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The presence of losses in nonlinear photonic structures necessitates the introduction of active parts for wave
power compensation resulting in unbalanced gain and loss landscapes where localized beam propagation is,
in general, dynamically unstable. Here we provide generic sufficient conditions for the relation between the
gain-loss and the refractive index profiles in order to ensure efficient wave trapping and stable propagation for
a wide range of beam launching conditions such as initial power, angle of incidence, and position. The stability
is a consequence of an underlying dynamic power balance mechanism related to a conserved quantity of wave
dynamics.
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Modern photonic applications utilize the combination of
nonlinearity and inhomogeneity in order to provide ad-
vanced functionality in properly engineered metamaterials
and metadevices [1,2]. These structures have the form of
multilayered media consisting of materials such as ordinary
dielectrics as well as metals and graphene. The presence of
metals results in plasmonic excitations that can boost nonlinear
effects due to high field values and small mode volume [3],
whereas the presence of graphene layers is accompanied
by very strong Kerr nonlinearities [4], both resulting in the
formation of self-localized modes [5–8]. The nonlinearity
plays a crucial role in functionality related to dynamic and
all-optical light control through wave-material and wave-
wave interactions. However, both ordinary dielectrics and
metal or graphene layers introduce significant losses that
can hamper the nonlinear functionality of these structures
by restricting the wave propagation to small distances [9].
This crucial drawback of the respective photonic structures
necessitates the utilization of active parts (hot spots) in the
form of doped and pumped dielectrics in order to provide the
necessary gain for loss compensation [10–12], introducing
an inhomogeneous gain-loss landscape. A similar type of
nonconservative inhomogeneity also appears in applications
related to soliton-forming laser cavities [13]. In all these cases
the formation and robust propagation of a self-localized mode
is determined by both the diffraction-nonlinearity and the
loss-gain balance, which cannot be considered separately.

From an engineering aspect, even the presence of spatially
homogeneous gain and loss in an optical lattice can sig-
nificantly enrich soliton dynamics providing soliton routing
and acceleration functionalities [14,15], in addition to the
numerous applications related to conservative lattices that
include the formation of solitons, surface waves, and defect
modes [16,17]. Moreover, the appropriate design of gain and
loss inhomogeneity provides another degree of freedom for
wave manipulation [18,19]. The symmetry properties of the
inhomogeneity profiles have been shown to play a crucial
role in the system features. It has been shown that, for the
case of PT symmetry, the system has a real spectrum and
supports a continuous family of solitons [20,21]. Other types
of symmetries that restrict, not the profiles of the refractive
index and the gain-loss inhomogeneity as in the PT case,
but their mutual relation, have also been shown to support
such continuous soliton families [19,22,23], in contrast to the

common case of dissipative solitons in which, in general, only
isolated solitons exist.

A solitary wave can propagate at a fixed transverse position
of a planar structure near the interface between a gain and
a loss region, where a static power balance condition is
satisfied. However, any deviation from this specific position or
from a zero angle of incidence can lead to continuous power
increasing or decreasing, resulting in unstable behavior, as in
the case of stationary solitons pinned to hot spots [24–30]. The
utilization of spatial modulations of the linear or nonlinear
refractive index has been proposed [31,32] for introducing
effective potential wells resulting in wave trapping in the
specific position and preventing large excursions within the
two regions around the fixed position. Even in such cases,
wave oscillations around the balance position can be unstable
when the gain and loss of the interfaced parts are unbalanced,
as in the most typical case in which narrow hot spots with high
gain are utilized in order to compensate for more extended
parts with relatively small losses. The instability arises from
the fact that the dynamic power balance of the wave depends
on the extent of the oscillations in the two parts, since the
wave amplification and attenuation in the two phases of the
oscillation are not equal in general. Therefore, an appropriate
refractive index modulation has to take into account the gain
and loss profile in order to ensure a dynamic balance of gain
and loss and a stable wave propagation.

In the following, we present generic efficient conditions
for the relation between the gain-loss and the refractive index
profiles allowing not only for stable stationary propagation at
a specific point with a zero angle of incidence, but also for
dynamic power balance for localized waves with a wide range
of positions and angles of incidence, which are applicable to
any type of planar photonic structure that may have unbalanced
gain and loss properties.

I. MODEL AND METHOD

Nonlinear wave propagation in a transversely inhomoge-
neous planar photonic structure is described by the nonlinear
Schrödinger equation (NLSE)

iuz + uxx + [V (x) − iW (x)]u + 2|u|2u = 0, (1)
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where u is the normalized electric field envelope, z and x are
the normalized longitudinal and transverse dimensions, and
V (x), W (x) are the transverse refractive index and gain-loss
profiles, respectively. For spatially localized (solitary) waves,
neglecting radiation losses, we can define the useful quantities
corresponding to the wave mass m = ∫ |u|2dx and momentum
p = i

∫
(uu∗

x − uxu
∗)dx. In the absence of inhomogeneity

(V = W = 0), m and p are conserved, whereas in the presence
of inhomogeneity they vary as

dm

dz
= �(x0), (2)

m
dv

dz
= −∂Ueff(x0)

∂x0
, (3)

where

�(x0) = 2
∫ +∞

−∞
|u(x − x0)|2W (x)dx, (4)

Ueff(x0) = −2
∫ +∞

−∞
|u(x − x0)|2V (x)dx (5)

are the mass variation rate and the effective potential, re-
spectively, and x0 is the wave center varying as dx0/dz =
p/m ≡ v with the velocity v corresponding to the propagation
angle. Therefore, the solitary wave propagates as an effective
particle with mass and momentum variations depending on the
nonconservative [W (x)] and the conservative [V (x)] part of the
inhomogeneity, respectively. Wave propagation dynamics are
described in the three-dimensional space (x0,v,m). By dividing
Eqs. (2) and (3) and changing the integration variable from x

to x − x0 in Eqs. (4) and (5), it can be readily shown [19] that,
under the condition

∂V (x)

∂x
= CW (x), (6)

the existence of an exact invariant of the motion, given
by K = C ln m + v, restricts the wave dynamics in a two-
dimensional surface. This is a general property of any type of
solitary wave in the presence of inhomogeneities of arbitrary
profile and magnitude. Condition (6) ensures the static power
balance for a stationary solitary wave located at a fixed point
�(x0) = 0 in the vicinity of the interface between a lossy
and an amplifying part. Moreover, it is a stronger condition,
sufficient for the dynamic power balance of solitary waves with
nonzero angles of incidence and positions deviating from the
fixed point that undergo stable oscillations, as we show in the
following. Notice that condition (6) is qualitatively different
from the PT symmetry condition, since it does not imply any
restriction on the symmetry properties of the nonconservative
[W (x)] and the conservative [V (x)] part of the inhomogeneity,
but only a mutual relation of their profiles; therefore, it is
also applied in nonsymmetric profiles. Under condition (6)
when V (x) is even, W (x) is odd (and vice versa) as in
PT symmetric configurations. However, the PT symmetry
condition suggests only the existence of a fixed point and does
not ensure its stability.

In the following, we exploit the consequences of this
condition with respect to the dynamic power balance for
solitary waves in a wide variety of planar structures, and
we prove that Eq. (6) serves as a generic sufficient condition

for stable wave propagation in accordingly designed photonic
structures.

II. RESULTS AND DISCUSSION

We focus on multilayer photonic structures with piecewise
constant gain and loss profiles. According to Eq. (6), the linear
refractive index profile is a piecewise linear function, so that

W (x) =
∑

i

�i(x), V (x) =
∑

i

�i(x) (7)

with

�i(x) =
{
ai, xi,1 < x < xi,2,

0 elsewhere, (8)

�i(x) =
{
cix + di, xi,1 < x < xi,2,

0 elsewhere. (9)

The dynamics of solitary wave propagation in such struc-
tures is determined by Eqs. (2) and (3). To simplify our
analysis and provide an intuitive understanding, we consider
inhomogeneities of relatively small amplitude. According to
a perturbative approach, we assume that the solitary wave
form remains close to the soliton solution of the homo-
geneous NLSE u = η sech[η(x − x0)] exp[i(v/2)x + i(η2 −
v2/4)z] that is utilized in order to obtain the integrals appearing
in Eqs. (4) and (5) in closed form,

�(x0) = m
∑

i

[πi(xi,2) − πi(xi,1)], (10)

Ueff(x0) = −2m
∑

i

[λi(xi,2) − λi(xi,1)], (11)

πi(x) = ai tanh
m

2
(x − x0), (12)

λi(x) = ci(x − x0) − cix + di

em(x−x0) + 1
− ci

m
ln(em(x−x0) + 1) (13)

with m = 2η.
First, we consider a structure consisting of two interfaced

semi-infinite parts with unequal gain and loss coefficients
and linear refractive indices profiles fulfilling condition (6)
with C = −1 as shown in Fig. 1(a). The effective potential
has a local minimum, corresponding to a fixed point, in the
vicinity of the interface with its exact position depending
on the soliton mass. For a soliton of mass m = 1, the fixed
point is located at x0 = −0.69. Stable propagation of a
stationary soliton with initial position at the fixed point is
shown in Fig. 1(b). The fulfillment of condition (6) results
in refractive index slopes appropriately defined in terms of
the gain and loss coefficients in each part. In terms of soliton
dynamics, the direct consequence of the condition is that the
trapping potential is such that no continuous mass increase or
decrease takes place, as the traveling distance in each region
is such that the soliton spends less time in the high-gain
region than in the low-loss region. In fact, this dynamic
power balance mechanism results in asymptotic evolution
to the stable fixed point (attractor). As shown in Fig. 1(c),
the effective particle orbit for a soliton initially located at
x0 = −10 evolves to the fixed point while remaining in the
aforementioned two-dimensional surface of the phase space.
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FIG. 1. (Color online) Single interface between a lossy (a1 = −0.0005) and an amplifying (a2 = 0.001) region. (a) Gain-loss W (x) and
refractive index V (x) profiles (top); effective potential Ueff(x0) and mass variation rate �(x0) for a soliton of mass m = 1 for a refractive
index profile fulfilling the condition (6) with C = −1 (ci = −ai,i = 1,2) (bottom). (b) Stationary propagation for initial soliton position
x0 = −0.69 corresponding to the fixed point depicted by a thick dot in (a). (c) Phase-space orbits of a soliton with initial position x0 = −10
under dynamic balance conditions ci = −ai,i = 1,2 (blue), and for unbalanced cases with c1 = −a1,c2 = −7a2 (red), c1 = −a1,c2 = −0.25a2

(green). (d),(e),(f) Soliton propagation for conditions corresponding to the three orbits shown in (c). The thick black lines depict results from
the effective particle model.

The rate of convergence to the fixed point orbit increases
with the magnitude difference between the gain and loss
coefficients, and for the specific case it is quite small, as shown
in Fig. 1(d). Notice that the period of oscillations scales with
|C|−1/2. Within the effective particle approach, it is obvious
that the propagation of a soliton with a given initial mass is
determined by its initial position and velocity. In fact, it is the
sum of the “kinetic” and the “potential” energy of the effective
particle and its relation with the potential energy landscape
that determines whether a soliton remains trapped or not.
Therefore, nonzero initial velocities result in soliton trapping if
the aforementioned sum is smaller than the effective potential
energy maxima forming a potential barrier. In the case of
Fig. 1(a), where the effective potential continuously increases
with the distance from the interface, soliton trapping always
occurs, under condition (6), whereas other configurations in
the presence of finite local maxima of the effective potential

result in solitons traveling across the structure, as shown in the
following. The importance of condition (6) can be shown in
comparison to the cases in which it is not fulfilled, resulting in
continuous mass either decreasing or increasing, as shown in
Figs. 1(e) and 1(f), respectively, and unbounded phase-space
orbits [Fig. 1(c)].

A typical realistic case with practical importance is a planar
structure consisting of an amplifying part of finite width (hot
spot) in a lossy medium, with gain-loss and refractive index
profiles fulfilling condition (6), as shown in Fig. 2(a). For
a soliton of mass m = 1 and the parameters values of the
specific structure, an asymmetric potential well can be formed,
as shown in Fig. 2(a). The fixed point located at x0 = −2.65
corresponds to stable stationary soliton propagation [Fig. 2(b)],
whereas stable large-amplitude oscillations (asymptotically
evolving to the stationary soliton) can take place as a
consequence of the condition for dynamic power balance, as
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FIG. 2. (Color online) Single hot-spot structure consisted of an amplifying part (a2 = 0.001) of finite width 	x = 4 in a lossy medium
(a1 = a3 = −0.0005) for a refractive index profile fulfilling the condition (6) with C = −1 (ci = −ai,i = 1,2). (a) Gain-loss W (x) and
refractive index V (x) profiles (top); effective potential Ueff(x0) and mass variation rate �(x0) for a soliton of mass m = 1 (bottom). (b)
Stationary propagation for initial soliton position x0 = −2.65 corresponding to the fixed point depicted by a thick dot in (a). (c) Trapped soliton
oscillations for initial position x0 = 1. (d) Traveling soliton propagation for initial position x0 = −10. The thick black lines depict results from
the effective particle model.

shown in Fig. 2(c). Since the potential well does not have
an infinite depth, initial soliton conditions corresponding to
untrapped dynamics result in traveling solitons of continuously
decreasing mass, as illustrated in Fig. 2(d). It is worth noting
that the trapping conditions depend on both the parameters
of the structure and the soliton mass, so that in each structure
solitons having a mass below a critical value cannot be trapped.
This fact results from the interplay of the two spatial scales,
namely the soliton width (∼m−1) and the amplifying part
width (	x) as well as the relative magnitude of the gain and
loss coefficients, and it is reflected in the effective particle
model as a bifurcation of the fixed point corresponding to
the local minimum of the effective potential. The spatial
width and the depth of the potential well, for a given
soliton mass value, determine the range of initial positions
and angles of incidence (velocities) for soliton trapping and
stability.

The case of a structure with two hot spots is considered in
Fig. 3. As expected, the increased complexity of the structure
results in richer dynamics and trapping capabilities. In such
a case we can have two fixed points, as shown Fig. 3(a).
Therefore, under dynamic power balance conditions, trapping
and stable soliton oscillations can occur either on the left
potential well [Fig. 3(b)] or on the right one [Fig. 3(c)].
Moreover, for appropriate initial conditions, extended stable
oscillations can take place in the region above the two potential
wells for effective particle energy above the left and below the
right local maximum of the effective potential [Fig. 3(d)]. The
existence and bifurcations of the two fixed points again depend
on the soliton mass and the parameters of the structure, so that

we can have two, one, or zero fixed points for a given soliton
mass value.

The robust coexistence of two solitons trapped in the two
different potential wells is illustrated in Fig. 4(a) for soliton
mass m = 1. Although initially located at the corresponding
fixed points, solitons oscillate due to mutual interactions
depending strongly both on the soliton width (mass) and
the distance between the two hot spots. Different interaction
scenarios are possible, as in the case of two solitons of
higher mass (m = 1.5) as shown in Fig. 4(b). In that case,
although both solitons are launched at the corresponding
fixed points, under interaction the right one is detrapped and
travels with continuously decreasing mass whereas the other
is stably trapped in its potential well. An extensive list of
interaction scenarios, including solitons of different masses,
can be considered, and these scenarios can be very interesting
in terms of light control applications. It is worth emphasizing
that it is the fulfillment of the dynamic power balance condition
between the refractive index and the gain-loss profiles that
allows for stable soliton dynamics and mutual interactions,
which could not take place otherwise.

III. CONCLUSIONS

The fundamental problem of power balance of a nonlinear
wave in a photonic structure with unbalanced gain and loss has
been addressed. Sufficient conditions between the refractive
index and gain-loss profiles have been derived for the dynamic
power balance of soliton propagation. In contrast to a static
power balance, which ensures only the existence of a fixed
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FIG. 3. (Color online) Double hot-spot structure consisted of two amplifying parts (a2 = a4 = 0.001) of finite width 	x = 4 located at
xc = ±5 in a lossy medium (a1 = a3 = a5 − 0.0005) for a refractive index profile fulfilling the condition (6) with C = −1 (ci = −ai,i = 1,2).
(a) Gain-loss W (x) and refractive index V (x) profiles (top); effective potential Ueff(x0) and mass variation rate �(x0) for a soliton of mass
m = 1 (bottom). (b) Trapped soliton oscillations in the left potential well for initial position x0 = −11. (c) Trapped soliton oscillations in the
right potential well for initial position x0 = 4. (d) Extended trapped soliton oscillations for initial position x0 = −14. The thick black lines
depict results from the effective particle model.

point corresponding to stationary soliton propagation, the
dynamic power balance ensures the stability of the fixed
point solution, allowing for stable propagation for a wide
range of initial soliton positions and velocities, which is
crucial for realistic applications. The analysis has been based
on a simple effective particle model providing not only
the sufficient conditions but also an intuitive understanding
of the complex soliton dynamics and being in remarkable
agreement with the full model. The concepts and results of
the dynamic power balance, illustrated here for simplicity
only for piecewise constant gain-loss profiles, are so general
that they can be directly applied to any type of gain-loss
profiles, nonlinear refractive index, and nonlinear gain-loss
inhomogeneities, so that the respective conditions can be used
as guidelines for the design of realistic photonic structures.

Moreover, the consequences of such a dynamic power balance
can be considered for the propagation dynamics of different
types of waves such as dark and gray solitons as well as
two-dimensional solitary wave structures and vortices.
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FIG. 4. (Color online) (a) Oscillatory interaction of two solitons of mass m = 1 and initial positions x0 = −7.65 and 2.33 corresponding
to the two fixed points depicted in Fig. 3(a). (b) Interaction of two solitons of mass m = 1.5 and initial positions x0 = −7.46 and 2.54
corresponding to the respective fixed points; the left soliton remains trapped whereas the right soliton is detrapped.
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