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Violation of the Wiedemann-Franz law for one-dimensional ultracold atomic gases
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We study energy and particle transport for one-dimensional strongly interacting bosons through a ballistic single
channel connecting two atomic reservoirs. We show the emergence of particle- and energy-current separation,
leading to the violation of the Wiedemann-Franz law. As a consequence, we predict different time scales for the
equilibration of temperature and particle imbalances between the reservoirs. Going beyond the linear spectrum
approximation, we show the emergence of thermoelectric effects, which could be controlled by either tuning
interactions or the temperature. Our results describe, in a unified picture, fermions in condensed-matter devices
and bosons in ultracold atom setups. We conclude by discussing the effects of a controllable disorder.
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The recent observations of mesoscopic transport in cold
atomic gases [1] pave the way for the investigation of phase-
coherent transport and thermoelectric effects with neutral
bosonic atoms, where one compares heat and mass—rather
than charge—transport. This stimulates theoretical studies
[2] that focus on observables and probes that are different
from—and complementary to—those studied for electronic
devices.

A fundamental hallmark of electronic transport in metals is
the Wiedemann-Franz (WF) law [3]. This law establishes that
the ratio between thermal conductivity K, electric conductivity
g, and temperature 7', known as the Lorenz number L, is a
universal constant L given by

K 7[2 k32
L=—=—|—) =Ly 1
oT 3(e) 0 ()

The Drude [4] and the Fermi-liquid theory of transport [5,6]
provide a microscopic interpretation of this law: low-energy
quasiparticles carry both charge and energy. Deviations from
the WF law (1) are then considered as a signature either of
the breakdown of the quasiparticle character of low-energy
excitations or of the presence of strongly energy-dependent
quasiparticle scattering [7]. Indeed, deviations are expected
for three-dimensional (3D) Fermi liquids [4,5], and have been
observed in high-T, superconductors [8], close to phase tran-
sitions [9], and in quasi-one-dimensional strongly interacting
channels [10]. Moreover, the nonlocality of quantum transport
in mesoscopic systems requires generalization of the WF law
to conductances instead of conductivities [11].

In one dimension (1D), interaction screening is much
less effective, leading to the failure of the one-body picture.
Low-energy collective modes emerge as a complicated su-
perposition of the elementary constituents. The Fermi-liquid
theory breaks down and must be replaced by an effective
hydrodynamic approach, i.e., the Luttinger liquid (LL) theory
[12]. The linearization of the spectrum close to the Fermi
surface allows one to describe the low-energy excitations as a
collection of noninteracting bosonic oscillators, characterized
by the sound velocity u# and the interaction parameter K.
The emergence of neutral collective modes, responsible for
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energy transport and distinct from the elementary constituents,
carrying charge, leads to the violation of the WF law [13-16],
i.e., the Lorenz number is different from L in the presence of
interactions.

While both interacting 1D bosons and fermions are sim-
ilarly described by the LL theory, the Luttinger parameters
describe strongly interacting 1D bosons with K > 1 [17,18],
whereas K < 1 for repulsive fermions. Furthermore, reser-
voirs are interacting in the bosonic case, which is seldom
the case for electronic devices due to strong screening of
the Coulomb interaction. In view of the recent experimental
advances with ultracold gases, it is therefore a timely issue to
explore the fate of WF law for strongly interacting 1D bosons.

We focus on the two-terminal setup sketched in Fig. 1. A
left (L) and right (R) reservoir are connected by a ballistic
channel of length d,. The interaction strength is assumed
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FIG. 1. Particle and energy transport are differently affected by
spatial variations of the LL parameters (u, K). In solid-state devices,
this is observable in leads connected by a nanowire. In 1D bosonic
clouds, the confining potential can be engineered in such a way as to
connect two reservoirs by an atomic waveguide. A larger parameter
region becomes accessible in which K # 1 not exclusively in the
conducting channel.
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to be different in the channel and in the reservoirs, as could
be engineered by adjusting the transverse confinement and
hence the background density in each region. Our derivation
of the thermoelectric coefficients, their correction to the Lorenz
number, and their relation to the time-scale separation for the
equilibration of reservoirs are contributions to the study of
transport in interacting 1D systems.

Transport coefficients and model. Particle and energy
currents, J and Jg, generated by a difference of chemical
potential Ap = pp, — ur or temperature AT = Ty, — Tr are
given by the transport matrix [19]

JY 1 s/T Ap
(JE>_g<sT L+s2)<TAT)' @

Its off-diagonal elements, related to Peltier and Seebeck
effects, depend on the thermopower s, a manifestation of On-
sager relations [20]. An equivalent formulation of the transport
matrix involves entropy instead of energy currents [1].

We want to obtain and discuss all of the elements of
the transport matrix. We first derive the effective low-energy
Hamiltonian governing the system depicted in Fig. 1. It is
obtained by quantization of the classical equations of hydrody-
namics in 1D [21]. These involve the continuity equation 9,n +
dy(nv) =0 and Newton’s law: mnd;,v = —0, P — noy Vey.
n(x,t) and v(x,t) are fields describing the density and velocity
of a gas submitted to the pressure P and an external potential
Vext- The equations are linearized close to equilibrium: we
assume n(x,t) = no(x) + én(x,t) and introduce a first-order
displacement field ¥ such that v(x,7) = 9,9 (x,t). The chem-
ical potential u[n] is introduced such that 9, P = no, u[n].
It encodes the information about interactions among bosons.
The linearized equations of motion (see Supplemental Material
[22]) lead to the energy of the system, & = f dx{%(@,l?)z +
%i—’ﬂno[ax(noﬂ)]z}. Conjugate fields 6(x) = wn(x)9(x) and
[I(x) = md,¥(x)/mh are introduced, describing density and
current fluctuations. The standard quantization procedure
[0(x),T1(x")] = i8(x — x'), with u(x)K (x) = rno(x)h/m and
u(x)/K(x) = # ‘;—‘; |,,,» leads to the inhomogeneous LL model
[23-25]

_h / [ 5 u(x) 2]
Ho = 5= [ dx|u()K@)@ID” + ——(3:0)" [, 3)
2 K(x)

to describe the setup in Fig. 1. The velocity and interaction
parameters u(x) and K (x) both depend on the strength of the
interactions between the bosons [17] and have different values,
(uch, Ken) or (ur, Ky), if x is in the channel region x € [— %, %
or not. K and u change at the connection between channel
and reservoirs. The connection is typically smooth on scales
of the order of the interparticle distance ~1/ng, but abrupt
compared to the wavelength of the low-energy modes. This
assumption allows one to neglect particle backscattering in
Eq. (3) and still consider sharp variations of # and K, yielding
backscattering of energy modes. This different behavior of
particle and energy transport leads to the violation of the WF
law. In electronic systems, electrons do not interact in the
reservoirs, implying K, = 1, and interact repulsively in the
channel, i.e., K, < 1. In the bosonic case, K = 1 corresponds
to the Tonks-Girardeau (TG) limit of infinite interactions.
Away from this limit, K assumes superunitary values both
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FIG. 2. Violation of the Wiedemann-Franz law. The Lorenz
number (9) is plotted as a function of temperature and momentum
mismatch of the energy modes at the channel-reservoir connec-
tions, quantified by the ratio u,/u,. Increasing backscattering of
energy modes at increasing temperatures, while particle transport is
unaffected, implies a suppression of the Lorenz number. The WF
law is violated also for u, = u., (compare solid with dashed black
line) because of subleading thermoelectric effects. Calculations were
carried out for the thermoelectric correction appearing in Eq. (9),
with parameters in the reservoirs fulfilling 72(vp/u.)*(Ten/ Tr)?/
12K, = 1072

in the reservoirs and in the channel, with K, # K, > 1,
allowing one to explore completely new parameter regimes.
The hydrodynamic approach used here is valid for strong
to intermediate interactions, K., = 1. In this regime, phase
fluctuations are strong and effects related to the superfluid
nature of the Bose gas can be ignored.

We define the energy density i(x) in Eq. (3) as Hy =
f dxh(x). The continuity equations d,J + d,n =0 and
0y Jg + 9;h = 0 for the particle and energy densities lead to
the current operators,

hu?
J =nuKII, JEZ_T{H»axG}- )

The linear conductance is readily obtained as g = K./ h; it
is renormalized by interactions in the reservoirs [22,23,26].
We use the Landauer-Biittiker theory of coherent transport
[27] to derive the thermal conductance K. We diagonalize
Eq. (3) with bosonic scattering states of energy « and
transmission amplitude 7, through the channel [22]. The
energy current reads (Jg) = % fda) olt,|*[nL(@) — nr(w)],
in which n,(w) is the Bose distribution of the scattering modes
in the reservoirs. The thermal conductance X is defined in
the AT — O limit of the energy current: (Jg) = KAT. The
Lorenz number reads [13]

K L() 6 /oo 2 x2
Lis=—=—— dx|ty, _— 5
LS gT K. 7?2 ), 1225 sinh?(x) )
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LS stands for the linear spectrum assumption implicit in
Eq. (3). The transmission amplitudes 7, depend only on
frequencies w and the ratio u,/u,. The reason is that backscat-
tering is due to the breaking of translational invariance at
the channel-reservoir connection and hence to the momentum
mismatch of incoming waves w/u [22]. In the homogeneous
situation u,; = uch, no change of eigenstates occurs along the
cloud, so t, = 1. Yet, the Lorenz number is renormalized,
Lis = Lo/K;, due to the renormalization of the linear con-
ductance g discussed above [14]. Interestingly, the WF law is
satisfied in the Tonks-Girardeau limit of infinite interactions,
when K, = 1. For bosons with intermediate interactions K, >
1, we predict a regime where Ly s < L: the particle flow is
enhanced with respect to heat flow. This has to be contrasted
with the electronic case where K, = 1 and no violation of the
WF law is expected. In the inhomogeneous case u, # uc, the
transmission amplitudes ¢, become strongly energy dependent
and control an additional, temperature-dependent deviation
from the WF law. The Lorenz number L g acquires a strong
dependency on u,/uc, and T/Te,, with Ty = hu,/2dnkp
being a characteristic temperature associated with the presence
of the channel.

Thermopower. In the absence of chemical potential bias, the
above approach yields no particle current for any temperature
imbalance. Thermoelectric effects are absent, s = 0. In order
to recover these effects, we go beyond the quadratic Hamil-
tonian (3); within the hydrodynamic approach, its corrections

read [22]
2 3
8% | (9,0) ] ©)

2
H1=—1/dx[%iwn4nmmeny+——-
m

Sn? 6m3

no

They describe the interaction between energy modes and lead
to a modified particle current operator,

1
J=7‘[MKH+—2JE. (N
mu

With the same accuracy, the operator Jg is unchanged. The
second term in Eq. (7) couples mass and energy flows leading
to thermoelectric effects. It is controlled by the inverse mass,
associated with the deviation from the linear spectrum. Using
Eq. (7), we find that the thermopower is proportional to the
thermal conductance,

2
§ = ! (v_F> ﬁ, (8)

2\u:) gEF
where Er = mv?% /2 is the Fermi energy of the TG limit K = 1
and vp = whng/m is the Fermi velocity. Our derivation pre-
dicts, in general, a nonlinear behavior of the thermopower as a
function of temperature, an exquisite signature of interactions.

An important consequence of s 7 0 is the modification of the
Lorenz number [see Eq. (2)],

JTZLLS T 2 VF 4
L=~Ls|1—-—==2(=—) (Z£) | 9
L% nzm<n><m>] ®

with Tr = Er/kp. The dependence of the Lorenz number
on the temperature and velocity ratio u,/uc, is illustrated
in Fig. 2. Note that for finite temperatures L # Lig, even
in the homogeneous case u; = uc,, generalizing the above
result obtained for a linear spectrum. Interestingly, the Lorenz
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FIG. 3. Time evolution of particle (solid line) and temperature
(dashed lines) imbalances. Left: Particle and temperature equilibrate
with different time scales, as they are carried by different excitations.
With increasing temperatures, the suppression of the Lorenz number
slows down the decay of AT. Numbers indicate different ratios
of T/T (K, =118, u, =0.8vp, T/Tr = 0.2, and u,/ug = 2.5).
Right: Thermoelectric effects lead to an evolution of the temperature
imbalance, given an initial particle imbalance [AN(0)/N = 0.3].
Numbers indicate different ratios u,/uc,, showing that A(r)/T is
tuned by interactions in the channel.

number behaves differently for u, < u., (the case of electrons
in metallic devices; see Fig. 1) and u; > uc, (realizable
with ultracold atoms). This is a further manifestation of
the wider range of possibilities offered by atomic setups.
The Hamiltonian (6) implies a finite lifetime for the collective
modes. Following Ref. [28], we estimate it for the relevant
modes with wave vector g ~ kgT /hus, and conclude that
Eq. (9) holds for T/Tr < (node,)'/°, a realistic condition
even if more stringent for long wires. The corrections to the
conductance g caused by finite lifetimes [29] can be neglected
in this limit.

Time scales. Recent experiments [1] show the possibility
to probe thermoelectric effects in the time evolution of
the particle AN and temperature AT imbalances between
reservoirs. They obey the differential equation

AN 1 —kS\ (AN
0\ A7 )=\ _s 2\ AT )
Lk 1

79 = k /g involves the compressibility of the reservoirs k =
aN/ou|r,l = C/kT, with specific heat C = dE/dT |y, and
S = s, — s is the dilatation coefficient with «s; = N /9T|,,.
Assuming d; to be the size of the reservoirs, k = d. K, /hmu,
and C = k3d, T /3hu, [12].

We start by ignoring the thermoelectric effects (S = 0).
In this limit, AN(#) = e 0 AN(0), while AT()=

Lis
e_K'%osaAT(O). Since, in general, K;L;s/Lo < 1, we find
that temperature imbalances relax with different time scales
than particle imbalances; see left panel in Fig. 3. Taking
into account the corrections to the linear spectrum given by
Eq. (6), we derive [22] the dilatation coefficient s, = C/ mu?/c,

leading to
S = LQ VF 2 T 1 1 KrLLS
- 2k3 Uy TF Kr LO ’
As shown in Fig. 3, the presence of thermoelectric effects could
be probed by preparing a particle imbalance and measuring

the time evolution of the temperature imbalance, or vice versa.
Remarkably, thermoelectric effects are extremely sensitive to

(10)

(1)
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the ratio u,/uch, controlled by the variation of the interaction
strength along the system. Thermoelectric response S is equal
to the difference between the thermopower s of the channel
and the dilatation coefficient s, of the reservoir. For u, = u.,
s = sy, hence S = 0, leading to the absence of any response in
Fig. 3.

Disorder effects. In ultracold atomic setups, tunable disor-
der can be added along the channel in a controllable way [1,30].
Here we discuss the consequences of disorder on bosonic
transport. We identify two different regimes by comparing the
disorder correlation length /p to the interparticle distance n,, I

(i) For Ip Sng ! particle backscattering affects mass
transport. A renormalization-group (RG) analysis for
é-correlated disorder allows one to determine its relevance at
low energies in the presence of interactions [31]. Defining a
dimensionless disorder strength D and a short-distance cutoff
a, the scaling transformation a — ae' determines the flow of
the disorder strength,

D(l) = DB~ Kl (12)

For K., > 3/2, disorder is irrelevant and the cloud remains
superfluid. Weak disorder yields a renormalization of the LL
parameter K. — K and channel-length (d.n)-dependent
corrections to the WF law [15]. In the high-temperature limit
kgT > huch/de, the conductance reads [32]

K. dc c 22K
g = 7[1 —CKr—hD<ﬂ> } (13)

a Ta

C is a nonuniversal factor depending on the UV regularization.
The thermal conductance /C will depend nonuniversally on
the details of disorder. Increasing d.,, the second term in
Eq. (13) becomes large and the conductance crosses over to
an Ohm law g ~ 1/dy, [15]. In the low-temperature limit,
T < ucn/den, and in the TG limit for the reservoirs (K; = 1)
[32], the scaling of the d.,-dependent corrections to the
conductance is derived by substituting kgT < hucy/den in
Eq. (13) [15,33].

Disorder becomes relevant in the RG sense for K., < 3/2.
Below a localization temperature Tjo, the channel enters an
insulating Bose glass phase [34]. The localization temperature
tends to infinity in the TG limit, K, = 1. For T > T, the
channel remains superfluid and perturbative results in the
disorder strength D apply.

(ii) For Ip > ny !, particle backscattering can be neglected,
leaving mass transport unaffected, but long-wavelength
energy modes propagate in a random medium [21].
The disorder is described by random fluctuations of the
static density, no(x) — no(x) + dp(x), with (p(x)p(x")) =
(8p(x)*) exp[—(x — x")*/I2]. Modes of energy w acquire a
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mean free path [13,21],
4u§h

Jrlpw? A (8p?)
We derive the factor A in the strongly and weakly interacting
limit by comparing the hydrodynamic approach to the exact
solution of the Lieb-Liniger model [35]. Defining the dimen-
sionless interaction strength y = mg/h*ny, we show that A =
8ng(rh/m)*/y for y > 1 and A = (h/m)*ngy for y < 1
[22]. The mean free path diverges in the TG limit y — oo
[36], which is understood using the mapping onto a free Fermi
gas, not scattered by smooth disorder. Beyond the regime of
validity of the LL picture, Eq. (14) should be matched at
high energies with the free-particle behavior &(w) o ? [36],
leading to a nonmonotonous dependence of the mean free path
on energy. A nontrivial regime of particle and energy transport
occurs when &(u) > dq: particles are not localized within
the sample; however, the energy modes are localized if their
energy w is sufficiently large (though still smaller than the
chemical potential) such that £(w;) < d¢h. When T > wy, this
leads to a saturation of the thermal conductance, suppressing
the Lorenz number. The energy w; has to be compared with

the typical energy w; ~ vp/vVng Idch at which the scattering
states spontaneously decay because of the interaction term
given by Eq. (6). The condition w,/w; > 1 sets the validity of
the scattering approach presented in the previous discussion.
We recall that we found (Jg) ~ AT.If T > w,, high-energy
modes are localized and interactions imply their decay into
the low-energy ones, conducting heat. This down-energy
conversion is responsible for an algebraic dependence of the
energy current on the temperature imbalance [13,37],

Je ~ AT*? if AT > w,. (15)

This power law is a universal and exquisite effect of interaction
between energy modes.

To conclude, we showed the violation of the Wiedemann-
Franz law and thermoelectric effects in 1D cold atom clouds
of strongly interacting bosons. They are signaled by the time
evolution of particle or temperature imbalances. Our results
generalize and extend previous results valid for fermions in
electronic devices. In particular, we show that as a clear
manifestation of interactions and the presence of reservoirs,
the thermopower does not increase linearly with temperature,
and we discuss the consequences on the Lorenz number.
Interacting bosons in one dimension open new scenarios
to explore transport in low-dimensional nanostructures [38]
and probe various quantum phases, including many-body
localization [34,39].
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