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Mott transition for strongly interacting one-dimensional bosons in a shallow periodic potential
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We investigate the superfluid-insulator transition of one-dimensional interacting bosons in both deep and
shallow periodic potentials. We compare a theoretical analysis based on quantum Monte Carlo simulations in
continuum space and Luttinger liquid approach with experiments on ultracold atoms with tunable interactions
and optical lattice depth. Experiments and theory are in excellent agreement. Our study provides a quantitative
determination of the critical parameters for the Mott transition and defines the regimes of validity of widely used
approximate models, namely, the Bose-Hubbard and sine-Gordon models.
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Introduction. The interplay of repulsive interactions and
a periodic potential in a quantum fluid triggers a superfluid-
insulator transition known as the Mott transition, provided
the potential period is commensurate to the inverse fluid
density. The most familiar notion of Mott transition takes
place in the limit of a deep periodic potential. In this case the
lattice Hubbard model microscopically captures the dominant
interaction and hopping processes, the strengths of which, U

and J , strongly depend on the periodic potential amplitude
V . Then, the Mott transition is driven by the competition of
these sole two parameters at J ∼ U [1,2]. Quite strikingly
in one dimension (1D) a Mott transition can exist even for a
vanishingly small periodic potential provided the repulsive
interactions are strong enough [3–6]. In the limit of a
shallow potential, its amplitude V becomes subrelevant and
the transition is mostly controlled by the interaction strength
g alone [6].

Ultracold atoms provide a remarkable laboratory to study
this physics [7,8]. So far the Mott transition has been
observed in both deep [9–13] and shallow [14] optical lattices.
Yet, the characterization of the Mott transition in shallow
potentials remains a formidable challenge for both theory and
experiments, with direct consequences not only in the ultracold
atom realm but also in condensed matter for problems such as
spin chains for instance [6,15,16].

On the theoretical side, while the Hubbard limit is now
well documented [7,8,17] and its Mott transition has been
extensively studied [18–25], its regime of validity beyond the
deep-lattice limit is still largely unknown in 1D. Full ab initio
results have been reported so far only for three dimensions
(3D) [26], whereas a complete analysis of the 1D case is
still in order, despite some recent progress [27–29]. In the
limit of a vanishing potential, an estimate of the transition
point may be nonetheless found in the sine-Gordon model
whose coefficients are determined perturbatively [14,30]. This,
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however, ignores the unavoidable renormalization of the field-
theoretic coupling parameters by the potential, which may
significantly affect the transition. On the experimental side,
the Mott transition has been clearly observed in the shallow
lattice limit using modulation spectroscopy and transport
measurements [14]. However, the experimental uncertainties
did not allow for a precise determination of the phase diagram.

In this Rapid Communication, we report a quantitative
joint theoretical and experimental investigation of the Mott
transition for strongly interacting 1D bosons in a shallow
periodic potential. Using continuous-space quantum Monte
Carlo calculations, we determine the exact quantum phase
diagram. Our calculations confirm the field-theoretical univer-
sal predictions and provide, in addition, accurate quantitative
values of the critical parameters of the Mott transition.
Experimentally, we perform transport measurements on a Bose
gas with tunable interactions down to the limit of very shallow
lattices and we analyze them with a phase slip based model
to accurately determine the Mott transition. The numerical
and experimental results are in excellent agreement and show
significant deviation from the perturbative sine-Gordon theory
using the bare Luttinger parameters.

Model and theoretical approach. We consider zero-
temperature interacting 1D bosons of mass m with a contact
interaction of strength g, subjected to a periodic potential
V (x) = V sin2(kx) of spacing a = π/k and amplitude V . Both
the large V and small V limits have the possibility of a Mott
transition when the interactions are increased [17]. In spite of
their qualitative different natures the two limiting cases are,
however, expected to belong to the same universality class for
they both lead to the same low-energy sine-Gordon model
[4,6,17,31]. Within the Tomonaga-Luttinger liquid (TLL)
approach, the homogeneous superfluid is parametrized by the
Luttinger parameter K , which characterizes the interaction
strength. For weak interactions, the periodic potential is
essentially irrelevant, except in renormalizing the effective
value of the Luttinger parameter. For strong interactions, the
TLL may be unstable upon introducing a periodic potential,
which then signals the Mott insulator phase. More precisely,
two Mott transitions of different kinds should be distinguished.
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G. BOÉRIS et al. PHYSICAL REVIEW A 93, 011601(R) (2016)

The first one is triggered by changing the fluid density to
commensurability at sufficiently strong interactions (Mott-δ
transition), while the second one is triggered by increasing
the interactions at commensurability (Mott-U transition).
The TLL theory predicts the universal critical values Kc =
1/p2 and Kc = 2/p2 for the Mott-δ and Mott-U transitions,
respectively, where p is the commensurability order [32–34].

Nevertheless, the TLL theory involves effective parameters
that are not easily related to the microscopic Hamiltonian
parameters and the critical curve gc(V ) is presently not
quantitatively known. To precisely determine the Mott transi-
tions, we use quantum Monte Carlo (QMC) simulations. This
allows us (i) to determine quantitatively the phase diagram
in terms of the microscopic parameters and (ii) to compute
explicitly the Luttinger parameter K as a function of the
microscopic ones and make the link with field theory. We
use the same implementation of the continuous-space worm
algorithm [35,36] in the grand-canonical ensemble as used
in Ref. [37], which is numerically exact for all the physical
quantities we study in the following [38].

Incommensurate transition. We start with the incommensu-
rate (Mott-δ) transition, which may be triggered by changing
the chemical potential μ. In order to accurately determine
the critical point, several key quantities are examined. These
include the particle density n, the compressibility κ ≡ ∂n/∂μ,
and the hydrodynamic superfluid density ns, which are com-
puted independently in the QMC simulations [38]. We then
deduce the superfluid fraction fs = ns/n and the Luttinger
parameter K = π

√
(�2/m)nsκ .

The QMC results are shown versus the chemical potential
in the inset of Fig. 1 for V = 2Er where Er = �

2k2/2m is
the recoil energy, g = 7�

2/ma, and various system sizes. The
density increases monotonically with the chemical potential μ

and exhibits a plateau at commensurability, na = 1, where the
superfluid density drops to zero. At the edges of the plateau,
the compressibility shows marked cusps. This is the signature
of the Mott-δ transition. The critical chemical potentials μ±

c
corresponding to the two edges of the plateau are accurately
determined from the crossing points of the compressibility for
different system sizes. They can also be found from the drop of
the superfluid fraction fs, which yields similar values for μ±

c .
At the Mott-δ transition, the Luttinger parameter is expected
to exhibit the universal discontinuity from K = 1 to K = 0.
Our data are perfectly compatible with this prediction.

Repeating the same calculations for various values of the
interaction strength, we find the Mott lobe in the g-μ plane
shown in the main panel of Fig. 1. The black points and
joining lines are determined from the K = 1 criterion, while
the colored points are extracted from the crossing point of the
compressibility (red), the cusp of the compressibility (green),
and the crossing point of the Luttinger parameter (blue). The
different methods yield results in excellent agreement all along
the lobe within a few percent.

Commensurate transition. We now turn to the commen-
surate (Mott-U ) transition. We vary the interaction strength
γ ≡ mg/�

2n at commensurability (na = 1) and compute the
one-body correlation function g1(x) = 〈ψ̂†(x)ψ̂(0)〉, where ψ̂

is the field operator [38]. When increasing γ along the line
with na = 1 (red dashed line in Fig. 1), we observe a clear
change of behavior of the g1 function from algebraic for
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FIG. 1. QMC results for the phase diagram in the g-μ plane
for a fixed amplitude of the periodic potential V = 2Er. The black
(dark) points joined by lines are determined from the K = 1 criterion.
The crossing points of the compressibility (red), the position of the
compressibility cusps (green), and the crossing points of the Luttinger
parameter (blue) are also shown and are practically indiscernible.
The left-hand red crosses are the hard-core limits [(�2/ma)/g → 0].
The inside of the lobe (red shaded region) and the red dashed line
correspond to a density of one particle per potential spacing. The
blue dotted line is the prediction of the BH model and the right-hand
blue cross is the corresponding tip of the lobe. Inset: The particle
filling, na, the compressibility κ , the superfluid fraction fs, and
the Luttinger parameter K are shown versus the chemical potential
μ, for a periodic potential amplitude V = 2Er and an interaction
strength g = 7�

2/ma. The various curves are the QMC results for
different system sizes, L/a = 30, 50, and 100 (blue, green, and red,
respectively), showing a sharper transition as the size increases. The
vertical dotted lines show the transition points determined from the
criterion K = 1.

γ < γc to exponential for γ > γc (see insets of Fig. 2). This is
the signature of the Mott-U transition. The finite correlation
length lc in the insulating phase is shown in the left panel of
Fig. 2. It is of only a few lattice sites long for strong interactions
and increases up to a value comparable to the system size for
γc ∼ 2. This is compatible with the expected divergence of the
correlation length at the transition. In the superfluid phase, the
algebraic decay of the correlation function is compatible with
the TLL theory prediction g1(x) ∝ 1/x1/2K . The two values
of the Luttinger parameter found from a fit to this prediction
and from the thermodynamic prediction K = π

√
nsκ are in

good agreement (see right panel of Fig. 2). When increasing
the interaction towards the insulating phase, the Luttinger
parameter decreases down to K 	 2 as predicted by the
TLL theory.

To locate the Mott-U transition point accurately, we resort
to the Berezinskii-Kosterlitz-Thouless renormalization group
equations to perform the finite size scaling of the Luttinger
parameter [38]. The results are shown in Fig. 3 (black points).
In the strong potential limit, the results are compatible with
the prediction of the Bose-Hubbard (BH) model with the
critical value (J/U )c = 0.297 ± 0.01 [21,22] and the hopping
J and interaction strength U calculated from the exact Wannier
functions [20]. In the vanishing potential limit, the results
converge to the critical value γc(V = 0) 	 3.5 (red cross in
Fig. 3) found from the exact relation K(γ ) for the integrable
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FIG. 2. Analysis of the correlation function g1(x) =
〈ψ̂ †(x)ψ̂(0)〉 for V/Er = 2. The decay is exponential in the
insulator (left inset, γ = 7) and algebraic in the superfluid (right
inset, γ = 1.25). Left: Correlation length in the insulator. Right:
Luttinger parameter in the superfluid extracted from the decay of the
correlation function (solid black) and from the formula K = π

√
nsκ

(dashed red). The QMC results are the points, connected by straight
lines to guide the eye. Note that the inflection of the correlation
length curve close to the transition is due to finite size effects.

Lieb-Liniger model [39]. However, in the intermediate regime,
we find a strong deviation from the pinning transition line
(red dashed line) computed in Ref. [30] from the perturbative
sine-Gordon theory using the bare Luttinger parameters. This
shows that to quantitatively obtain the phase diagram the
renormalization of the Luttinger parameters even by relatively
weak interactions is significant and cannot be ignored in the
perturbative field theory.

Experiment. The experiment starts with a Bose-Einstein
condensate of 39K with tunable scattering length at a broad
Feshbach resonance [40]. The condensate is split into about
1000 vertical 1D tubes by adiabatically raising a strong
2D horizontal optical lattice. Each tube contains on aver-
age 36 atoms and the transverse trapping frequency, ω⊥ =
2π×40 kHz corresponds to an energy higher than all other
energy scales, realizing an effective 1D geometry. In the
longitudinal direction we then adiabatically raise a weak
optical lattice with spacing a = λ/2 = 532 nm and normalized
amplitude V/Er ranging from 1.0(1) to 4.0(4). A magnetic field
holds the system against gravity and a longitudinal harmonic
trap potential, with frequency ωz = 2π×160 Hz, makes it
inhomogeneous. By varying the 3D scattering length a3D, we
can tune the Lieb-Liniger parameter γ in the range 0.07–7.4.
The system parameters are chosen to obtain a mean filling
〈na〉 = 1. This implies that in most of the tubes there are one
or two regions with local commensurate filling, na = 1, which
can undergo a Mott-U transition. There is, however, a fraction
of tubes with na < 1 that cannot become insulating [38].

To detect the Mott transition we excite a sloshing motion of
the system through a shift of the trapping potential, obtained
by suddenly switching off the magnetic field gradient [14,41].
We let the atoms evolve in the trap for a variable time
t , after which all optical potentials are switched off and
time-of-flight absorption images are recorded. An example
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FIG. 3. Phase diagram in the g-V plane at commensurability
(na = 1). The big black and small green points (both with error bars)
are the Monte Carlo and experimental results, respectively. The solid
blue line is the BH prediction using exact Wannier functions and the
critical value (J/U )c = 0.297 ± 0.01 (the shaded area corresponds
to this error bar). The red cross indicates the critical interaction
strength gc such that K(gc) = 2 in the Lieb-Liniger model. Along
the whole transition line the effective Luttinger parameter remains
K = 2. The dashed red line is the result of the bare sine-Gordon
theory [30].

of the time evolution of the momentum distribution peak p(t)
is shown in the inset of Fig. 4: an initial increase of p(t)
up to a certain critical value pc is followed by a subsequent
decrease. We analyze this behavior in the frame of a phase
slip based model [41–43]. Phase slips, i.e., the dominant
excitations in 1D, make the system dynamics dissipative: at
short times where p(t) < pc, the data can be fit with a damped
oscillation function p(t) = pmaxe

−Gt sin(ω′t), where ω′ is the
renormalized frequency taking into account the damping rate
G and the presence of the lattice; at larger times the system
enters a dynamically unstable (insulating) regime driven by a
divergence of the phase slip rate [41]. The critical momentum
pc for the occurrence of the dynamical instability, is identified
as the momentum value where the experimental data points
deviate with respect to the theoretical curve [38].

The critical momentum is expected to vanish at the
superfluid-insulator transition [42]. The behavior of pc as a
function of the scattering length a3D is reported in Fig. 4
for several values of the lattice depth. The measured pc

initially decreases for increasing a3D and then reaches a
finite constant value. We interpret the onset of the plateau
as the critical scattering length ac to enter the Mott regime
for the commensurate regions of the system: transport along
the corresponding tubes is globally suppressed driving the
system into an effective insulating regime. The fraction of
tubes that does not reach the critical density na = 1 keeps
instead moving also for a3D > ac, originating the observed
plateau for pc. For each set of measurements with a given
value of V , we determine ac by means of a piecewise fit. We
use a second-order polynomial fit, which is justified by the
phase slip based model [38,42,44]. We clearly see that as V

decreases, ac—and thus also γc—increases.
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FIG. 4. Critical momentum pc versus scattering length a3D for
four lattice depths: From right to left, V/Er = 1 (red), 2 (orange), 2.8
(green), 4 (blue). A piecewise fit (solid lines) determines the critical
values for the superfluid–Mott insulator transition (circles): respec-
tively, ac/a0 = 392 ± 12,214 ± 6,160 ± 30,122 ± 8. The error bars
derive from the procedure to obtain pc [38]. Inset: time evolution of
the momentum distribution peak p for a3D = 109a0 and V/Er = 2.
The solid line is the theoretical damped oscillation fitting the data
for p < pc before the dynamical instability sets in. The error bars
comprise the imaging resolution and the statistical uncertainties.

For each value of lattice depth we get the Mott-U transition
point converting ac into γc for na = 1. The experimental
results are shown as green points in Fig. 3. Within our
uncertainties [45], the experiment is in very good agreement
with the numerical simulations. Our results are also consistent
with those reported in Ref. [14] within the uncertainties.
Our experiment confirms the clear deviation of the transition
line from the bare sine-Gordon prediction found by the
QMC calculations. Note that, surprisingly enough, while the
BH model is justified only for V � Er, both numerics and
experiment show that the BH prediction for the Mott-U

transition is quite accurate down to the limit V → 0. This
agreement is, however, rather accidental and the breakdown
of the BH model is manifest in other quantities. For instance,
the BH prediction for the Mott lobe deviates significantly from
the exact QMC result (see Fig. 1). In particular, the Mott gap

 = μ+

c − μ−
c is largely overestimated by the BH prediction.

Conclusions. We have studied, both theoretically and
experimentally, the Mott transition of strongly interacting 1D
bosons in a periodic potential from deep to shallow potentials.
Our ab initio QMC calculations validate the field-theoretic
universal predictions and, in addition, provide a quantitative
determination of the phase diagram. Our results show that
the renormalization of the Luttinger parameter is significant
even for weak periodic potentials. The numerical analysis
gives excellent agreement with experiments for the Mott-U
transition. The experimental observation of our numerical
phase diagram for the Mott-δ transition is still beyond reach
for ultracold atomic systems due to the requirement of a fine
control of atom number in box-shaped potentials. In spite of
recent progress in that direction [46–48], it remains a great
challenge for future studies.

Note added. Recently, a preprint appeared reporting the nu-
merical study of the Mott-U transition with results consistent
with ours [49].
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H.-C. Nägerl, Phys. Rev. Lett. 107, 175301 (2011).

[25] J. Carrasquilla, S. R. Manmana, and M. Rigol, Phys. Rev. A 87,
043606 (2013).

[26] S. Pilati and M. Troyer, Phys. Rev. Lett. 108, 155301 (2012).
[27] F. De Soto and M. C. Gordillo, J. Low Temp. Phys. 171, 348

(2012).
[28] C. Carbonell-Coronado, F. De Soto, and M. C. Gordillo,

Phys. Rev. A 87, 063631 (2013).
[29] T. Sowinski, J. Opt. Soc. Am. B 32, 670 (2015).
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