light blue and light
gray shaded regions correspond to oscillation death (stable region of
e3) and neutrally stable region of e2, respectively. In the region S0,
the stable region of e2 coexists with the stable region of e3, thus, PT
symmetry is broken in the region. The unbroken region corresponds
to the gray shaded region excluding S0.

VI. GENERAL CASE

In this section, we consider a more general coupled PT -
symmetric cubic anharmonic oscillator system with nonlinear
damping. Here, we take the nonlinear damping term h(x,ẋ) to
be of the form f (x)ẋ so that the equation of motion will take
the form

ẍ + γ ẋ + (−1)nαf (x)ẋ + βx3 + ω2
0x + κy = 0,

ÿ − γ ẏ + αf (y)ẏ + βy3 + ω2
0y + κx = 0, (51)

where n = 0 if f (x) is an odd function and n = 1 if f (x)
is even. Thus, the system is PT symmetric with respect
to the PT − 2 operation. The twofold-PT -symmetric case
arises when f (x) is odd and γ = 0. For all forms of f (x),
the equilibrium points are found to be the same as those of
(38). Now, through the linear stability analysis let us find the
unbroken and broken PT -symmetric regions. The Jacobian
matrix corresponding to (51) is

J =

⎡
⎢⎢⎢⎣

0 1 0 0
c21 −γ − (−1)nαf (x∗) −κ 0
0 0 0 1

−κ 0 c43 γ − αf (y∗)

⎤
⎥⎥⎥⎦, (52)

where c21 = −αf ′(x∗)x∗
1 − 3βx∗2 − ω2

0, c43 = −αf ′(y∗)y∗
1 −

3βy∗2 − ω2
0. For simplicity, we consider the case of ω0 = 1,

β = 1. The eigenvalues of this Jacobian matrix corresponding

to odd and even f (x) cases of the system (51) about various
equilibrium points are given in Appendix E.

A. Case: f (x) is odd

Considering the case where f (x) is an odd function, in the
region −1 � κ � 1 (see Table I), in which the equilibrium
point e0 alone exists, the corresponding eigenvalues of J are
the same as in (D1). In this region, we can find that the
eigenvalues do not depend on α but depend on γ [see Eq. (D1)].
The region of unbroken PT symmetry is confined to

−
√

2 − 2
√

1 − κ2 � γ �
√

2 − 2
√

1 − κ2. (53)

From the above, it is clear that when γ = 0 the PT is always
unbroken for all the values of α in the region −1 � κ � 1.
This indicates that in a purely nonlinearly damped system,
we cannot observe any symmetry breaking while varying the
nonlinear damping strength (α) in this region. By varying γ ,
we observe symmetry breaking for higher values of |γ | >√

2 − 2
√

1 − κ2.
In the region κ > 1, where the nontrivial equilibrium points

e1 and e2 come into action, we will show that by properly
choosing the nonlinear damping we can tailor the PT regions.
In this regime, for the case in which f (x) is an odd function,
the unbroken PT region lies within the range of γ specified
by [see Eq. (E3)]

±αf (
√

κ − 1) − √
a1 � γ � ±αf (

√
κ − 1) + √

a1, (54)

where a1 = (6κ − 4) − 4
√

(2κ − 1)(κ − 1). The presence of
the term αf (

√
κ − 1) in the above equation is found to be im-

portant. Because considering the case where αf (
√

κ − 1) = 0,
the PT symmetry is unbroken for lower values of γ specified
by |γ | <

√
a1 and is broken for the higher values of γ specified

by |γ | >
√

a1. But, in the case where αf (
√

κ − 1) �= 0, for the
values of γ defined by 0 < |γ | < αf (

√
κ − 1) − √

a1, thePT
symmetry is broken, while it is unbroken for the values of γ

defined by (54). Thus, here the PT -symmetry breaking occurs
at lower values of γ and the restoration of symmetry occurs
by increasing γ . We can also note that the term αf (

√
κ − 1)

depends on the form of f (x), which helps in tailoring PT
regions of the system.

In Fig. 15, we have presented the PT regions of the system
for the cases f (x) = x3 and f (x) = sinx, which clearly show
that thePT regions can be tailored with the systems of the type
(51) by properly choosing the form of f (x). From Fig. 15(b),
we can note that by choosing f (x) to be a periodic one, we
can observe PT revivals.

In Fig. 15(c), we have shown the PT regions of the system
in the (γ,α) parametric space corresponding to the f (x) =
sinx case, while the figure looks qualitatively the same for
f (x) = x3. The figure indicates that increasing γ (or α) beyond
a critical value, denoted as γc (or αc), the unbroken PT region
appears only when α (or γ ) is also sufficiently large.

B. Case: f (x) is even

The case of even f (x) can again be divided into two
subcases: (i) f (0) = 0 and (ii) f (0) = a nonzero constant,
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(a) (b) (c)

FIG. 15. Phase diagram in (κ,γ ) space: (a) and ((b) denote broken (white), unbroken (gray), and bistable (dark gray) regions with f (x) = x3

and f (x) = sinx, respectively, for α = 1.5. (c) Phase diagram in (α,γ ) space corresponding to f (x) = sinx and κ = 1.5.

say, 1. [For the odd f (x) case, f (0) = 0 always and so there
are no subcases.]

Case (i) f (0) = 0: Considering the case of f (x) with
f (0) = 0 [example: f (x) = x2], in the region −1 � κ � 1
where the equilibrium point e0 alone exists (see Table I), the
corresponding eigenvalues of J [given in (52)] are found to
be the same as in (D1) and the unbroken PT regions of the
system are also the same as that of (53).

Case (ii) f (0) = 1: In this case, for example f (x) = cosx
or e−x2

, the eigenvalues of J are different from case (i) and
they are given in (E4). In contrast to the previous cases, the
eigenvalues of J corresponding to e0 are found to depend on
α [see Eq. (E4)], and the PT unbroken region can be given in
terms of γ as

α − √
a2 � γ � α + √

a2, (55)

where a2 = 2ω2
0 −

√
4(1 − κ2). This equation indicates that

the PT symmetry is found to be broken for values of γ

outside the range specified by (55) andPT symmetry becomes
unbroken by choosing γ within the range given in (55).
Thus, the PT symmetry is broken for lower values of γ ,
γ < α − √

a2, and restored at higher γ , as in Eq. (55).
As PT is broken for γ < α − √

a2, for α > 0 the PT
regions preferentially exist for γ > 0 and found to be scarce
for γ < 0. In other words, the unbroken PT regions are
abundant, if the loss due to the linear (or nonlinear) damping is
introduced in the x oscillator and the loss due to the nonlinear
(or linear) damping is introduced in the y oscillator. When loss
(or also gain) due to both the linear and nonlinear damping is

introduced in the same oscillator, the unbroken PT regions
become scarce.

Now, considering the region (κ > 1), where the nontrivial
equilibrium points exist (see Table I), the dynamics corre-
sponding to the two subcases [cases (i) and (ii)] are the same.
The eigenvalues of e1 and e2 are given in (E6), which become
purely imaginary in the region

αf (
√

κ − 1) − √
a1 � γ � αf (

√
κ − 1) + √

a1, (56)

where a1 = (6κ − 4) − 4
√

(2κ − 1)(κ − 1). Comparing the
above with the one corresponding to the f (x) odd case [see
Eqs. (54) and (56)], we can find that in this case the unbroken
PT regions are scarce for γ < 0. The presence of the term
αf (

√
κ − 1) indicates that the PT restoration can occur at

higher values of loss and gain, which confirms that the PT
regions can be tailored by a proper choice of f (x).

Figure 16(a) shows the PT regions of the system (51) for
the choice of f (x) = x2 which corresponds to the subcase
(i) f (0) = 0. Figure 16(b) is plotted for f (x) = cosx, corre-
sponding to the subcase (ii), namely, f (0) = 1. The inset in the
figure clearly shows that in this system even for κ < 1 the PT
restoration at higher loss-gain strength occurs. Figures 16(a)
and 16(b) clearly show that the PT regions can be tailored by
the proper choice of f (x). Figure 16(c) shows the PT regions
in the (γ,α) parametric space for the choice f (x) = cos x,
which shows the existence of critical values γc and αc above
which the PT is unbroken for higher loss-gain strength.

FIG. 16. Phase diagram in (κ,γ ) space: (a) and (b) denote broken (white), unbroken (gray), and bistable (dark gray) regions with f (x) = x2

and f (x) = cosx (where α = 1.5). The inset in (b) shows the PT regions corresponding to the case f (x) = cosx for values of κ between
0 < κ < 1 in (κ,γ ) space. (c) Phase diagram in (α,γ ) space corresponding to f (x) = cosx and κ = 1.5.
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VII. CONCLUSION

In this work, we have brought out the nature of the
twofold PT symmetry of certain nonlinear systems with
position-dependent loss-gain profiles. We have pointed out that
the PT -symmetric cases of this type of nonlinear system with
position-dependent loss-gain profile occur even with a single
degree of freedom. These scalar nonlinear PT -symmetric
systems are also found to show PT -symmetry breaking. We
have demonstrated the nature of PT -symmetry preservation
and breaking with an interesting integrable example of damped
nonlinear system. By coupling two such scalar PT -symmetric
systems in a proper way, we have shown the existence of the
twofold-PT -symmetric systems in two dimensions. We have
also illustrated the phenomenon of symmetry breaking of the
two PT symmetries in this twofold-PT -symmetric system.
When this system is acted upon by a single nonlinear damping,
we observed that for smaller coupling strengths, the coupled
system shows no symmetry breaking while varying nonlinear
loss-gain strength, whereas the coupledPT -symmetric system
with a linear damping [11] shows symmetry breaking by in-
creasing loss and gain strength. By strengthening the coupling,
this nonlinearly damped system shows symmetry breaking for
higher loss and gain strength. Then, by applying the linear
damping in addition to the nonlinear damping in a competing
way, our results show that as in the PT -symmetric Aubry-
Andre model, PT restoration at higher values of loss and gain
strength occurs. The advantage of having position-dependent
nonlinear damping with a competing linear damping is to help
to tailor the PT regions of the system according to the needs
by properly designing the nonlinear loss and gain profile. We
have also observedPT revivals in the systems which have loss
and gain periodically in space.
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APPENDIX A: SYMMETRY BREAKING IN A
P-SYMMETRIC CUBIC ANHARMONIC OSCILLATOR

Here, we demonstrate the P-symmetry breaking in a cubic
anharmonic oscillator through the solution of its IVP. Let us
consider the cubic oscillator equation

ẍ + λx + βx3 = 0, λ = ω2
0. (A1)

For simplicity, we consider β > 0 for further discussions. The
P-symmetry breaking in such a system is well known in the
literature. For λ > 0, this system has an equilibrium point
e0:(0,0) and the equilibrium point is found to be neutrally
stable. As P[(0,0)]=(0,0), the P symmetry in the region is
unbroken. By decreasing λ to λ < 0, the equilibrium point

e0 loses its stability and gives birth to two new neutrally

stable equilibrium points which are e1,2:(±
√

−λ
β

,0). In fact,

e0 is a saddle-type and e1,2 are center-type equilibrium points.
But, these new equilibrium points e1 and e2 do not preserve
symmetry as P(e1) = e2 and vice versa. Thus, P symmetry
is broken while λ < 0. All the stable equilibrium points
correspond to minimum energy values.

The system is an integrable one and its exact solution is
also available in the literature [45,46]. Now, we demonstrate
the above P-symmetry breaking from the solution of the IVP
of the system.

Here, the general solution of the system is given as follows:
Case 1: λ > 0:

x(t) = Acn[�t + δ,k], (A2)

where � =
√

ω2
0 + βA2 , the square of the modulus k2 =

βA2

2(ω2
0+βA2)

, and δ is a constant. The associated energy integral

is E = H = 1
2 ẋ2 + 1

2ω2
0x

2 + 1
4βx4 = 1

2ω2
0A

2 + 1
4βA4. Then,

considering without loss of generality the IVP, x(0) = A,
ẋ(0) = 0, in order that Px(0) = x(0), P ẋ(0) = ẋ(0) ⇒
A = −A which is possible only if A = 0. Further, since one
requires P[x(t)] = −x(t) ⇒ x(t) = −x(t). From (A2), only
the possibility A = 0 ⇒ x(t) = 0, ẋ(t) = 0 for all t � 0 is the
admissible solution of the IVP which preserves P symmetry.
The corresponding energy E = 0 has the minimum value. The
excited states of the system may be said to be P symmetric if
the time translation is included.

Case 2: λ < 0: On the other hand, one finds the following
general solutions for the case λ < 0 in Eq. (A1):

(i) 0 � A �
√

|λ|
β

: In this range only the trivial solution
exists

x(t) = 0,ẋ = 0. (A3)

(ii)
√

|λ|
β

� A �
√

2|λ|
β

: In this region we have the following

two distinct periodic solutions in the two wells

x(t) = ±Adn(�t + δ,k), (A4)

ẋ(t) = ∓A�k2sn(�t + δ,k)cn(�t + δ,k), (A5)

where �2 = βA2

2 and k2 = 2(βA2−|λ|)
βA2 , and δ is a constant.

(iii) A �
√

2|λ|
β

: In this region, one has the solution

x(t) = Acn(�t + δ), (A6)

ẋ(t) = −A�sn(�t + δ,k)dn(�t + δ,k), (A7)

� =
√

−|λ| + βA2, k2 = βA2

2(−|λ| + βA2)
.

Considering the IVP x(0) = A, ẋ(0) = 0, one again finds
x(t) = 0, ẋ(t) = 0 is the only possible P-symmetric solution,

existing when A <

√
|λ|
β

. But, in the region
√

|λ|
β

< A <

√
2|λ|
β

,

one also has the nontrivial distinct set of solutions

x1(t) = +Adn(�t,k), (A8)

x2(t) = −Adn(�t,k), (A9)
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FIG. 17. (a), (b) Single well: potential energy curve and phase
portrait of the system (A1) for λ = 1 and β = 1. (c), (d) Double well:
potential energy and phase portrait of the system (A1) for λ = −1
and β = 1.

such that

Px1(t) = x2(t) and Px2(t) = x1(t), (A10)

and so also

P ẋ1(t) = ẋ2(t) and P ẋ2(t) = ẋ1(t). (A11)

Note that the value of the corresponding energy integral E =
− 1

2 |λ|A2 + 1
4βA4 and its minimum value E = Emin = − 1

4
|λ|2
β

is attained when the amplitude A =
√

|λ|
β

. In this case, the

square of the modulus k = 0, � = 0, and so dn(u,0) = 1 and

x(t) = ±
√

|λ|
β

, ẋ(0) = 0. (A12)

Note that the solutions (A8) and (A9), including the limiting
case, all correspond to energies lower than the P-symmetric
state E0 = (0,0) and break the P symmetry.

Finally, in the region A �
√

2|λ|
β

, there exists no P-

symmetric solution, unless time-translation and time-reversal
symmetries are also allowed in which the cases the phase

trajectories are closed with A �
√

2|λ|
β

. The associated phase

trajectories are presented in Fig. 17.

APPENDIX B: NON-PT -SYMMETRIC OSCILLATOR

The non-PT -symmetric oscillator given in Eq. (8) shows
damped oscillations as given in Fig. 18(a). But, the linear
stability analysis of this system indicates a different dynamical
behavior. Note that this system has the same equilibrium points
as that of (14). The eigenvalues associated with the equilibrium
point E0, namely ±i

√
λ, show that it has periodic oscillations.

But, the numerical results show that it has damped oscillations.

FIG. 18. Temporal behavior of (a) non-PT -symmetric damped
oscillator Eq. (8) and (b) the limit cycle oscillator Eq. (9).

The apparent ambiguity can be removed using its amplitude
equation. We assume

x(t) = R(t)eiω0t + R∗(t)e−iω0t , (B1)

where R(t) = r(t)eiδ(t), r(t) and δ(t) are slowly varying
amplitude and phase. By differentiating we have

ẋ(t) = [Ṙ(t) + iω0R(t)]eiω0t + c.c.,

ẍ(t) = [R̈(t) + 2iω0Ṙ(t) − ω2
0R(t)

]
eiω0t + c.c., (B2)

where c.c. denotes complex conjugate. As R(t) is a slowly
varying quantity, Ṙ(t) � ω0R(t) and R̈(t) � ω2

0Ṙ(t). Thus,
we use approximations like

ẋ(t) = iω0R(t)eiω0t + c.c.,

ẍ(t) = [2iω0Ṙ(t) − ω2
0R(t)

]
eiω0t + c.c. (B3)

Substituting (B3) and (B1) in (8), we get for the equation for
amplitude [r(t)]

ṙ = −α
r3(t)

2
. (B4)

By solving the above, we get

r(t) = 1√
α(t − t0)

, t0,constant. (B5)

This indicates that the amplitude of oscillation decreases due
to the introduced nonlinear term. This is the reason why the
system in (8) has damped oscillations.

On the other hand, the amplitude equation associated with
E0 corresponding to MEE (14) is found to be

ṙ = 0. (B6)

Thus, r(t) = constant, in the case of MEE. Thus, it has periodic
oscillations with constant amplitude.

Now, considering the non-PT -symmetric limit cycle oscil-
lator equation given in (9), we see that it has an equilibrium

point E0 at (0,0). The associated eigenvalues are
1±

√
1−4ω2

0

2 .
This shows that the system is unstable. But, the amplitude
equation of the system (obtained as in the previous case)

ṙ = − r3 − r

2
(B7)

indicates that ṙ = 0 for r = 1. Thus, the system exhibits
limit cycle oscillations. Figure 18(b) shows the limit cycle
oscillation of (9).
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APPENDIX C: EIGENVALUES OF EQ. (38)

In this section, we present the eigenvalues of the Jacobian
matrix J [given in (40)] associated with the various equilib-
rium points. The eigenvalues of J corresponding to the system
(38) for the equilibrium point e0 are

μ
(0)
j = ±i

√
ω2

0 ± κ, j = 1,2,3,4. (C1)

The eigenvalues are found to be pure imaginary when ω2
0 �

κ � −ω2
0. In this range, for all values of the nonlinear

damping coefficient α, the eigenvalues are pure imaginary.
This indicates that there is no symmetry breaking while
increasing α.

Now, we consider the equilibrium points e1,2 which exist
only for κ > ω2

0. The eigenvalues of (40) corresponding to e1

and e2 are the same and they are given by

μ
(1,2)
j = ±

√√√√b1 ±
√

b2
1 − b2

2
, j = 1,2,3,4 (C2)

where

b1 =
⎛
⎝α

√
κ − ω2

0

β

⎞
⎠

2

− (6κ − 4ω2
0

)
, (C3)

b2 = 16
(
2κ − ω2

0

)(
κ − ω2

0

)
. (C4)

For fixed values of α and β, these eigenvalues are found to
be pure imaginary for the values of κ in the range

ω2
0 < κ � (α2 − 6β)(α2 − 4β) − 24β2 − 4αβ

√
2β

[(α2 − 6β)2 − 32β2]
ω2

0.

(C5)

Similarly, for a particular value of κ in the range κ > ω2
0,

the range of values of α for which the eigenvalues will be pure
imaginary is given as

−
√

β

κ − ω2
0

b3 � α �
√

β

κ − ω2
0

b3, (C6)

where

b3 =
√

6κ − 4ω2
0 −

√
b2 (C7)

with the values of κ � ω2
0.

The eigenvalues of J corresponding to the equilibrium point
e3 (which exists when κ < ω2

0) are

μ
(3)
1,2 =

−α

√
−(κ+ω2

0

)±
√

(−α2 + 8β)
(
κ+ω2

0

)
2
√

β
,

μ
(3)
3,4 =

−α

√
−(κ+ω2

0

)±
√

−α2
(
κ+ω2

0

)+ 8β
(
2κ+ω2

0

)
2
√

β
.

(C8)

We can find from the above equation that these eigenvalues
can never be pure imaginary if α �= 0. The equilibrium point
e3 is found to be stable and gives rise to oscillation death
when α > 0. The eigenvalues of J corresponding to e4 can

be obtained by simply changing α → −α in Eq. (C8). One
can check that its eigenvalues can never be pure imaginary for
α �= 0 and that they can become stable when α < 0.

APPENDIX D: EIGENVALUES OF EQ. (47)

In this appendix, we present the eigenvalues of J given in
(48) for the equilibrium points of the system (47). This system
has the same set of equilibrium points as that of (38). The
eigenvalues of J for e0 are

μ
(0)
j = ±

√√√√−(2ω2
0 − γ 2

)±
√(

2ω2
0 − γ 2

)2 + 4
(
κ2 − ω4

0

)
2

.

(D1)

For the values of γ in the range −
√

2ω2
0 < γ <

√
2ω2

0 , the
eigenvalues are easily seen to be pure imaginary only for the
values of κ in the range

− ω2
0 < κ � −

√
4ω4

0 − (2ω2
0 − γ 2

)2
4

,

ω2
0 > κ �

√
4ω4

0 − (2ω2
0 − γ 2

)2
4

. (D2)

For a particular value of κ in the region −ω2
0 � κ � ω2

0, e0

is neutrally stable for the values of γ defined by

−
√

2ω2
0 − 2

√
ω4

0 − κ2 � γ �
√

2ω2
0 − 2

√
ω4

0 − κ2. (D3)

From the above relations, one can see that the increase in
γ beyond this range causes symmetry breaking in the system
(in the region −ω2

0 � κ � ω2
0).

Then, the eigenvalues of J for the equilibrium point e1 are

μ
(1)
j = ±

√√√√b′
1 ±

√(
b′2

1 − b2
)

2
, (D4)

where

b′
1 =

⎛
⎝α

√
κ − ω2

0

β
+ γ

⎞
⎠

2

− (6κ − 4ω2
0

)
, (D5)

and b2 is given in (C4). The equilibrium point e1 exists
only when κ > ω2

0, and the associated eigenvalues are pure
imaginary when

−α

√
κ − ω2

0

β
− b3 � γ � −α

√
κ − ω2

0

β
+ b3, (D6)

where b3 is given in (C7). Thus, thePT symmetry is unbroken
in the region given above. Similarly, the eigenvalues of J

with respect to e2 and the regions in which they take pure
imaginary eigenvalues can be obtained by replacing α by −α

in (D4)–(D6).
Then, considering the equilibrium point e3 (which exists

for κ � −ω2
0), its eigenvalues are the roots of the algebraic
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equation

μ(3)4 + 2α

√
−(κ + ω2

0

)
β

μ(3)3 +
[
−α2

(
κ + ω2

0

)
β

− γ 2

− (6κ + 4ω2
0

)]
μ(3)2 + α

√
−
(
κ + ω2

0

)
β

(
6κ + 4ω2

0

)
μ(3)

+ 4
(
2κ − ω2

0

)(
κ − ω2

0

) = 0. (D7)

As the coefficients of μ(3)3
and μ(3) are nonzero for α �= 0,

β �= 0, the eigenvalues of the equilibrium point cannot take
pure imaginary values. Similarly, the eigenvalue equation
corresponding to the equilibrium point e4 can be obtained
by changing α → −α in (D7).

APPENDIX E: EIGENVALUES OF EQ. (51)

Now, we consider the general case of Eq. (51), where we
can choose f (x) to be an odd or an even function. In this
section, depending on the nature of f (x) (odd or even), we
have presented their corresponding eigenvalues.

1. Case: f (x) odd

In this case, the eigenvalues of J corresponding to the
equilibrium point e0 are found to be the same as in (D1).
The eigenvalues about the equilibrium points e1 and e2

are

μ
(1,2)
j = ±

√√√√ b̃
(1,2)
1 ±

√[(
b̃

(1,2)
1

)2 − b2
]

2
, (E1)

where

b̃
(1)
1 =

⎡
⎣+αf

⎛
⎝
√

κ − ω2
0

β

⎞
⎠+ γ

⎤
⎦

2

− (6κ − 4ω2
0

)
,

b̃
(2)
1 =

⎡
⎣−αf

⎛
⎝
√

κ − ω2
0

β

⎞
⎠+ γ

⎤
⎦

2

− (6κ − 4ω2
0

)
, (E2)

and b2 is as given in (C4). The regions in which the eigenvalues
of e1 and e2 are found to be pure imaginary are given,

respectively, by

− αf

⎛
⎝
√

κ − ω2
0

β

⎞
⎠− b3 � γ � −αf

⎛
⎝
√

κ − ω2
0

β

⎞
⎠+ b3,

+αf

⎛
⎝
√

κ − ω2
0

β

⎞
⎠− b3 � γ � +αf

⎛
⎝
√

κ − ω2
0

β

⎞
⎠+ b3,

(E3)

where b3 is given in (C7).

2. Case: f (x) even

Considering the case of even f (x), the eigenvalues of e0

are

μ
(0)
j = ±

√√√√−c ±
√

c2 − 4
(
ω4

0 − κ2
)

2
, (E4)

where c = {2ω2
0 − [γ − αf (0)]2}. The eigenvalues in (E4) are

found to be same as that of (D1) when f (0) = 0. In the case
f (0) = 1, thus the eigenvalues given in (E4) are different from
those of (D1). In contrast to the previous cases [Eqs. (C1) and
(D1)], the eigenvalues corresponding to e0 are found to depend
on α and the region in which the eigenvalues given in (E4) take
pure imaginary values is

α −
√

2ω2
0 −

√
4
(
ω4

0 − κ2
)

� γ

� α +
√

2ω2
0 −

√
4
(
ω4

0 − κ2
)
. (E5)

The eigenvalues corresponding to both e1 and e2 are found
to be the same and they are

μ
(1,2)
j = −

√√√√ b̃
(2)
1 ±

√(
b̃

(2)
1

)2 − b2

2
. (E6)

The eigenvalues corresponding to both e1 and e2 are found
to be pure imaginary only when

αf

⎛
⎝
√

κ − ω2
0

β

⎞
⎠− b3 � γ � αf

⎛
⎝
√

κ − ω2
0

β

⎞
⎠+ b3. (E7)
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[25] V. Mañosa, Chaos, Solitons Fractals 18, 241 (2003).
[26] V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan,

Phys. Rev. E 72, 066203 (2005).
[27] V. C. Ruby, M. Senthilvelan, and M. Lakshmanan, J. Phys. A:

Math. Theor. 45, 382002 (2012).
[28] B. Bagchi, S. Modak, P. K. Panigrahi, F. Ruzicka, and M. Znojil,

Mod. Phys. Lett. A 30, 1550213 (2015).
[29] A. Cavaglia, A. Fring, and B. Bagchi, J. Phys. A: Math. Theor.

44, 325201 (2011).

[30] C. H. Liang, D. D. Scott, and Y. N. Joglekar, Phys. Rev. A 89,
030102(R) (2014).

[31] C. Yuce, Phys. Lett. A 378, 2024 (2014).
[32] A. E. Miroshnichenko, B. A. Malomed, and Y. S. Kivshar,

Phys. Rev. A 84, 012123 (2011).
[33] M. Znojil, J. Phys. A: Math Theor. 48, 195303 (2015).
[34] V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan,

J. Phys. A: Math Gen. 40, 4717 (2007).
[35] V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan,

J. Phys. A: Math Gen. 37, 4527 (2004).
[36] S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books,

Cambridge, MA, 1994).
[37] R. G. Pradeep, V. K. Chandrasekar, M. Senthilvelan, and

M. Lakshmanan, J. Math. Phys. 50, 052901 (2009).
[38] A. D. Devi, R. G. Pradeep, V. K. Chandrasekar, and

M. Lakshmanan, J. Nonlinear Math. Phys. 20, 78 (2013).
[39] A. Politi, G. L. Oppo, and R. Badii, Phys. Rev. A 33, 4055

(1986).
[40] J. M. Dixon and J. A. Tuszynski, Phys. Rev. A 41, 4166 (1990).
[41] V. I. Arnold, V. S. Afrajmovich, Y. S. Il’yashenko, and

L. P. Shil’nikov, Dynamical Systems V: Bifurcation Theory and
Catastrophe Theory (Springer, Berlin, 1994).

[42] C. M. Bender, S. Boettcher, and P. N. Meisinger, J. Math. Phys.
40, 2201 (1999).

[43] A. Nanayakkara, J. Phys. A: Math Gen. 37, 4321 (2004).
[44] A. Sinha, D. Dutta, and P. Roy, Phys. Lett. A 375, 452

(2011).
[45] M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics: Inte-

grability, Chaos and Patterns (Springer, Berlin, 2003).
[46] P. M. Mathews and M. Lakshmanan, Ann. Phys. (NY) 79, 171

(1973).

012102-20

http://dx.doi.org/10.1103/PhysRevA.90.022114
http://dx.doi.org/10.1103/PhysRevA.90.022114
http://dx.doi.org/10.1103/PhysRevA.90.022114
http://dx.doi.org/10.1103/PhysRevA.90.022114
http://dx.doi.org/10.1103/PhysRevA.88.032108
http://dx.doi.org/10.1103/PhysRevA.88.032108
http://dx.doi.org/10.1103/PhysRevA.88.032108
http://dx.doi.org/10.1103/PhysRevA.88.032108
http://dx.doi.org/10.1038/nnano.2011.71
http://dx.doi.org/10.1038/nnano.2011.71
http://dx.doi.org/10.1038/nnano.2011.71
http://dx.doi.org/10.1038/nnano.2011.71
http://dx.doi.org/10.1007/s11071-011-0031-5
http://dx.doi.org/10.1007/s11071-011-0031-5
http://dx.doi.org/10.1007/s11071-011-0031-5
http://dx.doi.org/10.1007/s11071-011-0031-5
http://dx.doi.org/10.1021/nn402479d
http://dx.doi.org/10.1021/nn402479d
http://dx.doi.org/10.1021/nn402479d
http://dx.doi.org/10.1021/nn402479d
http://dx.doi.org/10.1140/epjb/e2014-41070-1
http://dx.doi.org/10.1140/epjb/e2014-41070-1
http://dx.doi.org/10.1140/epjb/e2014-41070-1
http://dx.doi.org/10.1140/epjb/e2014-41070-1
http://dx.doi.org/10.1016/j.crma.2006.11.014
http://dx.doi.org/10.1016/j.crma.2006.11.014
http://dx.doi.org/10.1016/j.crma.2006.11.014
http://dx.doi.org/10.1016/j.crma.2006.11.014
http://dx.doi.org/10.1016/0022-5193(83)90202-3
http://dx.doi.org/10.1016/0022-5193(83)90202-3
http://dx.doi.org/10.1016/0022-5193(83)90202-3
http://dx.doi.org/10.1016/0022-5193(83)90202-3
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0960-0779(02)00645-8
http://dx.doi.org/10.1016/S0960-0779(02)00645-8
http://dx.doi.org/10.1016/S0960-0779(02)00645-8
http://dx.doi.org/10.1016/S0960-0779(02)00645-8
http://dx.doi.org/10.1103/PhysRevE.72.066203
http://dx.doi.org/10.1103/PhysRevE.72.066203
http://dx.doi.org/10.1103/PhysRevE.72.066203
http://dx.doi.org/10.1103/PhysRevE.72.066203
http://dx.doi.org/10.1088/1751-8113/45/38/382002
http://dx.doi.org/10.1088/1751-8113/45/38/382002
http://dx.doi.org/10.1088/1751-8113/45/38/382002
http://dx.doi.org/10.1088/1751-8113/45/38/382002
http://dx.doi.org/10.1142/S0217732315502132
http://dx.doi.org/10.1142/S0217732315502132
http://dx.doi.org/10.1142/S0217732315502132
http://dx.doi.org/10.1142/S0217732315502132
http://dx.doi.org/10.1088/1751-8113/44/32/325201
http://dx.doi.org/10.1088/1751-8113/44/32/325201
http://dx.doi.org/10.1088/1751-8113/44/32/325201
http://dx.doi.org/10.1088/1751-8113/44/32/325201
http://dx.doi.org/10.1103/PhysRevA.89.030102
http://dx.doi.org/10.1103/PhysRevA.89.030102
http://dx.doi.org/10.1103/PhysRevA.89.030102
http://dx.doi.org/10.1103/PhysRevA.89.030102
http://dx.doi.org/10.1016/j.physleta.2014.05.005
http://dx.doi.org/10.1016/j.physleta.2014.05.005
http://dx.doi.org/10.1016/j.physleta.2014.05.005
http://dx.doi.org/10.1016/j.physleta.2014.05.005
http://dx.doi.org/10.1103/PhysRevA.84.012123
http://dx.doi.org/10.1103/PhysRevA.84.012123
http://dx.doi.org/10.1103/PhysRevA.84.012123
http://dx.doi.org/10.1103/PhysRevA.84.012123
http://dx.doi.org/10.1088/1751-8113/48/19/195303
http://dx.doi.org/10.1088/1751-8113/48/19/195303
http://dx.doi.org/10.1088/1751-8113/48/19/195303
http://dx.doi.org/10.1088/1751-8113/48/19/195303
http://dx.doi.org/10.1088/1751-8113/40/18/003
http://dx.doi.org/10.1088/1751-8113/40/18/003
http://dx.doi.org/10.1088/1751-8113/40/18/003
http://dx.doi.org/10.1088/1751-8113/40/18/003
http://dx.doi.org/10.1088/0305-4470/37/16/004
http://dx.doi.org/10.1088/0305-4470/37/16/004
http://dx.doi.org/10.1088/0305-4470/37/16/004
http://dx.doi.org/10.1088/0305-4470/37/16/004
http://dx.doi.org/10.1063/1.3126493
http://dx.doi.org/10.1063/1.3126493
http://dx.doi.org/10.1063/1.3126493
http://dx.doi.org/10.1063/1.3126493
http://dx.doi.org/10.1080/14029251.2013.792474
http://dx.doi.org/10.1080/14029251.2013.792474
http://dx.doi.org/10.1080/14029251.2013.792474
http://dx.doi.org/10.1080/14029251.2013.792474
http://dx.doi.org/10.1103/PhysRevA.33.4055
http://dx.doi.org/10.1103/PhysRevA.33.4055
http://dx.doi.org/10.1103/PhysRevA.33.4055
http://dx.doi.org/10.1103/PhysRevA.33.4055
http://dx.doi.org/10.1103/PhysRevA.41.4166
http://dx.doi.org/10.1103/PhysRevA.41.4166
http://dx.doi.org/10.1103/PhysRevA.41.4166
http://dx.doi.org/10.1103/PhysRevA.41.4166
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1088/0305-4470/37/15/002
http://dx.doi.org/10.1088/0305-4470/37/15/002
http://dx.doi.org/10.1088/0305-4470/37/15/002
http://dx.doi.org/10.1088/0305-4470/37/15/002
http://dx.doi.org/10.1016/j.physleta.2010.12.023
http://dx.doi.org/10.1016/j.physleta.2010.12.023
http://dx.doi.org/10.1016/j.physleta.2010.12.023
http://dx.doi.org/10.1016/j.physleta.2010.12.023
http://dx.doi.org/10.1016/0003-4916(73)90288-1
http://dx.doi.org/10.1016/0003-4916(73)90288-1
http://dx.doi.org/10.1016/0003-4916(73)90288-1
http://dx.doi.org/10.1016/0003-4916(73)90288-1



